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Introduction 
 
Unconstrained Optimization 
•   Algorithms 
•   Newton Methods 
•   Quasi-Newton Methods 
 
Constrained Optimization 
•   Karush Kuhn-Tucker Conditions 
•   Special Classes of Optimization Problems 
•   Reduced Gradient Methods (GRG2, CONOPT, MINOS) 
•         Successive Quadratic Programming (SQP) 
•         Interior Point Methods (IPOPT) 
 
Process Optimization 
•         Black Box Optimization 
•   Modular Flowsheet Optimization – Infeasible Path 
•   The Role of Exact Derivatives 
 
Large-Scale Nonlinear Programming 
•   rSQP:  Real-time Process Optimization 
•         IPOPT:  Blending and Data Reconciliation 

Further Applications 
•   Sensitivity Analysis for NLP Solutions 
•   Multi-Scenario Optimization Problems 
 
Summary and Conclusions 

Nonlinear Programming and Process Optimization 



2 

3 

Introduction 
Optimization:  given a system or process, find the best solution to 
this process within constraints. 

Objective Function:  indicator of "goodness" of solution, e.g., cost, 
yield, profit, etc. 

Decision Variables:  variables that influence process behavior and 
can be adjusted for optimization. 

 

In many cases, this task is done by trial and error (through case 
study).  Here, we are interested in a systematic approach to this 
task - and to make this task as efficient as possible. 

 

Some related areas: 

 -  Math programming 

 -  Operations Research 

Currently - Over 30 journals devoted to optimization with roughly 
200 papers/month - a fast moving field! 
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Optimization Viewpoints 

Mathematician - characterization of theoretical properties 
of optimization, convergence, existence, local 
convergence rates. 

Numerical Analyst - implementation of optimization method 
for efficient and "practical" use. Concerned with ease of 
computations, numerical stability, performance. 

Engineer - applies optimization method to real problems.  
Concerned with reliability, robustness, efficiency, 
diagnosis, and recovery from failure. 
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Scope of optimization 
Provide systematic framework for searching among a specified  
space of alternatives to identify an “optimal” design, i.e., as a   
decision-making tool 

Premise 
Conceptual formulation of optimal product and process design  
corresponds to a mathematical programming problem 

Motivation 

MINLP  NLP 

min f(x, y) 
s.t. h(x, y) = 0 
      g(x, y) ≤ 0 
x ε Rnx, x ε {0, 1}ny 
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x x Hybrid 
x x Nonlinear 

MPC 

x Linear MPC 
x x Real-time 

optimization 

x x x Supply Chain 
x x x x Scheduling 

x x Flowsheeting 
x x x  Equipment 

Design 

x  x x x Reactors 
x x Separations 

x x x x x x MENS 
x x x x x x HENS 

SA/GA NLP LP,QP Global MINLP MILP 

Optimization in Design, Operations and Control  
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Example:  Optimal Vessel Dimensions 
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What is the optimal L/D ratio for a cylindrical vessel? 

Constrained Problem 


 
 
 
 
 
(1) 
 

Convert to Unconstrained (Eliminate L)
 
 

(2)








 
==> L/D  =  CT/CS 

Note: 

- 
What if L cannot be eliminated in (1) explicitly? (strange shape) 

- 
What if D cannot be extracted from (2)?   

(cost correlation implicit) 

L 

D 

V 
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Unconstrained Multivariable Optimization 

Problem:           Min    f(x)      (n variables) 
 
Equivalent to:  Max  -f(x), x ∈ Rn 
 
Nonsmooth Functions 
-  Direct Search Methods 
-  Statistical/Random Methods 
 
Smooth Functions 
-  1st Order Methods 
-  Newton Type Methods 
-  Conjugate Gradients 
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Two Dimensional Contours of F(x) 
 

Convex Function 
 
Nonconvex Function Multimodal, Nonconvex 


Discontinuous 
 
Nondifferentiable (convex) 

 




�
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Local vs. Global Solutions 
Convexity Definitions 
• a set (region) X is convex, if and only if it satisfies: 

  α y + (1-α)z ∈ X    
   for all α, 0 ≤ α ≤ 1, for all points y and z in X.  
•  f(x) is convex in domain X, if and only if it satisfies: 

  f(α y + (1-α) z) ≤ α f(y)  + (1-α)f(z)    
   for any α, 0 ≤ α ≤ 1, at all points y and z in X.  
 
• Find a local minimum  point x* for f(x) for feasible region defined by   
constraint functions: f(x*) ≤ f(x) for all x satisfying the constraints in 
some neighborhood around x* (not for all x ∈ X) 
• Sufficient condition for a local solution to the NLP to be a global is 
that f(x) is convex for x ∈ X. 
• Finding and verifying global solutions will not be considered here.  
• Requires a more expensive search (e.g. spatial branch and bound).  
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Linear Algebra - Background 
Some Definitions 

• 
Scalars - Greek letters, α, β, γ 
• 
Vectors - Roman Letters, lower case 
• 
Matrices - Roman Letters, upper case

•      Matrix Multiplication:

      C = A B if A ∈ ℜn x m, B ∈ ℜm x p and C ∈ ℜn x p, Cij = Σk Aik Bkj 
•      Transpose - if A ∈ ℜn x m, 

      interchange rows and columns --> AT∈ ℜm x n 

•      Symmetric Matrix - A ∈ ℜn x n (square matrix) and A = AT 

•      Identity Matrix - I, square matrix with ones on diagonal 

      and zeroes elsewhere.  
•      Determinant: "Inverse Volume" measure of a square matrix 

det(A) = Σi (-1)i+j Aij Aij  for any j, or   
det(A) = Σj (-1) i+j Aij Aij for any i, where Aij is the determinant

of an order n-1 matrix with row i and column j removed. 

det(I) = 1 



•      Singular Matrix: det (A) = 0 
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Gradient Vector - (∇f(x)) 
 

Hessian Matrix  (∇2f(x) - Symmetric) 

 

Note:    =  

Linear Algebra - Background 
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•       Some Identities for Determinant 
det(A B) = det(A) det(B); 
det (A) = det(AT) 
det(αA) = αn det(A); 
det(A) = Πi λi(A)




•       Eigenvalues: det(A- λ I) = 0, Eigenvector: Av = λ v 

Characteristic values and directions of a matrix. 
For nonsymmetric matrices eigenvalues can be complex, 

so we often use singular values, σ = λ(ATΑ)1/2 ≥ 0


•  Vector Norms 
|| x ||p = {Σi |xi|p}1/p 
(most common are p = 1, p = 2 (Euclidean) and p = ∞ (max norm = maxi|xi|)) 

•  Matrix Norms 

||A|| = max ||A x||/||x|| over x (for p-norms) 

||A||1 - max column sum of A, maxj (Σi |Aij|) 

||A||∞ - maximum row sum of A, maxi (Σj |Aij|) 

||A||2 = [σmax(Α)] (spectral radius)  

||A||F = [Σi Σj (Aij)2]1/2

 (Frobenius norm) 

κ(Α) = ||A|| ||A-1|| (condition number) = σmax/σmin (using 2-norm)  

Linear Algebra - Background 
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Find v and λ where Avi  =  λi vi, i = i,n 

Note:  Av -  λv = (A - λI) v = 0  or det (A - λI) = 0 

For this relation λ is an eigenvalue and v is an eigenvector of A. 


If A is symmetric, all λi are real  

λi > 0, i = 1, n;  A is positive definite 


λi < 0, i = 1, n;  A is negative definite 


λi = 0, some i:  A is singular

 

Quadratic Form can be expressed in Canonical Form (Eigenvalue/Eigenvector) 


 
xTAx      ⇒      A V  =  V  Λ 


 
V - eigenvector matrix  (n x n) 


 
Λ - eigenvalue (diagonal) matrix  =  diag(λi) 



If A is symmetric, all λi are real and V can be chosen orthonormal (V-1 = VT).  

Thus,  A = V Λ V-1 = V Λ VT


 

For Quadratic Function:  Q(x) = aTx + ½ xTAx

 

Define:
 z = VTx  and   Q(Vz) = (aTV) z + ½  zT (VTAV)z

                                                = (aTV) z + ½ zT Λ z



Minimum occurs at (if λi > 0)
  x = -A-1a    or 
x = Vz = -V(Λ-1VTa)


Linear Algebra - Eigenvalues 

16 

Positive (Negative) Curvature 
Positive (Negative) Definite Hessian 

Both eigenvalues are strictly positive (negative) 

• 
A is positive (negative) definite 

• 
Stationary points are minima (maxima) 

x1


x2


 z1


z2


(λ1)-1/2


(λ2)-1/2
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Zero Curvature  
Singular Hessian 

One eigenvalue is zero, the other is strictly positive or negative 

• 
A is positive semidefinite or negative semidefinite 

• 
There is a ridge of stationary points (minima or maxima) 
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One eigenvalue is positive, the other is negative 

• 
Stationary point is a saddle point 

• 
A is indefinite 

 

Note: these can also be viewed as two dimensional projections for higher dimensional problems 

Indefinite Curvature  
Indefinite Hessian 
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Eigenvalue Example     
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•   All eigenvalues are positive 
•   Minimum occurs at z* = -Λ-1VTa 
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1. Convergence Theory 

• 
Global  Convergence  -  will  it  converge  to  a  local  optimum (or  stationary 

point) from a poor starting point?


 

• 
Local Convergence Rate - how fast will it converge close to this point? 



 

2. Benchmarks on Large Class of Test Problems 
 

Representative Problem (Hughes, 1981) 



Min  f(x1, x2) = α exp(-β) 
u = x1 - 0.8 
v = x2 - (a1 + a2 u2 (1- u)1/2 - a3 u) 
α = -b1 + b2 u2 (1+u)1/2 + b3 u 
β = c1 v2 (1 - c2 v)/(1+ c3 u2) 


a = [ 0.3, 0.6, 0.2] 
b = [5, 26, 3] 
c = [40, 1, 10] 
x* = [0.7395, 0.3144] 
f(x*) = -5.0893 



�
 

Comparison of Optimization Methods 
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Three Dimensional Surface and Curvature for Representative Test Problem 

�
 

Regions where minimum 
eigenvalue is greater than: 

[0, -10, -50, -100, -150, -200] 
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What conditions characterize an optimal solution? 

x1

x2

x*

Contours of f(x)

Unconstrained Local Minimum

Necessary Conditions 

∇f (x*) = 0 

pT∇2f (x*) p ≥ 0   for p∈ℜn 

(positive semi-definite) 

Unconstrained Local Minimum

Sufficient Conditions 

∇f (x*) = 0 

pT∇2f (x*) p > 0   for p∈ℜn 

(positive definite) 

Since ∇f(x*) = 0, f(x) is purely quadratic for x close to x* 

( )32

2
1 *xxO*)xx*)(x(f*)xx(*)xx(*)x(f*)x(f)x(f TT −+−∇−+−∇+=

For smooth functions, why are contours around optimum elliptical?

Taylor Series  in n dimensions about x*:




12 

23 

Taylor Series for f(x) about xk 




Take derivative wrt x, set LHS ≈ 0


 

 
0 ≈∇f(x) = ∇f(xk) + ∇2f(xk) (x - xk) + O(||x - xk||2) 

⇒   (x - xk) ≡ d =  - (∇2f(xk))-1 ∇f(xk) 



•   f(x) is convex (concave) if for all x ∈ℜn, ∇2f(x) is positive (negative) semidefinite

   i.e.  minj λj ≥ 0 (maxj λj ≤ 0) 
•   Method can fail if: 

-  x0 far from optimum 

- ∇2f is singular at any point 

-  f(x) is not smooth 

•   Search direction, d, requires solution of linear equations. 
•   Near solution:  


�

 

Newton's Method 

2**1 xxOxx kk −=−+
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0. 
Guess x0, Evaluate  f(x0).

 
1. 
At xk, evaluate ∇f(xk). 


2. 
Evaluate Bk = ∇2f(xk) or an approximation. 


3. 
Solve:    Bk d = -∇f(xk) 

If convergence error is less than tolerance: 

e.g., ||∇f(xk) || ≤ ε and ||d|| ≤ ε STOP, else go to 4.  



4. 
Find α so that 0 < α ≤ 1 and f(xk + α d) < f(xk) 


      sufficiently (Each trial requires evaluation of f(x)) 


5. 
xk+1 = xk + α d.  Set k = k + 1 Go to 1.

�



Basic Newton Algorithm - Line Search 
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Newton's Method - Convergence Path 

Starting Points 
[0.8, 0.2]     needs steepest descent steps w/ line search up to 'O', takes 7 iterations to ||∇f(x*)|| ≤ 10-6


 
[0.35, 0.65] converges in four iterations with full steps to ||∇f(x*)|| ≤ 10-6 
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•   Choice of Bk determines method. 
- Steepest Descent: Bk =  γ I 


- Newton: Bk =  ∇2f(x)



•   With suitable Bk, performance may be good enough if f(xk + αd) 

    is sufficiently decreased (instead of minimized along line search 

    direction).

•   Trust region extensions to Newton's method provide very strong 

   global convergence properties and very reliable algorithms. 
•   Local rate of convergence depends on choice of Bk. 

Newton’s Method - Notes 

! 

Newton"Quadratic Rate :            lim
k#$

x
k+1
" x *

x
k
" x *

2
= K

Steepest descent "  Linear Rate :   lim
k#$

x
k+1
" x *

x
k
" x *

<1

Desired?"  Superlinear Rate :       lim
k#$

x
k+1
" x *

x
k
" x *

= 0



14 

27 

! 

k+1

B  =  
k

B  +  
y -  

k
B s( ) T

y  +  y y -  
k

B s( )
T

T
y s

 -  
y -  

k
B s( )

T

s y 
T
y

T
y s( ) T

y s( )

! 

k+1

B
k+1( )

-1

 =  H  =  
k

H  +  

T
ss
T
s y

 -  

k
H y 

T
y k
H

k
y H y

Motivation: 
 
• 
Need Bk to be positive definite.   
• 
Avoid calculation of ∇ 2f.   
• 
Avoid solution of linear system for d = - (Bk)-1 ∇f(xk) 


Strategy: 
Define matrix updating formulas that give (Bk) symmetric, positive 
definite and satisfy: 

 
(Bk+1)(xk+1 - xk) = (∇f k+1 – ∇f k)  (Secant relation)


 
DFP Formula: (Davidon, Fletcher, Powell, 1958, 1964) 


where: 
s = xk+1- xk 

 
 
 
y = ∇f (xk+1) - ∇f (xk)


Quasi-Newton Methods 
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BFGS Formula  (Broyden, Fletcher, Goldfarb, Shanno, 1970-71) 

Notes: 

1)  Both formulas are derived under similar assumptions and have 

        symmetry 

2) 
 Both have superlinear convergence and terminate in n steps on 
quadratic functions. They are identical if α is minimized.  

3) 
 BFGS is more stable and performs better than DFP, in general. 
4) 
 For n ≤ 100, these are the best methods for general purpose 

problems if second derivatives are not available.  

Quasi-Newton Methods 
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Quasi-Newton Method - BFGS 

Convergence Path 

 

Starting Point 
[0.2, 0.8] 
starting from B0 = I, converges in 9 iterations to ||∇f(x*)|| ≤ 10-6 
�
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Harwell (HSL) 
IMSL 
NAg - Unconstrained Optimization Codes 
Netlib (www.netlib.org) 

• MINPACK 
• TOMS Algorithms, etc. 

These sources contain various methods 
• Quasi-Newton 
• Gauss-Newton 
• Sparse Newton 
• Conjugate Gradient 

Sources For Unconstrained Software 
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Problem: 
Minx  f(x) 

 
 
s.t. 
g(x) ≤ 0 

 
 
 
h(x) = 0 

where: 

 
f(x)  -  scalar objective function 

 
   x   -  n vector of variables 

 
g(x)  -  inequality constraints, m vector 

 
h(x)  -  meq equality constraints. 

 
Sufficient Condition for Global Optimum 
- f(x) must be convex, and 
- feasible region must be convex, 

i.e.  g(x) are all convex 

 
   h(x) are all linear 

Except in special cases, there is no guarantee that a local optimum is global 
if sufficient conditions are violated.


Constrained Optimization 
(Nonlinear Programming) 
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Example:  Minimize Packing Dimensions 

What is the smallest box for three round objects? 

Variables:  A, B, (x1, y1),  (x2, y2),  (x3, y3) 

Fixed Parameters:  R1,  R2,  R3  
Objective:  Minimize Perimeter = 2(A+B) 

Constraints:  Circles remain in box, can't overlap 

Decisions:  Sides of box, centers of circles. 

no overlaps  
 
in box

x1, x2, x3, y1, y2, y3,  A, B ≥ 0 
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Mi n

Linear  Progr am

Mi n

Linear  Progr am
(Alter nate Opt im a)

Min

Min
Min

Convex Objective Functions
Linear Constraints

Mi n

Mi n

Mi n

Nonconvex Region
Mul ti ple O pti ma

Mi nMi n

Nonconvex Object ive
Mul ti ple O pti ma

Characterization of Constrained Optima 

�
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What conditions characterize an optimal solution? 

Unconstrained Local Minimum

Necessary Conditions 

∇f (x*) = 0 

pT∇2f (x*) p ≥ 0   for  p∈ℜn 

(positive semi-definite) 

Unconstrained Local Minimum

Sufficient Conditions 

∇f (x*) = 0 

pT∇2f (x*) p > 0   for p∈ℜn 

(positive definite) 
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Optimal solution for inequality constrained problem 


Min 
f(x) 


  s.t
.   g(x) ≤ 0 

Analogy:  Ball rolling down valley pinned by fence 

Note:  Balance of forces (∇f, ∇g1) 

36 

Optimal solution for general constrained problem 

 

Problem: 
Min 
f(x) 


 
 
  s.t. 
g(x) ≤ 0 


 
 
 
h(x) = 0 

Analogy:  Ball rolling on rail pinned by fences 

Balance of forces:  ∇f, ∇g1, ∇h 
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Necessary First Order Karush Kuhn - Tucker Conditions

 


∇ L (x*, u, v) = ∇f(x*) + ∇g(x*) u + ∇h(x*) v = 0     
 (Balance of Forces)


u ≥ 0 (Inequalities act in only one direction) 

g (x*) ≤ 0,  h (x*) = 0  (Feasibility) 

uj gj(x*) = 0  (Complementarity: either gj(x*) = 0 or  uj = 0) 

     u, v are "weights" for "forces," known as KKT multipliers, shadow 


prices, dual variables




“To guarantee that a local NLP solution satisfies KKT conditions, a constraint 
qualification is required. E.g., the Linear Independence Constraint Qualification 
(LICQ)  requires  active  constraint  gradients,  [∇gA(x*)  ∇h(x*)],  to  be  linearly 
independent. Also, under LICQ, KKT multipliers are uniquely determined.” 


Necessary (Sufficient) Second Order Conditions 
- 
Positive curvature in "constraint" directions. 
- 
pT∇ 2L (x*) p ≥ 0  (pT∇ 2L (x*) p > 0)  

where p are the constrained directions: ∇h(x*)Tp = 0  

      for gi(x*)=0, ∇gi(x*)Tp = 0, for ui > 0, ∇gi(x*)Tp ≤ 0, for ui = 0  

Optimality conditions for local optimum 
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Single Variable Example of  KKT Conditions 

-a a

f(x)

x

Min (x)2 
s.t. -a ≤ x ≤ a, a > 0 

x* = 0 is seen by inspection



Lagrange function :   
L(x, u) = x2 + u1(x-a) + u2(-a-x) 



First Order KKT conditions: 

∇L(x, u) = 2 x + u1 - u2 = 0 

u1 (x-a) = 0 


 u2 (-a-x) = 0 

 -a ≤ x ≤ a 
u1, u2 ≥ 0


Consider three cases:  
•     u1 ≥ 0,  u2 = 0 
Upper bound is active, x = a, u1 = -2a, u2 = 0 
•      u1 = 0,  u2 ≥ 0               Lower bound is active, x = -a, u2 = -2a, u1 = 0 
•     u1 = u2 = 0 
 
Neither bound is active, u1 = 0, u2 = 0,  x = 0 


Second order conditions (x*, u1, u2 =0) 



 
           ∇xxL (x*, u*) = 2 


 
            pT∇xxL (x*, u*) p = 2 (Δx)2 > 0 
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Single Variable Example  
of  KKT Conditions - Revisited 

Min -(x)2
s.t. -a ≤ x ≤ a, a > 0 

x* = ±a is seen by inspection



Lagrange function :   
L(x, u) = -x2 + u1(x-a) + u2(-a-x) 



First Order KKT conditions: 

∇L(x, u) = -2x + u1 - u2 = 0 

u1 (x-a) = 0 


 u2 (-a-x) = 0 

 -a ≤ x ≤ a 
u1, u2 ≥ 0


Consider three cases:  
•     u1 ≥ 0,  u2 = 0 
Upper bound is active, x = a, u1 = 2a, u2 = 0 
•      u1 = 0,  u2 ≥ 0               Lower bound is active, x = -a, u2 = 2a, u1 = 0 
•     u1 = u2 = 0 
 
Neither bound is active, u1 = 0, u2 = 0,  x = 0 


Second order conditions (x*, u1, u2 =0) 



 
           ∇xxL (x*, u*) = -2 


 
            pT∇xxL (x*, u*) p = -2(Δx)2 < 0 



a-a

f(x)

x
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For x = a or x = -a, we require the allowable direction to satisfy the 
active constraints exactly. Here, any point along the allowable 
direction, x* must remain at its bound. 



For this problem, however, there are no nonzero allowable directions 
that satisfy this condition. Consequently the solution x* is defined 
entirely by the active constraint. The condition:  

pT ∇xxL (x*, u*, v*) p  > 0 

for the allowable directions, is vacuously  satisfied - because there are 
no allowable directions that satisfy ∇gA(x*)T p  = 0. Hence, sufficient 
second order conditions are satisfied. 
 
As we will see, sufficient second order conditions are satisfied by linear 
programs as well.  

Interpretation of Second Order Conditions 
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Role of KKT Multipliers 
a-a

f(x)

x a + Δa

Also known as: 
• 
Shadow Prices 

• 
Dual Variables 

• 
Lagrange Multipliers

 

Suppose a  in the constraint is increased to a + Δa 

f(x*) =- (a + Δa)2 

and 
[f(x*, a + Δa) - f(x*, a)]/Δa =- 2a - Δa 

df(x*)/da = -2a = -u1 
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Another Example: Constraint 
Qualifications 

0**      
      

0  ..
   

21

3
12

2

1

==

≤

≥
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1
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
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
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


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−
+





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x1


x2


KKT conditions not satisfied at NLP solution 
Because a CQ is not satisfied (e.g., LICQ) 
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Linear Programming: 


Min 
cTx 


  s.t. 
Ax ≤ b 


 
 
Cx = d,  x ≥ 0 

Functions are all convex  ⇒  global min. 
Because of Linearity, can prove solution will 

always lie at vertex of feasible region. 

x2

x1
Simplex Method 


- 
Start at vertex 


- 
Move to adjacent vertex that offers most improvement 

- 
Continue until no further improvement 

Notes:   

1) 
LP has wide uses in planning, blending and scheduling 
 

2) 
Canned programs widely available.  


�
 

Special Cases of Nonlinear Programming 
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Simplex Method 

Min 
-2x1 - 3x2 
 
 
Min 
-2x1 - 3x2 

  s.t. 
 2x1 + x2 ≤ 5 
  ⇒ 
               s.t. 2x1 + x2 + x3 = 5 

 
 
   x1, x2 ≥ 0 
 
 
 
x1, x2, x3 ≥ 0 

 
 
 
 
 
 
 
(add slack variable) 

Now, define f = -2x1 - 3x2  
⇒ 
  f + 2x1 + 3x2 = 0 
Set x1, x2 = 0,  x3 = 5 and form tableau 

 
x1
 
x2 
x3 
f 
b 
x1, x2    nonbasic 

 
2 
 
1 
1 
0 
5 
x3        basic 

 
2 
 
3 
0 
1 
0


 
To decrease f, increase x2.  How much?  so x3 ≥ 0 

 
x1
 
x2 
x3 
f 
b 

 
 2
 
1 
 1 
0 
  5 

 
-4
 
0 
-3 
1 
-15 

        f can no longer be decreased!  Optimal

 
Underlined terms are -(reduced gradients); nonbasic variables (x1, x3), basic variable x2


Linear Programming Example 
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Problem: 
Min 
aTx + 1/2 xT B x 

 
 
 
   A x ≤ b 

 
 
 
   C x = d 

1) 
Can be solved using LP-like techniques:   

 
(Wolfe, 1959) 

 
⇒ 
Min 
Σj (zj+ + zj-) 

 
 
s.t. 
a + Bx + ATu + CTv = z+ - z- 

 
 
 
Ax - b + s = 0 

 
 
 
Cx - d = 0 

 
 
 
u, s, z+, z-  ≥  0 

 
 
 
{uj sj = 0} 

with complicating conditions.


 
2) 
If B is positive definite, QP solution is unique. 

If B is pos. semidefinite, optimum value is unique. 



3) 
Other methods for solving  QP's (faster) 

 
-  Complementary Pivoting (Lemke) 

 
-  Range, Null Space methods (Gill, Murray).


Quadratic Programming 
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i
µ  =  

1

T
 ir

t=1

T

! (t)

Definitions: 

xi  -   fraction or amount invested in security i 

ri (t) - (1 + rate of return) for investment i in year t. 

µi  -   average r(t) over T years, i.e.  

Note:  maximize average return, no accounting for risk. 

Portfolio Planning Problem 

.  ,0

1   .t.

   

etcx

xs

xMax

i

i
i

i
ii

≥

=∑

∑µ
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ijS{ }  =  ij
2σ  =  1

T
 ir (t) - iµ( )

t =1

T

∑ jr (t) - jµ( )

S =   
    3      1      - 0.5
    1       2        0.4
-0.5   0.4           1

 

 

 
 

 

 

 
 

Definition of Risk  -  fluctuation of ri(t) over investment (or past) time period. 
To minimize risk, minimize variance about portfolio mean (risk averse). 


Variance/Covariance Matrix, S    

Example:  3 investments 


 
 
 
µj 
 
1. 
IBM 
 
1.3 
 
2. 
GM 
 
1.2 

3. 
Gold 
 
1.08 

 

Portfolio Planning Problem 

.  ,0

1   .t.
   

etcx

Rx

xs
SxxMin

i

i
ii

i
i

T

≥

≥

=

∑

∑
µ
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SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ) 
4 
5 
OPTION LIMROW=0; 
6 
OPTION LIMXOL=0; 
7 
8 
VARIABLES IBM, GM, GOLD, OBJQP, OBJLP; 
9 
10 
EQUATIONS E1,E2,QP,LP; 
11 
12 
LP.. OBJLP =E= 1.3*IBM + 1.2*GM + 1.08*GOLD; 
13 
14 
QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM  -  IBM*GOLD 
15 
+    2*GM**2 - 0.8*GM*GOLD +  GOLD**2; 
16 
17 
E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G= 1.15; 
18 
19 
E2.. IBM + GM + GOLD =E= 1; 
20 
21 
IBM.LO = 0.; 
22 
IBM.UP = 0.75; 
23 
GM.LO = 0.; 
24 
GM.UP = 0.75; 
25 
GOLD.LO = 0.; 
26 
GOLD.UP = 0.75; 
27 
28 
MODEL PORTQP/QP,E1,E2/; 
29 
30 
MODEL PORTLP/LP,E2/; 
31 
32 
SOLVE PORTLP USING LP MAXIMIZING OBJLP; 
33 
34  SOLVE PORTQP USING NLP MINIMIZING OBJQP; 

Portfolio Planning Problem - GAMS 



25 

49 

S O L VE  S U M M A R Y 
**** MODEL STATUS 
 
1 OPTIMAL 
**** OBJECTIVE VALUE 
 
1.2750 
RESOURCE USAGE, LIMIT 
1.270 
 
1000.000 
ITERATION COUNT, LIMIT 
1 
 
1000 
BDM  -  LP 
VERSION 1.01 
A. Brooke, A. Drud, and A. Meeraus, 
Analytic Support Unit, 
Development Research Department, 
World Bank, 
Washington D.C. 20433, U.S.A. 


Estimate work space needed 
- - 
 33  Kb 
Work space allocated 
 
 
- - 
231  Kb 
EXIT - -  OPTIMAL SOLUTION FOUND. 


 
 
LOWER 
 
LEVEL 
 
UPPER 
 
MARGINAL 
- - - -  EQU LP 
   . 
   . 
 
   . 
 
 
  1.000 
- - - -  EQU E2 
1.000 
 
1.000 
 
1.000 
 
  1.200

 


 
 
LOWER 
 
LEVEL 
 
UPPER 
 
MARGINAL 
- - - -  VAR IBM 
   0.750 
 
0.750 
 
  0.100 
- - - -  VAR GM 
   . 
 
0.250 
 
0.750 
 
 
   . 
- - - -  VAR GOLD 
   . 
 
.. 
 
0.750 
 
 -0.120 
- - - -  VAR OBJLP 
 -INF 
 
1.275 
 
+INF 
 
 
   . 
**** REPORT SUMMARY  : 
0        NONOPT 


 
 
 
 
0   INFEASIBLE 

 
 
 
 
0  UNBOUNDED 

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ) 
Model Statistics     SOLVE PORTQP USING NLP FROM LINE 34 
MODEL STATISTICS

BLOCKS OF EQUATIONS 
 3 
SINGLE EQUATIONS 
 
3

BLOCKS OF VARIABLES 
 4 
SINGLE VARIABLES 
 
4

NON ZERO ELEMENTS 
10 
NON LINEAR N-Z 
 
3

DERIVITIVE POOL 
 
 8 
CONSTANT POOL 
 
3

CODE LENGTH 
 
95 


GENERATION TIME 
   =        2.360 SECONDS

EXECUTION TIME           =         3.510 SECONDS 
 
 
 



Portfolio Planning Problem - GAMS 
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S O L VE  S U M M A R Y 
MODEL 
PORTLP 
 
OBJECTIVE 
OBJLP 
TYPE
 
LP 
 
 
DIRECTION 
MAXIMIZE 
SOLVER 
MINOS5 
 
FROM LINE 
34 
**** SOLVER STATUS 
 
1 NORMAL COMPLETION 
**** MODEL STATUS 
 
2 LOCALLY OPTIMAL 
**** OBJECTIVE VALUE 
 
0.4210 
RESOURCE USAGE, LIMIT 
3.129 
 
1000.000 
ITERATION COUNT, LIMIT 
3 
 
1000 
EVALUATION ERRORS 
0 
 
     0 
M I N O S 
  5.3 
(Nov. 1990) 
 
Ver:  225-DOS-02 
B.A. Murtagh, University of New South Wales 
  and 
P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright 
Systems Optimization Laboratory, Stanford University. 


EXIT - -  OPTIMAL SOLUTION FOUND 
MAJOR ITNS, LIMIT 
 
  1 
FUNOBJ, FUNCON CALLS 
  8 
SUPERBASICS 
 
 
  1 
INTERPRETER USAGE 
 
.21 
NORM RG / NORM PI 
   3.732E-17 


 
 
LOWER 
 
LEVEL 
 
UPPER 
 
MARGINAL 
- - - -  EQU QP 
   . 
 
 
   .   . 
 
 
  1.000 
- - - -  EQU E1 
1.150 
 
1.150 
 
+INF 
 
  1.216 
- - - -  EQU E2 
1.000 
 
1.000 
 
1.000 
 
 -0.556 


 
 
LOWER 
 
LEVEL 
 
UPPER 
 
MARGINAL 
- - - -  VAR IBM 
   . 
 
0.183 
 
0.750 
 
 
   . 
- - - -  VAR GM 
   . 
 
0.248 
 
0.750 
 
  EPS 
- - - -  VAR GOLD 
   . 
 
0.569 
 
0.750 
 
 
   . 
- - - -  VAR OBJLP 
 -INF 
 
1.421 
 
+INF 
 
 
   . 
**** REPORT SUMMARY  : 
 
0        NONOPT 


 
 
 
 
0   INFEASIBLE 

 
 
 
 
0  UNBOUNDED 

 
 
 
 
0         ERRORS 

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ) 
Model Statistics     SOLVE PORTQP USING NLP FROM LINE 34 
EXECUTION TIME           =         1.090  SECONDS 
 
 
 
 

Portfolio Planning Problem - GAMS 
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Motivation:  Build on unconstrained methods wherever possible. 
 
Classification of Methods: 
 

• Reduced Gradient Methods  -  (with Restoration) GRG2, CONOPT  
• Reduced Gradient Methods - (without Restoration) MINOS 
• Successive Quadratic Programming  -  generic implementations 
• Penalty Functions  - popular in 1970s, but fell into disfavor. Barrier    
 Methods have been developed recently and are again popular. 
• Successive Linear Programming  -  only useful for "mostly linear"  
 problems 

We will concentrate on algorithms for first four classes. 
 
Evaluation:  Compare performance on "typical problem," cite experience 
on process problems. 

Algorithms for Constrained Problems 
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Representative Constrained Problem  

(Hughes, 1981) 

 

Min f(x1, x2) = α exp(-β) 
g1 = (x2+0.1)2[x1

2+2(1-x2)(1-2x2)] - 0.16 ≤ 0 
g2 = (x1 - 0.3)2 + (x2 - 0.3)2 - 0.16 ≤ 0 
x* = [0.6335, 0.3465] 
f(x*) = -4.8380 
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Min    f(x) 
 
 
 
 
Min 
f(z)

s.t.
 g(x) + s = 0 (add slack variable) 
 
`⇒ 
s.t. c(z) = 0


h(x) = 0 
 
 
 
 
              a ≤ z ≤ b


a ≤ x ≤ b, s ≥ 0 
 
 
 
 
 


 



 Partition variables into: 


zB - dependent or basic variables

zN - nonbasic variables, fixed at a bound

zS - independent or superbasic variables


Reduced Gradient Method with Restoration  
(GRG2/CONOPT) 

! 

Modified KKT Conditions

"f (z) +"c(z)# $% L + %U = 0

c(z) = 0

z
(i)

= zU
(i)

   or    z
(i)

= zL
(i)

,    i & N

%U
( i)

 ,  % L

( i)
 =  0,   i ' N

54 

•   Solve bound constrained problem in space of superbasic variables

(apply gradient projection algorithm)


•   Solve (e) to eliminate zB


•   Use (a) and (b) to calculate reduced gradient wrt zS.  


•   Nonbasic variables zN (temporarily) fixed (d)

•   Repartition based on signs of ν, if zs remain at bounds or if zB violate bounds


Reduced Gradient Method with Restoration  
(GRG2/CONOPT) 

! 

a)   "S f (z) +"Sc(z)# = 0

b)   "B f (z) +"Bc(z)# = 0

c)   "N f (z) +"Nc(z)# $% L + %U = 0

d)    z
( i)

= zU
( i)

   or    z
( i)

= zL
( i)

,    i & N

e)    c(z) = 0' zB = zB (zS )
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• By remaining feasible always, c(z) = 0, a ≤ z ≤ b, one can apply an  

 unconstrained algorithm (quasi-Newton) using (df/dzS), using (b)



• Solve problem in reduced space of zS variables, using (e).   

Definition of Reduced Gradient 

! 

df

dzS
=
"f

"zS
+
dzB

dzS

"f

"zB
Because c(z) = 0,we have :

dc =
"c

"zS

# 

$ 
% 

& 

' 
( 

T

dzS +
"c

"zB

# 

$ 
% 

& 

' 
( 

T

dzB = 0

dzB

dzS
= )

"c

"zS

# 

$ 
% 

& 

' 
( 
"c

"zB

# 

$ 
% 

& 

' 
( 

)1

= )* zS
c * zB

c[ ]
)1

This leads to :

df

dzS
=*S f (z) )*Sc *Bc[ ]

)1
*B f (z) =*S f (z) +*Sc(z)+

56 











If ∇cT is (m x n); ∇zScT is m x (n-m); ∇zBcT is (m x m) 


(df/dzS) is the change in f along constraint direction per unit change in zS 

Example of Reduced Gradient 
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Gradient Projection Method 
(superbasic  nonbasic variable partition) 

Define the projection of an arbitrary point x onto box feasible region.                 
ith component is given by:


Piecewise linear path z(α) starting at the reference point z and obtained by 
projecting steepest descent (or any search) direction at z onto the box region 
given by:


58 

Sketch of GRG Algorithm 
1.  Initialize problem and obtain a feasible point at z0 

2.  At feasible point zk, partition variables z into zN, zB, zS  
3.  Calculate reduced gradient, (df/dzS) 
4.  Evaluate gradient projection search direction for zS, 

with quasi-Newton extension 
5.   Perform a line search. 

•  Find α∈(0,1]  with  zS(α ) 
•  Solve for c(zS(α), zB, zN) = 0 
•  If f(zS(α ), zB, zN) < f(zS

k, zB, zN),  
 set zS

k+1 =zS(α ), k:= k+1 
6.  If ||(df/dzS)||<ε, Stop. Else, go to 2. 
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Reduced Gradient Method with Restoration 

zS 

zB 

60 

Reduced Gradient Method with Restoration 

zS 

zB 

Fails, due to singularity in  
basis matrix (dc/dzB) 
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Reduced Gradient Method with Restoration 

zS 

zB 

Possible remedy: repartition basic 
and superbasic variables to create 
nonsingular basis matrix (dc/dzB) 

62 

1.  GRG2 has been implemented on PC's as GINO and is very reliable and 
robust. It is also the optimization solver in MS EXCEL. 


2.  CONOPT is implemented in GAMS, AIMMS and AMPL 
3.  GRG2 uses Q-N for small problems but can switch to conjugate 

gradients if problem gets large. CONOPT uses exact second derivatives.

4.  Convergence of c(zS, zB , zN) = 0 can get very expensive because ∇c(z) 

is calculated repeatedly.

5.  Safeguards can be  added so that restoration (step 5.) can be dropped 

and efficiency increases.

 
Representative Constrained Problem Starting Point [0.8, 0.2] 
•  GINO Results - 14 iterations to ||∇f(x*)|| ≤ 10-6

•  CONOPT Results - 7 iterations to ||∇f(x*)|| ≤ 10-6 from feasible point.


GRG Algorithm Properties 
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Reduced Gradient Method without Restoration 

zS 

zB 
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Motivation: Efficient algorithms 
are available that solve linearly 
constrained optimization 
problems (MINOS):

 

 
Min   f(x) 

 
s.t.
Ax ≤ b 

 
 
Cx = d 



Extend to nonlinear problems, 
through successive linearization



Develop major iterations 
(linearizations) and minor 
iterations (GRG solutions) .


Reduced Gradient Method without Restoration  
(MINOS/Augmented) 

Strategy: (Robinson, Murtagh & Saunders) 
1. 
Partition variables into basic, nonbasic 

variables and superbasic variables..  
2.  Linearize active constraints at zk 


Dkz = rk

3.  Let ψ = f (z) + λTc (z) + β (c(z)Tc(z)) 

(Augmented 
Lagrange), 

4.  Solve linearly constrained problem: 


 
Min 
ψ (z) 

 
s.t. 
Dz = r 

 
 
a ≤ z ≤ b 

 
using reduced gradients to get zk+1 
5.  Set k=k+1,  go to 2.

6. 
Algorithm terminates when no 

movement between steps 2) and 4).
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1.  MINOS has been implemented very efficiently to take care of 
linearity.  It becomes LP Simplex method if problem is totally 
linear.  Also, very efficient matrix routines. 

2.  No restoration takes place, nonlinear constraints are reflected in 
ψ(z) during step 3). MINOS is more efficient than GRG. 

3.  Major iterations (steps 3) - 4)) converge at a quadratic rate.

4.  Reduced gradient methods are complicated, monolithic codes: 

hard to integrate efficiently into modeling software. 


Representative Constrained Problem – Starting Point [0.8, 0.2] 
MINOS Results: 4 major iterations, 11 function calls 

 
to ||∇f(x*)|| ≤ 10-6 
�

 

MINOS/Augmented Notes 
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Motivation: 
 
• 
Take KKT conditions, expand in Taylor series about current point. 
• 
Take Newton step (QP) to determine next point.  


Derivation – KKT Conditions 
∇xL (x*, u*, v*) = ∇f(x*) + ∇gA(x*) u* + ∇h(x*) v* = 0 


 
 h(x*) = 0 


 
 gA(x*) = 0,   where gA are the active constraints. 



Newton - Step


xx∇ L
Ag∇ ∇ h

A
g∇ T 0 0

∇ hT 0 0

 

 

 
 
 
 

 

 

 
 
 
 

  
Δx
Δu
Δv

 

 

 
 
 

 

 

 
 
 
 =  -  

x∇ L kx , ku , kv( )

Ag  kx( )
h kx( )

 

 

 
 
 
 

 

 

 
 
 
 

Requirements: 
•  ∇xxL must be calculated and should be ‘regular’ 
• correct active set gA 
• good estimates of uk, vk 

Successive Quadratic Programming (SQP) 
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1. 
Wilson (1963) 
  - 
active set can be determined by solving QP: 

 
Min 
∇f(xk)Td + 1/2 dT ∇xx L(xk, uk, vk) d 

 
   d 

 
s.t. 
g(xk) + ∇g(xk)T d ≤ 0 

 
 
 
h(xk) + ∇h(xk)T d = 0 



2. 
Han (1976), (1977), Powell (1977), (1978) 
  - 
approximate ∇xxL using a positive definite quasi-Newton update (BFGS) 
  - 
use a line search to converge from poor starting points.

 
Notes: 
  - 
Similar methods were derived using penalty (not Lagrange) functions. 
  - 
Method converges quickly; very few function evaluations. 
  - 
Not well suited to large problems (full space update used).  

     For n > 100, say, use reduced space methods (e.g. MINOS).


SQP Chronology 
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What about ∇xxL? 

• 
need to get second derivatives for f(x), g(x), h(x). 
• 
need to estimate multipliers, uk, vk;  ∇xxL may not be positive 

     semidefinite 
⇒ Approximate ∇xxL (xk, uk, vk) by Bk, a symmetric positive 

    definite matrix. 
 
 
BFGS Formula 
s = xk+1 - xk 


 
 
y = ∇L(xk+1, uk+1, vk+1) - ∇L(xk, uk+1, vk+1) 
• second derivatives approximated by change in gradients

• positive definite Bk ensures unique  QP solution 
 

Elements of SQP – Hessian Approximation 

! 

k+1

B  =  
k

B  +  

T
yy
T
s y

 -  

k
B s T

s
k

B
k

s B s
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How do we obtain search directions? 
• 
Form QP and let QP determine constraint activity 
• 
At each iteration, k, solve: 


 
Min 
∇f(xk) Td + 1/2 dT Bkd 

 
   d 

 
s.t. 
g(xk) + ∇g(xk) T d ≤ 0 

 
 
h(xk) + ∇h(xk) T d = 0 



Convergence from poor starting points 
•  As with Newton's method, choose α (stepsize) to ensure progress  

   toward optimum:       xk+1 = xk + α d. 
•  α is chosen by making sure a merit function  is decreased at each 

   iteration. 


Exact Penalty Function 

ψ(x) = f(x) + µ [Σ max (0, gj(x)) + Σ |hj (x)|] 

 
        µ > maxj {| uj |, | vj |} 

Augmented Lagrange Function 

ψ(x) = f(x) + uTg(x) + vTh(x)  

 
 
+ η/2 {Σ (hj (x))2 + Σ max (0, gj (x))2}


Elements of SQP – Search Directions 
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Fast Local Convergence 
B = ∇xxL 
 
 
Quadratic 
∇xxL is p.d and B is Q-N 
 
1 step Superlinear 
B is Q-N update, ∇xxL not p.d 
2 step Superlinear 


Enforce Global Convergence 
Ensure decrease of merit function by taking α ≤ 1 
Trust region adaptations provide a stronger guarantee of global 
convergence - but harder to implement.  

Newton-Like Properties for SQP 
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0. 
Guess x0,  Set B0 = I (Identity). Evaluate  f(x0), g(x0) and h(x0). 

1. 
At xk, evaluate ∇f(xk),  ∇g(xk), ∇h(xk). 

2. 
If k > 0, update Bk using the BFGS Formula. 
3. 
Solve: 
Mind  ∇f(xk)Td  + 1/2 dTBkd 

 
 
s.t. 
g(xk) + ∇g(xk)Td ≤ 0 

 
 
 
h(xk) + ∇h(xk)Td = 0 


If KKT error less than tolerance: ||∇L(x*)|| ≤ ε, ||h(x*)|| ≤ ε,  


||g(x*)+|| ≤ ε. STOP, else go to 4.  

4. 
Find α so that 0 < α ≤ 1 and ψ(xk + αd) < ψ(xk) sufficiently 


     (Each trial requires evaluation of f(x), g(x) and h(x)). 

5. 
xk+1 = xk + α d.  Set k = k + 1 Go to 2.


Basic SQP Algorithm 
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Nonsmooth Functions  - Reformulate 

Ill-conditioning - Proper scaling 

Poor Starting Points – Trust Regions can help 

Inconsistent Constraint Linearizations 

- 
Can lead to infeasible QP's 

 x2

x1

Min 
x2 
s.t.    1 + x1 - (x2)2 ≤ 0 

   1 - x1 - (x2)2 ≤ 0 

      x2 ≥ -1/2 

Problems with SQP 
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SQP Test Problem 

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

Min 
x2 
s.t. 
-x2 + 2 x1

2 - x1
3 ≤ 0 

          -x2 + 2 (1-x1)2 - (1-x1)3 ≤ 0 
            x* = [0.5, 0.375]. 
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SQP Test Problem – First Iteration 

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

Start from the origin (x0 = [0, 0]T) with B0 = I, form: 

 
Min 
 d2 + 1/2 (d1

2 + d2
2) 

s.t. 
d2 ≥ 0 
      
 
   

 
d1 + d2 ≥ 1 

 
d = [1, 0]T. with µ1 = 0  and µ2 = 1.  
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1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

From x1 = [0.5, 0]T with B1 = I 

(no update from BFGS possible), form: 

 
Min 
 d2 + 1/2 (d1

2 + d2
2) 

s.t.
 
-1.25 d1 - d2 + 0.375 ≤ 0 
            1.25 d1 - d2 + 0.375 ≤ 0 
d = [0, 0.375]T with µ1 = 0.5  and µ2 = 0.5  

 
x* = [0.5, 0.375]T is optimal 

SQP Test Problem – Second Iteration 
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Representative Constrained Problem  

SQP Convergence Path 

Starting Point [0.8, 0.2] - starting from B0 = I and staying in bounds 


and linearized constraints; converges in 8 iterations to ||∇f(x*)|| ≤ 10-6 
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Barrier Methods for Large-Scale  
Nonlinear Programming 

0        
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µ%µBarrier Approach 

Can generalize for 
a ≤ x ≤ b  

⇒ As  µ     0,     x*(µ)    x*           Fiacco and McCormick (1968) 
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Solution of the Barrier Problem 

⇒ Newton Directions (KKT System) 
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Global Convergence of Newton-based  
Barrier Solvers 

 Merit Function 

Exact Penalty:    P(x, η) = f(x) + η ||c(x)|| 

Aug’d Lagrangian: L*(x, λ, η) = f(x) + λTc(x) + η ||c(x)||2 

Assess Search Direction (e.g., from IPOPT) 

Line Search – choose stepsize α to give sufficient decrease of merit function 
using a ‘step to the boundary’ rule with τ ~0.99.  

 

 

 

 
•  How do we balance  φ (x) and c(x) with η? 
•  Is this approach globally convergent? Will it still be fast? 
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Global Convergence Failure 
(Wächter and B., 2000) 
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Newton-type line search ‘stalls’ 
even though descent directions 
exist 
 
 
 
Remedies: 

• Composite Step Trust Region 
(Byrd et al.) 
• Filter Line Search Methods 
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Line Search Filter Method 

Store (φk, θk) at allowed iterates 

Allow progress if trial point is 
acceptable to filter with θ margin 

If switching condition  

 

is satisfied, only an Armijo line 
search is required on φk 

If insufficient progress on stepsize, 
evoke restoration phase to reduce θ.  

Global convergence and superlinear 
local convergence proved (with 
second order correction) 

22,][][ >>≥−∇ bad b
k

aT
k θδφα

φ(x) 

θ(x) = ||c(x)|| 
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Implementation Details 

Modify KKT (full space) matrix if singular 









•  δ1 - Correct inertia to guarantee descent direction 
•  δ2 - Deal with rank deficient Ak  

KKT matrix factored by MA27 

Feasibility restoration phase 

 

 

 

 

Apply Exact Penalty Formulation 

Exploit same structure/algorithm to reduce infeasibility  
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IPOPT Algorithm – Features 

Line Search Strategies for 
Globalization 

- l2 exact penalty merit function 

- augmented Lagrangian merit function 

- Filter method (adapted and extended 
from Fletcher and Leyffer) 

 

Hessian Calculation  

- BFGS (full/LM and reduced space) 

- SR1 (full/LM and reduced space) 

- Exact full Hessian (direct) 

- Exact reduced Hessian (direct) 

- Preconditioned CG  

Algorithmic Properties 
Globally, superlinearly 
convergent (Wächter and B., 
2005) 
 
Easily tailored to different 
problem structures  

 
Freely Available 

CPL License and COIN-OR 
distribution: http://www.coin-
or.org  
 
IPOPT 3.1 recently rewritten 
in C++ 
 
Solved on thousands of test 
problems and applications 
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IPOPT Comparison on 954 Test Problems 
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Recommendations for Constrained Optimization 



1. 
Best current algorithms 

•   GRG 2/CONOPT 

•   MINOS 

•   SQP

•   IPOPT 

2. 
GRG 2 (or CONOPT)  is generally slower, but is robust.  Use with highly 
nonlinear functions. Solver in Excel! 

3. 
For small problems (n ≤ 100) with nonlinear constraints, use SQP. 
4.  For large problems (n ≥ 100) with mostly linear constraints, use MINOS.  

==> Difficulty with many nonlinearities 

Small, Nonlinear Problems - SQP solves QP's, not LCNLP's, fewer function calls. 
Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition.  
Works efficiently in reduced space if function calls are cheap! 
Exploit Both Features – IPOPT takes advantages of few function evaluations and large-
scale linear algebra, but requires exact second derivatives  

Fewer Function 
Evaluations 

Tailored Linear 
Algebra 
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SQP Routines 
HSL, NaG and IMSL (NLPQL) Routines 
NPSOL – Stanford Systems Optimization Lab 
SNOPT – Stanford Systems Optimization Lab (rSQP discussed later) 
IPOPT – http://www.coin-or.org 
 
GAMS Programs 
CONOPT - Generalized Reduced Gradient method with restoration 
MINOS - Generalized Reduced Gradient method without restoration

NPSOL – Stanford Systems Optimization Lab 
SNOPT – Stanford Systems Optimization Lab (rSQP discussed later) 
IPOPT –  barrier NLP, COIN-OR, open source 
KNITRO – barrier NLP 


MS Excel  
Solver uses Generalized Reduced Gradient method with restoration


Available Software for Constrained 
Optimization 
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1) 
Avoid overflows and undefined terms, (do not divide, take logs, etc.)  

e.g. 
x + y - ln z = 0   
x + y - u = 0 

 
 
 
 
exp u - z = 0 

2) 
If constraints must always be enforced, make sure they are linear or bounds. 

e.g. 
v(xy - z2)1/2 = 3 
 
vu = 3 

 
 
 
 
 
u2 - (xy - z2) = 0, u ≥ 0 

3) 
Exploit linear constraints as much as possible, e.g. mass balance 

 
xi L + yi V = F zi    li + vi = fi 


 
 
 
   L – ∑  li = 0

4) 
Use bounds and constraints to enforce characteristic solutions. 

      e.g. 
a ≤ x ≤ b,  g (x) ≤ 0 

     to isolate correct root of h (x) = 0.


5)  Exploit global properties when possibility exists. Convex (linear equations?)

          Linear Program? Quadratic Program? Geometric Program?

6) 
Exploit problem structure when possible. 

e.g. 
Min 
[Tx - 3Ty] 

 
s.t. 
xT + y - T2 y = 5 

 
 
4x - 5Ty + Tx = 7 

 
 
0 ≤ T ≤ 1 

  
 
(If T is fixed ⇒ solve LP)  ⇒  put T in outer optimization loop.


Rules for Formulating Nonlinear Programs 
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State of Nature and Problem Premises

Restrictions: Physical, Legal
Economic, Political, etc.

Desired Objective: Yield, 
Economic, Capacity, etc.

Decisions

Process Model Equations

Constraints Objective Function

Additional Variables

Process Optimization 

Problem Definition and Formulation 

Mathematical Modeling and Algorithmic Solution 
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Hierarchy of Nonlinear Programming 
Formulations and Model Intrusion  

CLOSED 

OPEN 

Decision Variables 
101 102 103 

Black Box 

Direct Sensitivities 

Multi-level Parallelism 

SAND Tailored 

Adjoint Sens & SAND Adjoint 

SAND Full Space Formulation 

100 

Compute 
Efficiency 
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Large Scale NLP Algorithms  
Motivation: Improvement of Successive Quadratic Programming 
as Cornerstone Algorithm  

 process optimization for design, control and operations 

Evolution of NLP Solvers: 

  

1981-87: Flowsheet optimization  
               over 100 variables and constraints   

1988-98: Static Real-time optimization 
               over 100 000 variables and constraints 
2000 - : Simultaneous dynamic optimization 
            over 1 000 000 variables and constraints 

SQP rSQP IPOPT 

rSQP++ 

Current: Tailor structure, architecture and problems 

IPOPT 3.x 
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In Out

Modular Simulation Mode 

Physical Relation to Process 

 

- Intuitive to Process Engineer 

- Unit equations solved internally  
- tailor-made procedures. 
 

• Convergence Procedures - for simple flowsheets, often identified

    from flowsheet structure 

• Convergence "mimics" startup. 
• Debugging flowsheets on "physical" grounds 

Flowsheet Optimization Problems - Introduction 
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C

1
3

2 4

Design Specifications 


Specify # trays reflux ratio, but would like to specify 

overhead comp. ==> Control loop  -Solve Iteratively 

• Frequent block evaluation can be expensive

• Slow algorithms applied to flowsheet loops.

• NLP methods are good at breaking loops 

Flowsheet Optimization Problems - Features 

Nested Recycles Hard to Handle 

Best Convergence Procedure?
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Chronology in Process Optimization 
 


 
 
 
 
 
Sim. Time Equiv. 
1. Early Work - Black Box Approaches 
 


Friedman and Pinder (1972) 
 
 
75-150 

Gaddy and co-workers (1977) 
 
 
300 

2. Transition - more accurate gradients 

Parker and Hughes (1981)
 
 
 
64 

Biegler and Hughes (1981) 
 
 
13 

3. Infeasible Path Strategy for Modular Simulators 

Biegler and Hughes (1982) 
 
 
<10 

Chen and Stadtherr (1985) 

Kaijaluoto et al. (1985) 

 
and many more  

4. Equation Based Process Optimization 

Westerberg et al. (1983) 
 
 
 
<5 

Shewchuk (1985)
 
 
 
 
  2 

DMO, NOVA, RTOPT, etc. (1990s)
 
             1-2


 
Process optimization should be as cheap and easy as process simulation 
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4

3 2

1

5

6
h (y ) =  0

w(y ) y

f(x, y(x))

x

Simulation and Optimization of Flowsheets 

Min f(x), s.t. g(x) ≤ 0 

For single degree of freedom: 

• 
work in space defined by curve below.   
• 
requires repeated (expensive) recycle convergence 

�
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Expanded Region with Feasible Path 

�
 

96 



 

 

"Black Box" Optimization Approach 

•  Vertical steps are expensive (flowsheet convergence) 

•  Generally no connection between x and y. 
•  Can have "noisy"  derivatives for gradient optimization. 
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SQP - Infeasible Path Approach 

•  solve and optimize simultaneously in x and y 
•  extended Newton method  

98 

Architecture 
  - 
Replace convergence with optimization block 
  - 
Problem definition needed (in-line FORTRAN) 
  - 
Executive, preprocessor, modules intact.

 
Examples 
1. 
Single Unit and Acyclic Optimization  
  - 
Distillation columns & sequences 


2. 
"Conventional" Process Optimization 

  - Monochlorobenzene process

  - NH3 synthesis 


3. 
Complicated Recycles & Control Loops 
  - 
Cavett problem 
  - 
Variations of above 
 

Optimization Capability for Modular Simulators 
(FLOWTRAN, Aspen/Plus, Pro/II, HySys) 
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S06
HC1

A-1
ABSORBER

15 Trays
(3 Theoret ical Stages)

32 psia

P

S04
Fe ed
80

o
F

37 psia

T

270o F

S01 S02

Steam
360o F

H-1
U = 100

Maximize
Profit

Fe ed F low Rates
LB Moles/Hr

HC1           10
Benzene      40
MCB          50

S07

S08

S05

S09

HC1

T-1
TREATER

  F-1
FLASH

S03

S10

25
ps ia

S12

S13
S15

P-1
C

1200 F
T

MCB

S14

U = 100 Cooling
Water
80o F

S11

Benzene,
0.1 Lb Mole/Hr

of MC B

D-1
DISTILLATION 

30 Trays
(20 Theoreti cal Stages)

Steam
360oF

12,000
Btu/hr- ft2

90
o
F
H-2

U = 100

Water
80oF

PHYSICAL PROPERTY OPTIONS

Cavett Vapor Pressure

Redlich-Kwong Vapor Fugacity

Corrected Liquid Fugacity

Ideal Solution Activity Coefficient

OPT  (SCOPT)  OPTIMIZER

Optimal Solution Found After 4 Iterations

Kuhn-Tucker Error 
         0.29616E-05

Allowable Kuhn-Tucker Error  0.19826E-04

Objective Function                  -0.98259





Optimization Variables

32.006  0.38578  200.00 
120.00

Tear Variables

0.10601E-19  13.064   79.229  120.00  50.000

Tear Variable Errors (Calculated Minus Assumed)

-0.10601E-19  0.72209E-06

-0.36563E-04   0.00000E+00 
0.00000E+00

-Results of infeasible path optimization

-Simultaneous optimization and convergence of tear streams. 

Optimization of Monochlorobenzene Process 
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H2

N2

Pr

Tr

To
T Tf f

ν

Prod uc t

Hydrogen and Nitrogen feed are mixed, compressed, and combined 
with a recycle stream and heated to reactor temperature. Reaction 
occurs in a multibed reactor (modeled here as an equilibrium reactor) 
to partially convert the stream to ammonia. The reactor effluent is 
cooled and product is separated using two flash tanks with intercooling. 
Liquid from the second stage is flashed at low pressure to yield high 
purity NH3 product. Vapor from the two stage flash forms the recycle 
and is recompressed. 

Ammonia Process Optimization 


Hydrogen Feed  Nitrogen Feed 
N2 
  5.2%       
      99.8% 
H2 
94.0% 
        --- 
CH4 
0.79 % 
      0.02% 
Ar 
  --- 
      0.01% 
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Optimization Problem



Max 
{Total Profit @ 15% over five years}

 
 
 
 

s.t.
 
•  105 tons NH3/yr. 

 
•  Pressure Balance 

 
•  No Liquid in Compressors 

 
•  1.8 ≤  H2/N2 ≤ 3.5


               •  Treact ≤ 1000o F 

 
•  NH3 purged ≤ 4.5 lb mol/hr 

               •  NH3 Product Purity ≥ 99.9 % 
               •  Tear Equations 

Performance Characterstics

 

• 5 SQP iterations.  
• 2.2 base point simulations.  
• objective function improves by 
$20.66 x 106 to $24.93 x 106.  
• difficult to converge flowsheet 

  at starting point 

Item
 Optimum Starting point 

Objective Function($106)     24.9286     20.659 
1. Inlet temp.  reactor (oF) 400  400 
2. Inlet temp. 1st flash (oF)   65    65 
3. Inlet temp. 2nd flash (oF)   35    35 
4. Inlet temp. rec. comp. (oF)     80.52  107 
5. Purge fraction (%)       0.0085       0.01 
6. Reactor Press. (psia) 2163.5 2000 
7. Feed 1   (lb mol/hr) 2629.7 2632.0 
8. Feed 2  (lb mol/hr)   691.78   691.4 

Ammonia Process Optimization 
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Recognizing True Solution 
• 
KKT conditions and Reduced Gradients determine true solution 
• 
Derivative Errors will lead to wrong solutions!

 
Performance of Algorithms 
Constrained NLP algorithms are gradient based 

  (SQP, Conopt, GRG2, MINOS, etc.) 
Global and Superlinear convergence theory assumes accurate gradients



Worst Case Example (Carter, 1991)

Newton’s Method generates an ascent direction and fails for any ε !


How accurate should gradients be for optimization? 
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Implementation of Analytic Derivatives 

Module Equations

c(v, x, s, p, y) = 0

Sensitivity 

Equations

x y

parameters, p exit variables, s

dy/dx
ds/dx
dy/dp
ds/dp

Automatic Differentiation Tools 
 
JAKE-F, limited to a subset of FORTRAN (Hillstrom,  1982)  
DAPRE, which has been developed for use with the NAG library (Pryce, Davis,  1987) 
ADOL-C,  implemented  using operator overloading features of C++ (Griewank, 1990) 
ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code .  
TAPENADE, web-based source transformation for FORTRAN code 
 
Relative effort needed to calculate gradients is not n+1 but about 3 to 5  
(Wolfe, Griewank) 
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S1 S2
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S4S5
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Flash Recycle Optimization 

(2 decisions + 7 tear variables) 
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Ammonia Process Optimization 

(9 decisions and 6 tear variables) 
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Min  f(z)             Min     ∇f(zk)T d + 1/2 d T Wk d 
s.t.  c(z)=0    s.t.  c(zk) + (Αk)T d = 0 
  zL ≤ z ≤ zU        zL ≤ zk + d ≤ zU 

 
Characteristics 

•  Many equations and variables (≥ 100 000) 

•  Many bounds and inequalities (≥ 100 000) 

Few degrees of freedom (10 - 100) 

Steady state flowsheet optimization

Real-time optimization 

Parameter estimation

 

Many degrees of freedom (≥ 1000) 

Dynamic optimization (optimal control, MPC) 

State estimation and data reconciliation 

Large-Scale SQP 

106 

• 
Take advantage of sparsity of  A=∇c(x) 
• 
project W into space of active (or equality constraints) 
• 
curvature (second derivative) information only needed in space of degrees of 

   freedom 
• 
second derivatives can be applied or approximated with positive curvature 

   (e.g., BFGS) 
• 
use dual space QP solvers

 
+ easy to implement with existing sparse solvers, QP methods and line search  

   techniques 
+ exploits 'natural assignment' of dependent and decision variables (some   

   decomposition steps are 'free') 
+ does not require second derivatives 


- reduced space matrices are dense 
- may be dependent on variable partitioning 
- can be very expensive for many degrees of freedom 
- can be expensive if many QP bounds


Few degrees of freedom => reduced space SQP (rSQP) 
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�
 

Reduced space SQP (rSQP) 
Range and Null Space Decomposition 
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Assume no active bounds, QP problem with n variables and m 
constraints becomes: 

•  Define reduced space basis, Zk∈ ℜn x (n-m) with (Ak)TZk = 0 
•  Define basis for remaining space Yk∈ ℜn x m, [Yk Zk]∈ℜn x n    
  is nonsingular.  
•  Let d = Yk dY + Zk dZ to rewrite: 
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Reduced space SQP (rSQP) 
Range and Null Space Decomposition 

 

•  (ATY) dY =-c(xk) is square, dY determined from bottom row.

•  Cancel YTWY and YTWZ; (unimportant as dZ, dY --> 0) 
•  (YTA) λ = -YT∇f(xk), λ can be determined by first order estimate

•  Calculate or approximate w= ZTWY dY, solve ZTWZ dZ =-ZT∇f(xk) - w  
•  Compute total step: d  =  Y dY + Z dZ
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Range and Null Space Decomposition 
• 
SQP step (d) operates in a higher dimension  
• 
Satisfy constraints using range space to get dY 
• 
Solve small QP in null space to get dZ 
• 
In general, same convergence properties as SQP.


Reduced space SQP (rSQP) Interpretation 

dY 

dZ 
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1. Apply QR factorization to A. Leads to dense but well-conditioned Y and Z. 

2. Partition variables into decisions u and dependents v. Create 
orthogonal Y and Z with embedded identity matrices (ATZ = 0, YTZ=0).


3. Coordinate Basis - same Z as above, YT =  [ 0   I ]

 

• 
Bases use gradient information already calculated. 
• 
Adapt decomposition to QP step 

• 
Theoretically same rate of convergence as original SQP. 
• 
Coordinate basis can be sensitive to choice of u and v. Orthogonal is not. 
• 
Need consistent initial point and nonsingular C;  automatic generation 

Choice of Decomposition Bases 
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1.  Choose starting point x0. 
2.  At iteration k, evaluate functions f(xk), c(xk) and their gradients. 
3. 
 Calculate bases Y and Z. 
4.  Solve for step dY in Range space from 


 
 
(ATY) dY =-c(xk) 


5.  Update projected Hessian Bk ~ ZTWZ (e.g. with BFGS), wk (e.g., zero) 
6.  Solve small QP for step dZ in Null space.


7.  If error is less than tolerance stop.  Else

8.  Solve for multipliers using   (YTA) λ = -YT∇f(xk) 
9.  Calculate total step  d = Y dY + Z dZ. 
10.  Find step size α and calculate new point, xk+1 = xk + α d

13.  Continue from step 2 with k = k+1.


rSQP Algorithm 
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rSQP Results:  Computational Results for 
General Nonlinear Problems 

Vasantharajan et al (1990) 
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rSQP Results:  Computational Results 
for Process Problems 
Vasantharajan et al (1990) 
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Coupled Distillation Example - 5000 Equations 
Decision Variables - boilup rate, reflux ratio

 

Method         CPU Time   Annual Savings     Comments 

1. 
 
SQP* 
2 hr 
  negligible 
     Base Case  
2. 
 
rSQP   
15 min. 
  $  42,000 
     Base Case 
3. 
 
rSQP 
15 min. 
  $  84,000 
     Higher Feed Tray Location 
4. 
 
rSQP 
15 min. 
  $  84,000 
     Column 2 Overhead to Storage 
5. 
 
rSQP 
15 min 
  $107,000 
     Cases 3 and 4 together


18

10

1

QVK
QVK

Comparison of SQP and rSQP 
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RTO - Basic Concepts 

Data Reconciliation & Parameter 
Identification  

• Estimation problem formulations 
• Steady state model 
• Maximum likelihood objective  
 functions considered to get   
 parameters (p) 

 
Minp  Φ(x, y, p, w) 

s.t. c(x, u, p, w) = 0 
x ∈ X, p ∈ P 

 

Plant 

DR-PE 
c(x, u, p) = 0 

RTO 
c(x, u, p) = 0 

APC 

y 

p 

u 

w 

On line optimization  
• Steady state model for states (x) 
• Supply setpoints (u) to APC  
 (control system) 
• Model mismatch, measured and  
 unmeasured disturbances (w)  

Minu  F(x, u, w) 
s.t. c(x, u, p, w) = 0 
x ∈ X, u ∈ U 

 9 

RTO Characteristics 
 

Plant 

DR-PE 
c(x, u, p) = 0 

RTO 
c(x, u, p) = 0 

APC 

y 

p 

u 

w 

 
• Data reconciliation – identify gross errors and consistency in data 
• Periodic update of process model identification  
• Usually requires APC loops (MPC, DMC, etc.) 
• RTO/APC interactions: Assume decomposition of time scales 

• APC to handle disturbances and fast dynamics 
• RTO to handle static operations 

• Typical cycle: 1-2 hours, closed loop 
10 
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RTO Consistency  
(Marlin and coworkers) 

•  How simple a model is 
simple? 

•  Plant and RTO model 
must be feasible for 
measurements (y), 
parameters (p) and 
setpoints (u) 

•  Plant and RTO model 
must recognize (close to) 
same optimum (u*)  
 => satisfy same KKT 
conditions 

•  Can RTO model be tuned 
parametrically to do this? 

 

11 

RTO Stability 
(Marlin and coworkers) 

•  Stability of APC loop is different 
from RTO loop 

•  Is the RTO loop stable to 
disturbances and input 
changes? 

•  How do DR-PE and RTO 
interact? Can they cycle? 

•  Interactions with APC and plant? 
•  Stability theory based on small 

gain in loop < 1. 
•  Can always be guaranteed by 

updating process sufficiently 
slowly. 

Plant 

DR-PE 
c(x, u, p) = 0 

RTO 
c(x, u, p) = 0 

APC 

y 

p 

u 

w 

12 
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RTO Robustness  
(Marlin and coworkers) 

•  What is sensitivity of the optimum 
to disturbances and model 
mismatch? => NLP sensitivity 

•  Are we optimizing on the noise?  

•  Has the process really changed? 

•  Statistical test on objective 
function => change is within a 
confidence region satisfying a χ2 
distribution 

•  Implement new RTO solution only 
when the change  is significant 

•  Eliminate ping-ponging 
13 
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• square parameter case to fit the model to operating data.  

• optimization to determine best operating conditions  

Existing process, optimization on-line at regular intervals: 17 hydrocarbon 
components, 8 heat exchangers, absorber/stripper (30 trays), debutanizer (20 
trays), C3/C4 splitter (20 trays) and deisobutanizer (33 trays).   

Real-time Optimization with rSQP 
Sunoco Hydrocracker Fractionation Plant  

(Bailey et al, 1993) 
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Model consists of 2836 equality constraints and only ten independent variables. It 
is also reasonably sparse and contains 24123 nonzero Jacobian elements.   

P = z
i
C
i

G

i!G

" + z
i
C
i

E

i!E

" + z
i
C
i

P
m

m=1

NP

" # U

Cases Considered: 

1. Normal Base Case Operation 

2. Simulate fouling by reducing the heat exchange coefficients for the debutanizer 

3. Simulate fouling by reducing the heat exchange coefficients for splitter 

    feed/bottoms exchangers 

4. Increase price for propane 

5. Increase base price for gasoline together with an increase in the octane credit  
 

Optimization Case Study Characteristics 

122 
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Nonlinear Optimization Engines  

Evolution of NLP Solvers: 

 process optimization for design, control and operations 

  

’80s: Flowsheet optimization  
               over 100 variables and constraints   
‘90s: Static Real-time optimization (RTO) 
               over 100 000 variables and constraints 
’00s: Simultaneous dynamic optimization 
               over 1 000 000 variables and constraints 

SQP rSQP IPOPT 
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Many degrees of freedom => full space IPOPT  

• 
work in full space of all variables 
• 
second derivatives useful for objective and constraints 
• 
use specialized large-scale Newton solver

 
+ W=∇xxL(x,λ) and A=∇c(x) sparse, often structured 
+ fast if many degrees of freedom present 
+ no variable partitioning required

 
- second derivatives strongly desired 
- W is indefinite, requires complex stabilization 
- requires specialized large-scale linear algebra 








∇
−=















 Σ+

+ )(
)(

0 k

k

Tk

kk

xc
xd

A
AW ϕ

λ



63 

125 

GAS STATIONS 

Final Product tanks 

Supply tanks 

Intermediate tanks 

Gasoline Blending Here  

Gasoline Blending 
OIL TANKS Pipelines 

FINAL PRODUCT TRUCKS 
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Blending Problem & Model Formulation 

 
 

⇒  
 
 
 
 

⇒ 

 

 

  

  

Final Product tanks (k) Intermediate tanks (j) Supply tanks (i) 

ijtf ,  jktf ,

 

jtv ,  

itq , 
 

iq  

jtq ,..  ktq ,.. 
 
kv  

ktf ,..
 

f, v  ------   flowrates and tank volumes 
q       ------   tank qualities  

 
Model Formulation in AMPL  
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F1 

F2 

F3 

P1 

B1 

B2 

 

F1 

F2 

F3 

P2 

P1 

B1 

B2 

B3 

 Haverly, C. 1978 (HM) Audet & Hansen 1998 (AHM) 

Small Multi-day Blending Models   
Single Qualities  

128 

Honeywell Blending Model – Multiple Days 
48 Qualities 
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Summary of Results – Dolan-Moré plot  

Performance profile (iteration count)
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Comparison of NLP Solvers: Data Reconciliation 
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Comparison of NLP solvers 
(latest Mittelmann study) 

 
117 Large-scale Test Problems 

500 - 250 000 variables, 0 – 250 000 constraints 
 

Mittelmann NLP benchmark (10-26-2008)
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IPOPT
KNITRO
LOQO
SNOPT
CONOPT

                   Limits     Fail 
IPOPT           7            2 
KNITRO        7            0 
LOQO           23          4 
SNOPT         56         11 
CONOPT      55         11 
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Typical NLP algorithms and software 
  

SQP -        NPSOL, VF02AD, NLPQL, fmincon 

reduced SQP -    SNOPT, rSQP, MUSCOD, DMO, LSSOL… 

 

Reduced Grad. rest. -    GRG2, GINO, SOLVER, CONOPT 

Reduced Grad no rest. - MINOS 

Second derivatives and barrier - IPOPT, KNITRO, LOQO  

 

Interesting hybrids -  

• FSQP/cFSQP - SQP and constraint elimination 

• LANCELOT (Augmented Lagrangian w/ Gradient Projection)  
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At nominal conditions, p0 


               Min f(x, p0) 
        s.t.   c(x, p0) = 0 
              a(p0) ≤ x  ≤ b(p0) 


How is the optimum affected at other conditions, p ≠ p0? 
 

•   Model parameters, prices, costs 
•   Variability in external conditions 
•   Model structure 

•   How sensitive is the optimum to parametric uncertainties? 
•   Can this be analyzed easily? 

Sensitivity Analysis for Nonlinear Programming 

134 

x1

x2

z1

z2

Saddle 
Point

x* 

- Nonstrict local minimum: If nonnegative, find eigenvectors for zero 
eigenvalues,  regions of nonunique solutions 
 

- Saddle point: If any are eigenvalues are negative, move along 
directions of corresponding eigenvectors and restart optimization.  

Second Order Optimality Conditions: 
Reduced Hessian needs to be positive semi-definite 
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IPOPT Factorization Byproducts:  
Tools for Postoptimality and Uniqueness 

Modify KKT (full space) matrix if nonsingular 









•  δ1 - Correct inertia to guarantee descent direction 
•  δ2 - Deal with rank deficient Ak  

KKT matrix factored by indefinite symmetric factorization 

• Solution with δ1, δ2 =0  sufficient second order conditions  

• Eigenvalues of reduced Hessian all positive  – unique 
minimizer and multipliers 

• Else: 
–  Reduced Hessian available through sensitivity calculations 
–  Find eigenvalues to determine nature of stationary point 
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NLP Sensitivity 
Parametric Programming  

NLP Sensitivity   Rely upon Existence and Differentiability of Path 
  
   Main Idea: Obtain         and  find               by Taylor Series Expansion             

Optimality Conditions  

Solution Triplet 
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NLP Sensitivity Properties (Fiacco, 1983) 

Assume sufficient differentiability, LICQ, SSOC, SC:   

 Intermediate IP solution (s(µ)-s*) = O(µ)


 Finite neighborhood around p0 and µ=0  with same 
 active set 

  exists and is unique 
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NLP Sensitivity 

Optimality Conditions of  

Obtaining   

 Already Factored at Solution 

 Sensitivity Calculation from Single Backsolve 

 Approximate Solution Retains Active Set 

KKT Matrix IPOPT   

   Apply Implicit Function Theorem to                                  around  
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Sensitivity for Flash Recycle Optimization 

(2 decisions, 7 tear variables) 

 

S1 S2

S3

S7
S4S5

S6

P

Ratio

M ax  S3(A)  *S3(B) - S3(A)  - S3(C)  + S3(D) - (S 3(E))2 2 3 1/2

M ix er Flas h

• Second order sufficiency test:   
• Dimension of reduced Hessian = 1 

• Positive eigenvalue 

• Sensitivity to simultaneous change in feed rate  
 and upper bound on purge ratio 
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Sensitivity

Ammonia Process Optimization 
(9 decisions, 8 tear variables) 

• Second order sufficiency test: 
• Dimension of reduced Hessian = 4  
• Eigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5] 
• Sensitivity to simultaneous change in feed rate  

and upper bound on reactor conversion 
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Multi-Scenario Optimization 
Coordination

Case 1 Case 2 Case 3 Case 4 Case N

1.  Design plant to deal with different operating scenarios (over time or with 
uncertainty)  

 

2. Can solve overall problem simultaneously 

•  large and expensive 

•  polynomial increase with number of cases 

•  must be made efficient through specialized decomposition 

  
3. Solve also each case independently as an optimization problem (inner 

problem with fixed design) 

•  overall coordination step (outer optimization problem for design) 

•  require sensitivity from each inner optimization case with design   
   variables as external parameters 

Example: Williams-Otto Process  
(Rooney, B., 2003) 

GCP

EPBC

CBA

a

a

a

3

2

1

→+

+→+
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Design Under Uncertain Model Parameters 
and Variable Inputs 

E[P, …] : expected value of an objective function 
h : process model equations 
g : process model inequalities 
y : state variables (x, T, p, etc) 
d : design variables (equipment sizes, etc) 
θp : uncertain model parameters  
θv : variable inputs  θ =  [θp

T
 θv

T] 
z : control/operating variables (actuators, flows, etc) 
    (may be fixed or a function of (some) θ) 
     (single or two stage formulations) 
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Multi-scenario Models for Uncertainty 
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Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway, 
Perkins and Barton (1991),  Srinivasan, Bonvin, Visser and Palanki (2002), 
Walsh and Perkins (1994, 1996) 
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Multi-scenario Models for Uncertainty 
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Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway, 
Perkins and Barton (1991),  Srinivasan, Bonvin, Visser and Palanki (2002), 
Walsh and Perkins (1994, 1996) 

Min f0(d) + Σi fi(d, xi) 
s.t. hi(xi, d) = 0, i = 1,… N 
     gi(xi, d) ≤ 0, i = 1,… N 


r(d) ≤ 0  
Variables: 

x: state (z) and control (y) variables in each operating period  
d: design variables (e. g. equipment parameters) used

δi: substitute for d in each period and add δi = d 

Multi-scenario Design Model 

Composite NLP

Min  Σi (fi(δi, xi) + f0(δi)/N)  
s.t. hi(xi, δi) = 0, i = 1,… N 
     gi(xi, δi) +si = 0, i = 1,… N

     0 ≤ si, d – δi=0, i = 1,… N 


r(d) ≤ 0
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Solving Multi-scenario Problems: 
Interior Point Method 
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Schur Complement Decomposition Algorithm 
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Key Steps 

1. 

IPOPT 
Line Search 

& reduction of µ


2. 

Computational cost is linear in number of periods 
Trivial to parallelize 

Evaluate functions and derivatives 

Internal Decomposition 
Implementation 

•  Water Network Base Problem 
–  36,000 variables 
–  600 common variables 

•  Testing 
–  Vary # of scenarios 
–  Vary # of common variables 

NLP 
Interface NLP Algorithm 

Multi-scenario 
NL P 

Linear Algebra 
Interface 

Default 
Linear Algebra 

Block-Bordered 
Linear Solver 

1 2 3 4 5 
Composite NLPs 
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Parallel Schur-Complement 
Scalability 

Multi-scenario Optimization 
•  Single Optimization over many 

scenarios, performed on parallel 
cluster 

Water Network Case Study 
•  1 basic model 

–  Nominal design optimization 
•  32 possible uncertainty scenarios 

–  Form individual blocks 

Determine Injection time profiles as 
common variables 

Characteristics 
•  36,000 variables per scenario 
•  600 common variables 
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Parallel Schur-Complement 
Scalability 

Multi-scenario Optimization 
•  Single Optimization over many 

scenarios, performed on parallel 
cluster 

Water Network Case Study 
•  1 basic model 

–  Nominal design optimization 
•  32 possible uncertainty scenarios 

–  Form individual blocks 

Determine Injection time profiles as 
common variables 

Characteristics 
•  36,000 variables per scenario 
•  600 common variables 
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Optimization Algorithms 
-Unconstrained Newton and Quasi Newton Methods 
-KKT Conditions and Specialized Methods 
-Reduced Gradient Methods (GRG2, MINOS) 
-Successive Quadratic Programming (SQP) 
-Reduced Hessian SQP 
-Interior Point NLP (IPOPT) 
 
Process Optimization Applications 
-Modular Flowsheet Optimization 
-Equation Oriented Models and Optimization 
-Realtime Process Optimization 
-Blending with many degrees of freedom 
 
Further Applications 
-Sensitivity Analysis for NLP Solutions 
-Multi-Scenario Optimization Problems 

Summary and Conclusions 


