
1

Nonlinear Programming:
Concepts, Algorithms and

Applications

L. T. Biegler
Chemical Engineering Department

Carnegie Mellon University
Pittsburgh, PA

2

Introduction

Unconstrained Optimization
•  Algorithms
•  Newton Methods
•  Quasi-Newton Methods

Constrained Optimization
•  Karush Kuhn-Tucker Conditions
•  Special Classes of Optimization Problems
•  Reduced Gradient Methods (GRG2, CONOPT, MINOS)
•  Successive Quadratic Programming (SQP)
•  Interior Point Methods (IPOPT)

Process Optimization
•  Black Box Optimization
•  Modular Flowsheet Optimization – Infeasible Path
•  The Role of Exact Derivatives

Large-Scale Nonlinear Programming
•  rSQP: Real-time Process Optimization
•  IPOPT: Blending and Data Reconciliation

Further Applications
•  Sensitivity Analysis for NLP Solutions
•  Multi-Scenario Optimization Problems

Summary and Conclusions

Nonlinear Programming and Process Optimization

2

3

Introduction
Optimization: given a system or process, find the best solution to
this process within constraints.

Objective Function: indicator of "goodness" of solution, e.g., cost,
yield, profit, etc.

Decision Variables: variables that influence process behavior and
can be adjusted for optimization.

In many cases, this task is done by trial and error (through case
study). Here, we are interested in a systematic approach to this
task - and to make this task as efficient as possible.

Some related areas:

 - Math programming

 - Operations Research

Currently - Over 30 journals devoted to optimization with roughly
200 papers/month - a fast moving field!

4

Optimization Viewpoints

Mathematician - characterization of theoretical properties
of optimization, convergence, existence, local
convergence rates.

Numerical Analyst - implementation of optimization method
for efficient and "practical" use. Concerned with ease of
computations, numerical stability, performance.

Engineer - applies optimization method to real problems.
Concerned with reliability, robustness, efficiency,
diagnosis, and recovery from failure.

3

5

Optimization Literature
Engineering

1. Edgar, T.F., D.M. Himmelblau, and L. S. Lasdon, Optimization of Chemical
Processes, McGraw-Hill, 2001.

2. Papalambros, P. and D. Wilde, Principles of Optimal Design. Cambridge Press,
1988.

3. Reklaitis, G., A. Ravindran, and K. Ragsdell, Engineering Optimization, Wiley, 1983.

4. Biegler, L. T., I. E. Grossmann and A. Westerberg, Systematic Methods of Chemical
Process Design, Prentice Hall, 1997.

5. Biegler, L. T., Nonlinear Programming: Concepts, Algorithms and Applications to
Chemical Engineering, SIAM, 2010.

Numerical Analysis

1. Dennis, J.E. and R. Schnabel, Numerical Methods of Unconstrained Optimization,
Prentice-Hall, (1983), SIAM (1995)

2. Fletcher, R. Practical Methods of Optimization, Wiley, 1987.

3. Gill, P.E, W. Murray and M. Wright, Practical Optimization, Academic Press, 1981.

4. Nocedal, J. and S. Wright, Numerical Optimization, Springer, 2007

6

Scope of optimization
Provide systematic framework for searching among a specified
space of alternatives to identify an “optimal” design, i.e., as a
decision-making tool

Premise
Conceptual formulation of optimal product and process design
corresponds to a mathematical programming problem

Motivation

MINLP  NLP

min f(x, y)
s.t. h(x, y) = 0
 g(x, y) ≤ 0
x ε Rnx, x ε {0, 1}ny

4

7

x x Hybrid
x x Nonlinear

MPC

x Linear MPC
x x Real-time

optimization

x x x Supply Chain
x x x x Scheduling

x x Flowsheeting
x x x Equipment

Design

x x x x Reactors
x x Separations

x x x x x x MENS
x x x x x x HENS

SA/GA NLP LP,QP Global MINLP MILP

Optimization in Design, Operations and Control

8

Example: Optimal Vessel Dimensions

Min TC

2! D

2
 +

S C ! DL = cost
"

$

%
&
'

s.t. V -

2!D L

4
 = 0

Min TC

2! D

2
 + S C

4V

D
 = cost

"

$

%
&
'

d(cost)

dD
 = TC ! D -

s4VC
2

D
 = 0

D =
4V

!

SC

TC

"

$
%

1/ 3

 L =
4V

!

"

&
&
&

$

%

'
'
'

1/3

TC

SC

"

&
&
&
&

$

%

'
'
'
'

2/3

What is the optimal L/D ratio for a cylindrical vessel?

Constrained Problem

(1)

Convert to Unconstrained (Eliminate L)

(2)

==> L/D = CT/CS

Note:

-
What if L cannot be eliminated in (1) explicitly? (strange shape)

-
What if D cannot be extracted from (2)?

(cost correlation implicit)

L

D

V

5

9

Unconstrained Multivariable Optimization

Problem: Min f(x) (n variables)

Equivalent to: Max -f(x), x ∈ Rn

Nonsmooth Functions
- Direct Search Methods
- Statistical/Random Methods

Smooth Functions
- 1st Order Methods
- Newton Type Methods
- Conjugate Gradients

10

Two Dimensional Contours of F(x)

Convex Function

Nonconvex Function Multimodal, Nonconvex

Discontinuous

Nondifferentiable (convex)

�

6

11

Local vs. Global Solutions
Convexity Definitions
• a set (region) X is convex, if and only if it satisfies:

 α y + (1-α)z ∈ X
 for all α, 0 ≤ α ≤ 1, for all points y and z in X.
•  f(x) is convex in domain X, if and only if it satisfies:

 f(α y + (1-α) z) ≤ α f(y) + (1-α)f(z)
 for any α, 0 ≤ α ≤ 1, at all points y and z in X.

• Find a local minimum point x* for f(x) for feasible region defined by
constraint functions: f(x*) ≤ f(x) for all x satisfying the constraints in
some neighborhood around x* (not for all x ∈ X)
• Sufficient condition for a local solution to the NLP to be a global is
that f(x) is convex for x ∈ X.
• Finding and verifying global solutions will not be considered here.
• Requires a more expensive search (e.g. spatial branch and bound).

12

Linear Algebra - Background
Some Definitions

•
Scalars - Greek letters, α, β, γ
•
Vectors - Roman Letters, lower case
•
Matrices - Roman Letters, upper case

•  Matrix Multiplication:

 C = A B if A ∈ ℜn x m, B ∈ ℜm x p and C ∈ ℜn x p, Cij = Σk Aik Bkj
•  Transpose - if A ∈ ℜn x m,

 interchange rows and columns --> AT∈ ℜm x n

•  Symmetric Matrix - A ∈ ℜn x n (square matrix) and A = AT

•  Identity Matrix - I, square matrix with ones on diagonal

 and zeroes elsewhere.
•  Determinant: "Inverse Volume" measure of a square matrix

det(A) = Σi (-1)i+j Aij Aij for any j, or
det(A) = Σj (-1) i+j Aij Aij for any i, where Aij is the determinant

of an order n-1 matrix with row i and column j removed.

det(I) = 1

•  Singular Matrix: det (A) = 0

7

13

!f =

"f /
1"x

"f /
2"x

.... ..

"f /
n"x

$

%

%

%

&

'

(

(

(

2! f(x) =

2" f

1
2"x

2" f

1"x 2"x

2" f

1"x n"x

2" f

n"x 1"x

2" f

n"x 2"x

2" f

n
2"x

$

%

&

&

&

&

'

(

)

)

)

)

2∂ f

∂ x j∂xi

2! f

j!x i!x

Gradient Vector - (∇f(x))

Hessian Matrix (∇2f(x) - Symmetric)

Note: =

Linear Algebra - Background

14

•  Some Identities for Determinant
det(A B) = det(A) det(B);
det (A) = det(AT)
det(αA) = αn det(A);
det(A) = Πi λi(A)

•  Eigenvalues: det(A- λ I) = 0, Eigenvector: Av = λ v

Characteristic values and directions of a matrix.
For nonsymmetric matrices eigenvalues can be complex,

so we often use singular values, σ = λ(ATΑ)1/2 ≥ 0

•  Vector Norms
|| x ||p = {Σi |xi|p}1/p
(most common are p = 1, p = 2 (Euclidean) and p = ∞ (max norm = maxi|xi|))

•  Matrix Norms

||A|| = max ||A x||/||x|| over x (for p-norms)

||A||1 - max column sum of A, maxj (Σi |Aij|)

||A||∞ - maximum row sum of A, maxi (Σj |Aij|)

||A||2 = [σmax(Α)] (spectral radius)

||A||F = [Σi Σj (Aij)2]1/2

 (Frobenius norm)

κ(Α) = ||A|| ||A-1|| (condition number) = σmax/σmin (using 2-norm)

Linear Algebra - Background

8

15

Find v and λ where Avi = λi vi, i = i,n

Note: Av - λv = (A - λI) v = 0 or det (A - λI) = 0

For this relation λ is an eigenvalue and v is an eigenvector of A.

If A is symmetric, all λi are real

λi > 0, i = 1, n; A is positive definite

λi < 0, i = 1, n; A is negative definite

λi = 0, some i: A is singular

Quadratic Form can be expressed in Canonical Form (Eigenvalue/Eigenvector)

xTAx ⇒ A V = V Λ

V - eigenvector matrix (n x n)

Λ - eigenvalue (diagonal) matrix = diag(λi)

If A is symmetric, all λi are real and V can be chosen orthonormal (V-1 = VT).

Thus, A = V Λ V-1 = V Λ VT

For Quadratic Function: Q(x) = aTx + ½ xTAx

Define:
 z = VTx and Q(Vz) = (aTV) z + ½ zT (VTAV)z

 = (aTV) z + ½ zT Λ z

Minimum occurs at (if λi > 0)
 x = -A-1a or
x = Vz = -V(Λ-1VTa)

Linear Algebra - Eigenvalues

16

Positive (Negative) Curvature
Positive (Negative) Definite Hessian

Both eigenvalues are strictly positive (negative)

•
A is positive (negative) definite

•
Stationary points are minima (maxima)

x1

x2

 z1

z2

(λ1)-1/2

(λ2)-1/2

9

17

Zero Curvature
Singular Hessian

One eigenvalue is zero, the other is strictly positive or negative

•
A is positive semidefinite or negative semidefinite

•
There is a ridge of stationary points (minima or maxima)

18

One eigenvalue is positive, the other is negative

•
Stationary point is a saddle point

•
A is indefinite

Note: these can also be viewed as two dimensional projections for higher dimensional problems

Indefinite Curvature
Indefinite Hessian

10

19

Eigenvalue Example

!

!

Min Q(x) =
1

1

"

$
%

&
'

T

x +
1

2
x
T

2 1

1 2

"

$

%

&
' x

 AV = V(with A =
2 1

1 2

"

$

%

&
'

V
T
AV = (=

1 0

0 3

"

$

%

&
' with V =

1/ 2 1/ 2

-1/ 2 1/ 2

"

$

%

&
'

•  All eigenvalues are positive
•  Minimum occurs at z* = -Λ-1VTa










−

−
=









−
=










+−

+
==









+

−
==

3/1
3/1

*
)23/(2

0
*

2/)(
2/)(

2/)(
2/)(

21

21

21

21

xz

xx
xxVzx

xx
xxxVz T

20

1. Convergence Theory

•
Global Convergence - will it converge to a local optimum (or stationary

point) from a poor starting point?

•
Local Convergence Rate - how fast will it converge close to this point?

2. Benchmarks on Large Class of Test Problems

Representative Problem (Hughes, 1981)

Min f(x1, x2) = α exp(-β)
u = x1 - 0.8
v = x2 - (a1 + a2 u2 (1- u)1/2 - a3 u)
α = -b1 + b2 u2 (1+u)1/2 + b3 u
β = c1 v2 (1 - c2 v)/(1+ c3 u2)

a = [0.3, 0.6, 0.2]
b = [5, 26, 3]
c = [40, 1, 10]
x* = [0.7395, 0.3144]
f(x*) = -5.0893

�

Comparison of Optimization Methods

11

21

Three Dimensional Surface and Curvature for Representative Test Problem

�

Regions where minimum
eigenvalue is greater than:

[0, -10, -50, -100, -150, -200]

22

What conditions characterize an optimal solution?

x1

x2

x*

Contours of f(x)

Unconstrained Local Minimum

Necessary Conditions

∇f (x*) = 0

pT∇2f (x*) p ≥ 0 for p∈ℜn

(positive semi-definite)

Unconstrained Local Minimum

Sufficient Conditions

∇f (x*) = 0

pT∇2f (x*) p > 0 for p∈ℜn

(positive definite)

Since ∇f(x*) = 0, f(x) is purely quadratic for x close to x*

()32

2
1 *xxO*)xx*)(x(f*)xx(*)xx(*)x(f*)x(f)x(f TT −+−∇−+−∇+=

For smooth functions, why are contours around optimum elliptical?

Taylor Series in n dimensions about x*:

12

23

Taylor Series for f(x) about xk

Take derivative wrt x, set LHS ≈ 0

0 ≈∇f(x) = ∇f(xk) + ∇2f(xk) (x - xk) + O(||x - xk||2)

⇒ (x - xk) ≡ d = - (∇2f(xk))-1 ∇f(xk)

•  f(x) is convex (concave) if for all x ∈ℜn, ∇2f(x) is positive (negative) semidefinite

 i.e. minj λj ≥ 0 (maxj λj ≤ 0)
•  Method can fail if:

- x0 far from optimum

- ∇2f is singular at any point

- f(x) is not smooth

•  Search direction, d, requires solution of linear equations.
•  Near solution:

�

Newton's Method

2**1 xxOxx kk −=−+

24

0.
Guess x0, Evaluate f(x0).

1.
At xk, evaluate ∇f(xk).

2.
Evaluate Bk = ∇2f(xk) or an approximation.

3.
Solve: Bk d = -∇f(xk)

If convergence error is less than tolerance:

e.g., ||∇f(xk) || ≤ ε and ||d|| ≤ ε STOP, else go to 4.

4.
Find α so that 0 < α ≤ 1 and f(xk + α d) < f(xk)

 sufficiently (Each trial requires evaluation of f(x))

5.
xk+1 = xk + α d. Set k = k + 1 Go to 1.

�

Basic Newton Algorithm - Line Search

13

25

Newton's Method - Convergence Path

Starting Points
[0.8, 0.2] needs steepest descent steps w/ line search up to 'O', takes 7 iterations to ||∇f(x*)|| ≤ 10-6

[0.35, 0.65] converges in four iterations with full steps to ||∇f(x*)|| ≤ 10-6

26

•  Choice of Bk determines method.
- Steepest Descent: Bk = γ I

- Newton: Bk = ∇2f(x)

•  With suitable Bk, performance may be good enough if f(xk + αd)

 is sufficiently decreased (instead of minimized along line search

 direction).

•  Trust region extensions to Newton's method provide very strong

 global convergence properties and very reliable algorithms.
•  Local rate of convergence depends on choice of Bk.

Newton’s Method - Notes

!

Newton"Quadratic Rate : lim
k#$

x
k+1
" x *

x
k
" x *

2
= K

Steepest descent " Linear Rate : lim
k#$

x
k+1
" x *

x
k
" x *

<1

Desired?" Superlinear Rate : lim
k#$

x
k+1
" x *

x
k
" x *

= 0

14

27

!

k+1

B =
k

B +
y -

k
B s() T

y + y y -
k

B s()
T

T
y s

 -
y -

k
B s()

T

s y
T
y

T
y s() T

y s()

!

k+1

B
k+1()

-1

 = H =
k

H +

T
ss
T
s y

 -

k
H y

T
y k
H

k
y H y

Motivation:

•
Need Bk to be positive definite.
•
Avoid calculation of ∇ 2f.
•
Avoid solution of linear system for d = - (Bk)-1 ∇f(xk)

Strategy:
Define matrix updating formulas that give (Bk) symmetric, positive
definite and satisfy:

(Bk+1)(xk+1 - xk) = (∇f k+1 – ∇f k) (Secant relation)

DFP Formula: (Davidon, Fletcher, Powell, 1958, 1964)

where:
s = xk+1- xk

y = ∇f (xk+1) - ∇f (xk)

Quasi-Newton Methods

28

!

k+1

B =
k

B +

T
yy
T
s y

 -

k
B s T

s
k

B
k

s B s

!

k+1

B()
"1

= k+1

H =
k

H +
s -

k
H y() T

s + s s -
k

H y()
T

T
y s

 -
y -

k
H s()

T

y s T
s

T
y s() T

y s()

BFGS Formula (Broyden, Fletcher, Goldfarb, Shanno, 1970-71)

Notes:

1)  Both formulas are derived under similar assumptions and have

 symmetry

2)
 Both have superlinear convergence and terminate in n steps on
quadratic functions. They are identical if α is minimized.

3)
 BFGS is more stable and performs better than DFP, in general.
4)
 For n ≤ 100, these are the best methods for general purpose

problems if second derivatives are not available.

Quasi-Newton Methods

15

29

Quasi-Newton Method - BFGS

Convergence Path

Starting Point
[0.2, 0.8]
starting from B0 = I, converges in 9 iterations to ||∇f(x*)|| ≤ 10-6
�

30

Harwell (HSL)
IMSL
NAg - Unconstrained Optimization Codes
Netlib (www.netlib.org)

• MINPACK
• TOMS Algorithms, etc.

These sources contain various methods
• Quasi-Newton
• Gauss-Newton
• Sparse Newton
• Conjugate Gradient

Sources For Unconstrained Software

16

31

Problem:
Minx f(x)

s.t.
g(x) ≤ 0

h(x) = 0

where:

f(x) - scalar objective function

 x - n vector of variables

g(x) - inequality constraints, m vector

h(x) - meq equality constraints.

Sufficient Condition for Global Optimum
- f(x) must be convex, and
- feasible region must be convex,

i.e. g(x) are all convex

 h(x) are all linear

Except in special cases, there is no guarantee that a local optimum is global
if sufficient conditions are violated.

Constrained Optimization
(Nonlinear Programming)

32

2
3

1

A

B

y

x

!

1x ,
1
y " 1R 1x # B - 1R ,

1
y # A - 1R

x
2
,

2
 y " 2R 2x # B - 2R ,

2
y # A - 2R

3,x
3
y " 3R 3x # B - 3R ,

3
y # A - 3R

$

%
&

'
&

!

1x - 2x()
2

 +
1
y -

2
y()

2

 " 1R + 2R()
2

1x - 3x()
2

 +
1
y -

3
y()

2

 " 1R + 3R()
2

2x - 3x()
2

 +
2
y -

3
y()

2

 " 2R + 3R()
2

$

% %

&

%
%

Example: Minimize Packing Dimensions

What is the smallest box for three round objects?

Variables: A, B, (x1, y1), (x2, y2), (x3, y3)

Fixed Parameters: R1, R2, R3
Objective: Minimize Perimeter = 2(A+B)

Constraints: Circles remain in box, can't overlap

Decisions: Sides of box, centers of circles.

no overlaps

in box

x1, x2, x3, y1, y2, y3, A, B ≥ 0

17

33

Mi n

Linear Progr am

Mi n

Linear Progr am
(Alter nate Opt im a)

Min

Min
Min

Convex Objective Functions
Linear Constraints

Mi n

Mi n

Mi n

Nonconvex Region
Mul ti ple O pti ma

Mi nMi n

Nonconvex Object ive
Mul ti ple O pti ma

Characterization of Constrained Optima

�

34

What conditions characterize an optimal solution?

Unconstrained Local Minimum

Necessary Conditions

∇f (x*) = 0

pT∇2f (x*) p ≥ 0 for p∈ℜn

(positive semi-definite)

Unconstrained Local Minimum

Sufficient Conditions

∇f (x*) = 0

pT∇2f (x*) p > 0 for p∈ℜn

(positive definite)

18

35

Optimal solution for inequality constrained problem

Min
f(x)

 s.t
. g(x) ≤ 0

Analogy: Ball rolling down valley pinned by fence

Note: Balance of forces (∇f, ∇g1)

36

Optimal solution for general constrained problem

Problem:
Min
f(x)

 s.t.
g(x) ≤ 0

h(x) = 0

Analogy: Ball rolling on rail pinned by fences

Balance of forces: ∇f, ∇g1, ∇h

19

37

Necessary First Order Karush Kuhn - Tucker Conditions

∇ L (x*, u, v) = ∇f(x*) + ∇g(x*) u + ∇h(x*) v = 0
 (Balance of Forces)

u ≥ 0 (Inequalities act in only one direction)

g (x*) ≤ 0, h (x*) = 0 (Feasibility)

uj gj(x*) = 0 (Complementarity: either gj(x*) = 0 or uj = 0)

 u, v are "weights" for "forces," known as KKT multipliers, shadow

prices, dual variables

“To guarantee that a local NLP solution satisfies KKT conditions, a constraint
qualification is required. E.g., the Linear Independence Constraint Qualification
(LICQ) requires active constraint gradients, [∇gA(x*) ∇h(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) Second Order Conditions
-
Positive curvature in "constraint" directions.
-
pT∇ 2L (x*) p ≥ 0 (pT∇ 2L (x*) p > 0)

where p are the constrained directions: ∇h(x*)Tp = 0

 for gi(x*)=0, ∇gi(x*)Tp = 0, for ui > 0, ∇gi(x*)Tp ≤ 0, for ui = 0

Optimality conditions for local optimum

38

Single Variable Example of KKT Conditions

-a a

f(x)

x

Min (x)2
s.t. -a ≤ x ≤ a, a > 0

x* = 0 is seen by inspection

Lagrange function :
L(x, u) = x2 + u1(x-a) + u2(-a-x)

First Order KKT conditions:

∇L(x, u) = 2 x + u1 - u2 = 0

u1 (x-a) = 0

 u2 (-a-x) = 0

 -a ≤ x ≤ a
u1, u2 ≥ 0

Consider three cases:
• u1 ≥ 0, u2 = 0
Upper bound is active, x = a, u1 = -2a, u2 = 0
•  u1 = 0, u2 ≥ 0 Lower bound is active, x = -a, u2 = -2a, u1 = 0
•  u1 = u2 = 0

Neither bound is active, u1 = 0, u2 = 0, x = 0

Second order conditions (x*, u1, u2 =0)

 ∇xxL (x*, u*) = 2

 pT∇xxL (x*, u*) p = 2 (Δx)2 > 0

20

39

Single Variable Example
of KKT Conditions - Revisited

Min -(x)2
s.t. -a ≤ x ≤ a, a > 0

x* = ±a is seen by inspection

Lagrange function :
L(x, u) = -x2 + u1(x-a) + u2(-a-x)

First Order KKT conditions:

∇L(x, u) = -2x + u1 - u2 = 0

u1 (x-a) = 0

 u2 (-a-x) = 0

 -a ≤ x ≤ a
u1, u2 ≥ 0

Consider three cases:
• u1 ≥ 0, u2 = 0
Upper bound is active, x = a, u1 = 2a, u2 = 0
•  u1 = 0, u2 ≥ 0 Lower bound is active, x = -a, u2 = 2a, u1 = 0
•  u1 = u2 = 0

Neither bound is active, u1 = 0, u2 = 0, x = 0

Second order conditions (x*, u1, u2 =0)

 ∇xxL (x*, u*) = -2

 pT∇xxL (x*, u*) p = -2(Δx)2 < 0

a-a

f(x)

x

40

For x = a or x = -a, we require the allowable direction to satisfy the
active constraints exactly. Here, any point along the allowable
direction, x* must remain at its bound.

For this problem, however, there are no nonzero allowable directions
that satisfy this condition. Consequently the solution x* is defined
entirely by the active constraint. The condition:

pT ∇xxL (x*, u*, v*) p > 0

for the allowable directions, is vacuously satisfied - because there are
no allowable directions that satisfy ∇gA(x*)T p = 0. Hence, sufficient
second order conditions are satisfied.

As we will see, sufficient second order conditions are satisfied by linear
programs as well.

Interpretation of Second Order Conditions

21

41

Role of KKT Multipliers
a-a

f(x)

x a + Δa

Also known as:
•
Shadow Prices

•
Dual Variables

•
Lagrange Multipliers

Suppose a in the constraint is increased to a + Δa

f(x*) =- (a + Δa)2

and
[f(x*, a + Δa) - f(x*, a)]/Δa =- 2a - Δa

df(x*)/da = -2a = -u1

42

Another Example: Constraint
Qualifications

0**

0 ..

21

3
12

2

1

==

≤

≥

xx
)(xx

xts
xMin

0)(,0,0

0,0,0-

0
11

)(30
0
1

3
1222

3
12

2112

2

1
2

1

=−≥≤−

=≥≤

≠
















−

−
+








)(xxuu)(xx
xuux
u
ux

x1

x2

KKT conditions not satisfied at NLP solution
Because a CQ is not satisfied (e.g., LICQ)

22

43

Linear Programming:

Min
cTx

 s.t.
Ax ≤ b

Cx = d, x ≥ 0

Functions are all convex ⇒ global min.
Because of Linearity, can prove solution will

always lie at vertex of feasible region.

x2

x1
Simplex Method

-
Start at vertex

-
Move to adjacent vertex that offers most improvement

-
Continue until no further improvement

Notes:

1)
LP has wide uses in planning, blending and scheduling

2)
Canned programs widely available.

�

Special Cases of Nonlinear Programming

44

Simplex Method

Min
-2x1 - 3x2

Min
-2x1 - 3x2

 s.t.
 2x1 + x2 ≤ 5
 ⇒
 s.t. 2x1 + x2 + x3 = 5

 x1, x2 ≥ 0

x1, x2, x3 ≥ 0

(add slack variable)

Now, define f = -2x1 - 3x2
⇒
 f + 2x1 + 3x2 = 0
Set x1, x2 = 0, x3 = 5 and form tableau

x1

x2
x3
f
b
x1, x2 nonbasic

2

1
1
0
5
x3 basic

2

3
0
1
0

To decrease f, increase x2. How much? so x3 ≥ 0

x1

x2
x3
f
b

 2

1
 1
0
 5

-4

0
-3
1
-15

 f can no longer be decreased! Optimal

Underlined terms are -(reduced gradients); nonbasic variables (x1, x3), basic variable x2

Linear Programming Example

23

45

Problem:
Min
aTx + 1/2 xT B x

 A x ≤ b

 C x = d

1)
Can be solved using LP-like techniques:

(Wolfe, 1959)

⇒
Min
Σj (zj+ + zj-)

s.t.
a + Bx + ATu + CTv = z+ - z-

Ax - b + s = 0

Cx - d = 0

u, s, z+, z- ≥ 0

{uj sj = 0}

with complicating conditions.

2)
If B is positive definite, QP solution is unique.

If B is pos. semidefinite, optimum value is unique.

3)
Other methods for solving QP's (faster)

- Complementary Pivoting (Lemke)

- Range, Null Space methods (Gill, Murray).

Quadratic Programming

46

i
µ =

1

T
 ir

t=1

T

! (t)

Definitions:

xi - fraction or amount invested in security i

ri (t) - (1 + rate of return) for investment i in year t.

µi - average r(t) over T years, i.e.

Note: maximize average return, no accounting for risk.

Portfolio Planning Problem

. ,0

1 .t.

etcx

xs

xMax

i

i
i

i
ii

≥

=∑

∑µ

24

47

ijS{ } = ij
2σ = 1

T
 ir (t) - iµ()

t =1

T

∑ jr (t) - jµ()

S =
 3 1 - 0.5
 1 2 0.4
-0.5 0.4 1















Definition of Risk - fluctuation of ri(t) over investment (or past) time period.
To minimize risk, minimize variance about portfolio mean (risk averse).

Variance/Covariance Matrix, S

Example: 3 investments

µj

1.
IBM

1.3

2.
GM

1.2

3.
Gold

1.08

Portfolio Planning Problem

. ,0

1 .t.

etcx

Rx

xs
SxxMin

i

i
ii

i
i

T

≥

≥

=

∑

∑
µ

48

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
4
5
OPTION LIMROW=0;
6
OPTION LIMXOL=0;
7
8
VARIABLES IBM, GM, GOLD, OBJQP, OBJLP;
9
10
EQUATIONS E1,E2,QP,LP;
11
12
LP.. OBJLP =E= 1.3*IBM + 1.2*GM + 1.08*GOLD;
13
14
QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM - IBM*GOLD
15
+ 2*GM**2 - 0.8*GM*GOLD + GOLD**2;
16
17
E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G= 1.15;
18
19
E2.. IBM + GM + GOLD =E= 1;
20
21
IBM.LO = 0.;
22
IBM.UP = 0.75;
23
GM.LO = 0.;
24
GM.UP = 0.75;
25
GOLD.LO = 0.;
26
GOLD.UP = 0.75;
27
28
MODEL PORTQP/QP,E1,E2/;
29
30
MODEL PORTLP/LP,E2/;
31
32
SOLVE PORTLP USING LP MAXIMIZING OBJLP;
33
34  SOLVE PORTQP USING NLP MINIMIZING OBJQP;

Portfolio Planning Problem - GAMS

25

49

S O L VE S U M M A R Y
**** MODEL STATUS

1 OPTIMAL
**** OBJECTIVE VALUE

1.2750
RESOURCE USAGE, LIMIT
1.270

1000.000
ITERATION COUNT, LIMIT
1

1000
BDM - LP
VERSION 1.01
A. Brooke, A. Drud, and A. Meeraus,
Analytic Support Unit,
Development Research Department,
World Bank,
Washington D.C. 20433, U.S.A.

Estimate work space needed
- -
 33 Kb
Work space allocated

- -
231 Kb
EXIT - - OPTIMAL SOLUTION FOUND.

LOWER

LEVEL

UPPER

MARGINAL
- - - - EQU LP
 .
 .

 .

 1.000
- - - - EQU E2
1.000

1.000

1.000

 1.200

LOWER

LEVEL

UPPER

MARGINAL
- - - - VAR IBM
 0.750

0.750

 0.100
- - - - VAR GM
 .

0.250

0.750

 .
- - - - VAR GOLD
 .

..

0.750

 -0.120
- - - - VAR OBJLP
 -INF

1.275

+INF

 .
**** REPORT SUMMARY :
0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
Model Statistics SOLVE PORTQP USING NLP FROM LINE 34
MODEL STATISTICS

BLOCKS OF EQUATIONS
 3
SINGLE EQUATIONS

3

BLOCKS OF VARIABLES
 4
SINGLE VARIABLES

4

NON ZERO ELEMENTS
10
NON LINEAR N-Z

3

DERIVITIVE POOL

 8
CONSTANT POOL

3

CODE LENGTH

95

GENERATION TIME
 = 2.360 SECONDS

EXECUTION TIME = 3.510 SECONDS

Portfolio Planning Problem - GAMS

50

S O L VE S U M M A R Y
MODEL
PORTLP

OBJECTIVE
OBJLP
TYPE

LP

DIRECTION
MAXIMIZE
SOLVER
MINOS5

FROM LINE
34
**** SOLVER STATUS

1 NORMAL COMPLETION
**** MODEL STATUS

2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE

0.4210
RESOURCE USAGE, LIMIT
3.129

1000.000
ITERATION COUNT, LIMIT
3

1000
EVALUATION ERRORS
0

 0
M I N O S
 5.3
(Nov. 1990)

Ver: 225-DOS-02
B.A. Murtagh, University of New South Wales
 and
P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright
Systems Optimization Laboratory, Stanford University.

EXIT - - OPTIMAL SOLUTION FOUND
MAJOR ITNS, LIMIT

 1
FUNOBJ, FUNCON CALLS
 8
SUPERBASICS

 1
INTERPRETER USAGE

.21
NORM RG / NORM PI
 3.732E-17

LOWER

LEVEL

UPPER

MARGINAL
- - - - EQU QP
 .

 . .

 1.000
- - - - EQU E1
1.150

1.150

+INF

 1.216
- - - - EQU E2
1.000

1.000

1.000

 -0.556

LOWER

LEVEL

UPPER

MARGINAL
- - - - VAR IBM
 .

0.183

0.750

 .
- - - - VAR GM
 .

0.248

0.750

 EPS
- - - - VAR GOLD
 .

0.569

0.750

 .
- - - - VAR OBJLP
 -INF

1.421

+INF

 .
**** REPORT SUMMARY :

0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
Model Statistics SOLVE PORTQP USING NLP FROM LINE 34
EXECUTION TIME = 1.090 SECONDS

Portfolio Planning Problem - GAMS

26

51

Motivation: Build on unconstrained methods wherever possible.

Classification of Methods:

• Reduced Gradient Methods - (with Restoration) GRG2, CONOPT
• Reduced Gradient Methods - (without Restoration) MINOS
• Successive Quadratic Programming - generic implementations
• Penalty Functions - popular in 1970s, but fell into disfavor. Barrier
 Methods have been developed recently and are again popular.
• Successive Linear Programming - only useful for "mostly linear"
 problems

We will concentrate on algorithms for first four classes.

Evaluation: Compare performance on "typical problem," cite experience
on process problems.

Algorithms for Constrained Problems

52

Representative Constrained Problem

(Hughes, 1981)

Min f(x1, x2) = α exp(-β)
g1 = (x2+0.1)2[x1

2+2(1-x2)(1-2x2)] - 0.16 ≤ 0
g2 = (x1 - 0.3)2 + (x2 - 0.3)2 - 0.16 ≤ 0
x* = [0.6335, 0.3465]
f(x*) = -4.8380

27

53

Min f(x)

Min
f(z)

s.t.
 g(x) + s = 0 (add slack variable)

`⇒
s.t. c(z) = 0

h(x) = 0

 a ≤ z ≤ b

a ≤ x ≤ b, s ≥ 0

 Partition variables into:

zB - dependent or basic variables

zN - nonbasic variables, fixed at a bound

zS - independent or superbasic variables

Reduced Gradient Method with Restoration
(GRG2/CONOPT)

!

Modified KKT Conditions

"f (z) +"c(z)# $% L + %U = 0

c(z) = 0

z
(i)

= zU
(i)

 or z
(i)

= zL
(i)

, i & N

%U
(i)

 , % L

(i)
 = 0, i ' N

54

•  Solve bound constrained problem in space of superbasic variables

(apply gradient projection algorithm)

•  Solve (e) to eliminate zB

•  Use (a) and (b) to calculate reduced gradient wrt zS.

•  Nonbasic variables zN (temporarily) fixed (d)

•  Repartition based on signs of ν, if zs remain at bounds or if zB violate bounds

Reduced Gradient Method with Restoration
(GRG2/CONOPT)

!

a) "S f (z) +"Sc(z)# = 0

b) "B f (z) +"Bc(z)# = 0

c) "N f (z) +"Nc(z)# $% L + %U = 0

d) z
(i)

= zU
(i)

 or z
(i)

= zL
(i)

, i & N

e) c(z) = 0' zB = zB (zS)

28

55

• By remaining feasible always, c(z) = 0, a ≤ z ≤ b, one can apply an

 unconstrained algorithm (quasi-Newton) using (df/dzS), using (b)

• Solve problem in reduced space of zS variables, using (e).

Definition of Reduced Gradient

!

df

dzS
=
"f

"zS
+
dzB

dzS

"f

"zB
Because c(z) = 0,we have :

dc =
"c

"zS

$
%

&

'
(

T

dzS +
"c

"zB

$
%

&

'
(

T

dzB = 0

dzB

dzS
=)

"c

"zS

$
%

&

'
(
"c

"zB

$
%

&

'
(

)1

=)* zS
c * zB

c[]
)1

This leads to :

df

dzS
=*S f (z))*Sc *Bc[]

)1
*B f (z) =*S f (z) +*Sc(z)+

56

If ∇cT is (m x n); ∇zScT is m x (n-m); ∇zBcT is (m x m)

(df/dzS) is the change in f along constraint direction per unit change in zS

Example of Reduced Gradient

[]

[] () 2/322-432

Let

 2]- 2[4], 3[

2443 ..
2

1
1

1
1

1

21

1

21

2
2

1

+=−=

∂

∂
∇∇−

∂

∂
=

==

=∇=∇

=+

−

−

−

xx
dx
df

z
fcc

z
f

dz
df

x, zxz

xfc
xxts
xxMin

B
zz

SS

BS

TT

BS

29

57

Gradient Projection Method
(superbasic  nonbasic variable partition)

Define the projection of an arbitrary point x onto box feasible region.
ith component is given by:

Piecewise linear path z(α) starting at the reference point z and obtained by
projecting steepest descent (or any search) direction at z onto the box region
given by:

58

Sketch of GRG Algorithm
1.  Initialize problem and obtain a feasible point at z0

2.  At feasible point zk, partition variables z into zN, zB, zS
3.  Calculate reduced gradient, (df/dzS)
4.  Evaluate gradient projection search direction for zS,

with quasi-Newton extension
5.  Perform a line search.

•  Find α∈(0,1] with zS(α)
•  Solve for c(zS(α), zB, zN) = 0
•  If f(zS(α), zB, zN) < f(zS

k, zB, zN),
 set zS

k+1 =zS(α), k:= k+1
6.  If ||(df/dzS)||<ε, Stop. Else, go to 2.

30

59

Reduced Gradient Method with Restoration

zS

zB

60

Reduced Gradient Method with Restoration

zS

zB

Fails, due to singularity in
basis matrix (dc/dzB)

31

61

Reduced Gradient Method with Restoration

zS

zB

Possible remedy: repartition basic
and superbasic variables to create
nonsingular basis matrix (dc/dzB)

62

1.  GRG2 has been implemented on PC's as GINO and is very reliable and
robust. It is also the optimization solver in MS EXCEL.

2.  CONOPT is implemented in GAMS, AIMMS and AMPL
3.  GRG2 uses Q-N for small problems but can switch to conjugate

gradients if problem gets large. CONOPT uses exact second derivatives.

4.  Convergence of c(zS, zB , zN) = 0 can get very expensive because ∇c(z)

is calculated repeatedly.

5.  Safeguards can be added so that restoration (step 5.) can be dropped

and efficiency increases.

Representative Constrained Problem Starting Point [0.8, 0.2]
•  GINO Results - 14 iterations to ||∇f(x*)|| ≤ 10-6

•  CONOPT Results - 7 iterations to ||∇f(x*)|| ≤ 10-6 from feasible point.

GRG Algorithm Properties

32

63

Reduced Gradient Method without Restoration

zS

zB

64

Motivation: Efficient algorithms
are available that solve linearly
constrained optimization
problems (MINOS):

Min f(x)

s.t.
Ax ≤ b

Cx = d

Extend to nonlinear problems,
through successive linearization

Develop major iterations
(linearizations) and minor
iterations (GRG solutions) .

Reduced Gradient Method without Restoration
(MINOS/Augmented)

Strategy: (Robinson, Murtagh & Saunders)
1.
Partition variables into basic, nonbasic

variables and superbasic variables..
2.  Linearize active constraints at zk

Dkz = rk

3.  Let ψ = f (z) + λTc (z) + β (c(z)Tc(z))

(Augmented
Lagrange),

4.  Solve linearly constrained problem:

Min
ψ (z)

s.t.
Dz = r

a ≤ z ≤ b

using reduced gradients to get zk+1
5. Set k=k+1, go to 2.

6.
Algorithm terminates when no

movement between steps 2) and 4).

33

65

1.  MINOS has been implemented very efficiently to take care of
linearity. It becomes LP Simplex method if problem is totally
linear. Also, very efficient matrix routines.

2.  No restoration takes place, nonlinear constraints are reflected in
ψ(z) during step 3). MINOS is more efficient than GRG.

3.  Major iterations (steps 3) - 4)) converge at a quadratic rate.

4.  Reduced gradient methods are complicated, monolithic codes:

hard to integrate efficiently into modeling software.

Representative Constrained Problem – Starting Point [0.8, 0.2]
MINOS Results: 4 major iterations, 11 function calls

to ||∇f(x*)|| ≤ 10-6
�

MINOS/Augmented Notes

66

Motivation:

•
Take KKT conditions, expand in Taylor series about current point.
•
Take Newton step (QP) to determine next point.

Derivation – KKT Conditions
∇xL (x*, u*, v*) = ∇f(x*) + ∇gA(x*) u* + ∇h(x*) v* = 0

 h(x*) = 0

 gA(x*) = 0, where gA are the active constraints.

Newton - Step

xx∇ L
Ag∇ ∇ h

A
g∇ T 0 0

∇ hT 0 0



















Δx
Δu
Δv
















 = -

x∇ L kx , ku , kv()

Ag kx()
h kx()



















Requirements:
•  ∇xxL must be calculated and should be ‘regular’
• correct active set gA
• good estimates of uk, vk

Successive Quadratic Programming (SQP)

34

67

1.
Wilson (1963)
 -
active set can be determined by solving QP:

Min
∇f(xk)Td + 1/2 dT ∇xx L(xk, uk, vk) d

 d

s.t.
g(xk) + ∇g(xk)T d ≤ 0

h(xk) + ∇h(xk)T d = 0

2.
Han (1976), (1977), Powell (1977), (1978)
 -
approximate ∇xxL using a positive definite quasi-Newton update (BFGS)
 -
use a line search to converge from poor starting points.

Notes:
 -
Similar methods were derived using penalty (not Lagrange) functions.
 -
Method converges quickly; very few function evaluations.
 -
Not well suited to large problems (full space update used).

 For n > 100, say, use reduced space methods (e.g. MINOS).

SQP Chronology

68

What about ∇xxL?

•
need to get second derivatives for f(x), g(x), h(x).
•
need to estimate multipliers, uk, vk; ∇xxL may not be positive

 semidefinite
⇒ Approximate ∇xxL (xk, uk, vk) by Bk, a symmetric positive

 definite matrix.

BFGS Formula
s = xk+1 - xk

y = ∇L(xk+1, uk+1, vk+1) - ∇L(xk, uk+1, vk+1)
• second derivatives approximated by change in gradients

• positive definite Bk ensures unique QP solution

Elements of SQP – Hessian Approximation

!

k+1

B =
k

B +

T
yy
T
s y

 -

k
B s T

s
k

B
k

s B s

35

69

How do we obtain search directions?
•
Form QP and let QP determine constraint activity
•
At each iteration, k, solve:

Min
∇f(xk) Td + 1/2 dT Bkd

 d

s.t.
g(xk) + ∇g(xk) T d ≤ 0

h(xk) + ∇h(xk) T d = 0

Convergence from poor starting points
• As with Newton's method, choose α (stepsize) to ensure progress

 toward optimum: xk+1 = xk + α d.
• α is chosen by making sure a merit function is decreased at each

 iteration.

Exact Penalty Function

ψ(x) = f(x) + µ [Σ max (0, gj(x)) + Σ |hj (x)|]

 µ > maxj {| uj |, | vj |}

Augmented Lagrange Function

ψ(x) = f(x) + uTg(x) + vTh(x)

+ η/2 {Σ (hj (x))2 + Σ max (0, gj (x))2}

Elements of SQP – Search Directions

70

Fast Local Convergence
B = ∇xxL

Quadratic
∇xxL is p.d and B is Q-N

1 step Superlinear
B is Q-N update, ∇xxL not p.d
2 step Superlinear

Enforce Global Convergence
Ensure decrease of merit function by taking α ≤ 1
Trust region adaptations provide a stronger guarantee of global
convergence - but harder to implement.

Newton-Like Properties for SQP

36

71

0.
Guess x0, Set B0 = I (Identity). Evaluate f(x0), g(x0) and h(x0).

1.
At xk, evaluate ∇f(xk), ∇g(xk), ∇h(xk).

2.
If k > 0, update Bk using the BFGS Formula.
3.
Solve:
Mind ∇f(xk)Td + 1/2 dTBkd

s.t.
g(xk) + ∇g(xk)Td ≤ 0

h(xk) + ∇h(xk)Td = 0

If KKT error less than tolerance: ||∇L(x*)|| ≤ ε, ||h(x*)|| ≤ ε,

||g(x*)+|| ≤ ε. STOP, else go to 4.

4.
Find α so that 0 < α ≤ 1 and ψ(xk + αd) < ψ(xk) sufficiently

 (Each trial requires evaluation of f(x), g(x) and h(x)).

5.
xk+1 = xk + α d. Set k = k + 1 Go to 2.

Basic SQP Algorithm

72

Nonsmooth Functions - Reformulate

Ill-conditioning - Proper scaling

Poor Starting Points – Trust Regions can help

Inconsistent Constraint Linearizations

-
Can lead to infeasible QP's

 x2

x1

Min
x2
s.t. 1 + x1 - (x2)2 ≤ 0

 1 - x1 - (x2)2 ≤ 0

 x2 ≥ -1/2

Problems with SQP

37

73

SQP Test Problem

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

Min
x2
s.t.
-x2 + 2 x1

2 - x1
3 ≤ 0

 -x2 + 2 (1-x1)2 - (1-x1)3 ≤ 0
 x* = [0.5, 0.375].

74

SQP Test Problem – First Iteration

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

Start from the origin (x0 = [0, 0]T) with B0 = I, form:

Min
 d2 + 1/2 (d1

2 + d2
2)

s.t.
d2 ≥ 0

d1 + d2 ≥ 1

d = [1, 0]T. with µ1 = 0 and µ2 = 1.

38

75

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

From x1 = [0.5, 0]T with B1 = I

(no update from BFGS possible), form:

Min
 d2 + 1/2 (d1

2 + d2
2)

s.t.

-1.25 d1 - d2 + 0.375 ≤ 0
 1.25 d1 - d2 + 0.375 ≤ 0
d = [0, 0.375]T with µ1 = 0.5 and µ2 = 0.5

x* = [0.5, 0.375]T is optimal

SQP Test Problem – Second Iteration

76

Representative Constrained Problem

SQP Convergence Path

Starting Point [0.8, 0.2] - starting from B0 = I and staying in bounds

and linearized constraints; converges in 8 iterations to ||∇f(x*)|| ≤ 10-6

39

77

Barrier Methods for Large-Scale
Nonlinear Programming

0

0)(s.t

)(min

!

=

"#

x

xc

xf
nx

Original Formulation

0)(s.t

ln)()(min
1

=

!= "
=

#$

xc

xxfx
n

i

i
x n

µ%µBarrier Approach

Can generalize for
a ≤ x ≤ b

⇒ As µ  0, x*(µ)  x* Fiacco and McCormick (1968)

78

Solution of the Barrier Problem

⇒ Newton Directions (KKT System)

0)(
0
0)()(

=

=−

=−+∇

xc
eXv
vxAxf
µ

λ

⇒ Solve

















−

−+∇

−=































 −

eXv
c

vAf

d
d
d

XV
A

IAW x
T

0
00

µ

λ

ν

λ

⇒  Reducing the System
xv

VdXveXd
11 !!

!!= µ








∇
−=















 Σ+
+ c
d

A
AW x

T
µϕ

λ

0 VX
1!

="

IPOPT Code – www.coin-or.org

),,x(LW),x(cA
)x(diagX...],,,[e

xx

T

νλ∇=∇=

==

 1 1 1

40

79

Global Convergence of Newton-based
Barrier Solvers

 Merit Function

Exact Penalty: P(x, η) = f(x) + η ||c(x)||

Aug’d Lagrangian: L*(x, λ, η) = f(x) + λTc(x) + η ||c(x)||2

Assess Search Direction (e.g., from IPOPT)

Line Search – choose stepsize α to give sufficient decrease of merit function
using a ‘step to the boundary’ rule with τ ~0.99.

•  How do we balance φ (x) and c(x) with η?
•  Is this approach globally convergent? Will it still be fast?

)(
0)1(

0)1(
],,0(for

1

1

1

kkk

kvkk

kxk

xkk

vdvv
xdx

dxx

λλαλλ

τα

τα

ααα

−+=

>−≥+=

>−≥+

+=∈

++

+

+

80

Global Convergence Failure
(Wächter and B., 2000)

0 ,
01)(

0
2
1 ..

)(

32

2
2

1

31

≥

=−−

=−−

xx
xx

xxts

xfMin

x1

x2

0

0)()(

>+

=+

x
k

k
x

Tk

dx
xcdxA

α

Newton-type line search ‘stalls’
even though descent directions
exist

Remedies:

• Composite Step Trust Region
(Byrd et al.)
• Filter Line Search Methods

41

81

Line Search Filter Method

Store (φk, θk) at allowed iterates

Allow progress if trial point is
acceptable to filter with θ margin

If switching condition

is satisfied, only an Armijo line
search is required on φk

If insufficient progress on stepsize,
evoke restoration phase to reduce θ.

Global convergence and superlinear
local convergence proved (with
second order correction)

22,][][>>≥−∇ bad b
k

aT
k θδφα

φ(x)

θ(x) = ||c(x)||

82

Implementation Details

Modify KKT (full space) matrix if singular

•  δ1 - Correct inertia to guarantee descent direction
•  δ2 - Deal with rank deficient Ak

KKT matrix factored by MA27

Feasibility restoration phase

Apply Exact Penalty Formulation

Exploit same structure/algorithm to reduce infeasibility

!
"

#
$
%

&

'

+(+

IA

AW

T

k

kkk

2

1

)

)

ukl

Qk

xxx

xxxcMin

!!

"+
2

1 ||||||)(||

42

83

IPOPT Algorithm – Features

Line Search Strategies for
Globalization

- l2 exact penalty merit function

- augmented Lagrangian merit function

- Filter method (adapted and extended
from Fletcher and Leyffer)

Hessian Calculation

- BFGS (full/LM and reduced space)

- SR1 (full/LM and reduced space)

- Exact full Hessian (direct)

- Exact reduced Hessian (direct)

- Preconditioned CG

Algorithmic Properties
Globally, superlinearly
convergent (Wächter and B.,
2005)

Easily tailored to different
problem structures

Freely Available

CPL License and COIN-OR
distribution: http://www.coin-
or.org

IPOPT 3.1 recently rewritten
in C++

Solved on thousands of test
problems and applications

84

IPOPT Comparison on 954 Test Problems

 1               2                4                8               16              32            64 
                                 S    

P
er

ce
nt

 s
ol

ve
d

w
ith

in
 S

*(
m

in
. C

P
U

 ti
m

e)

100

80

60

40

20

0

43

85

Recommendations for Constrained Optimization

1.
Best current algorithms

•  GRG 2/CONOPT

•  MINOS

•  SQP

•  IPOPT

2.
GRG 2 (or CONOPT) is generally slower, but is robust. Use with highly
nonlinear functions. Solver in Excel!

3.
For small problems (n ≤ 100) with nonlinear constraints, use SQP.
4.  For large problems (n ≥ 100) with mostly linear constraints, use MINOS.

==> Difficulty with many nonlinearities

Small, Nonlinear Problems - SQP solves QP's, not LCNLP's, fewer function calls.
Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition.
Works efficiently in reduced space if function calls are cheap!
Exploit Both Features – IPOPT takes advantages of few function evaluations and large-
scale linear algebra, but requires exact second derivatives

Fewer Function
Evaluations

Tailored Linear
Algebra

86

SQP Routines
HSL, NaG and IMSL (NLPQL) Routines
NPSOL – Stanford Systems Optimization Lab
SNOPT – Stanford Systems Optimization Lab (rSQP discussed later)
IPOPT – http://www.coin-or.org

GAMS Programs
CONOPT - Generalized Reduced Gradient method with restoration
MINOS - Generalized Reduced Gradient method without restoration

NPSOL – Stanford Systems Optimization Lab
SNOPT – Stanford Systems Optimization Lab (rSQP discussed later)
IPOPT – barrier NLP, COIN-OR, open source
KNITRO – barrier NLP

MS Excel
Solver uses Generalized Reduced Gradient method with restoration

Available Software for Constrained
Optimization

44

87

1)
Avoid overflows and undefined terms, (do not divide, take logs, etc.)

e.g.
x + y - ln z = 0 
x + y - u = 0

exp u - z = 0

2)
If constraints must always be enforced, make sure they are linear or bounds.

e.g.
v(xy - z2)1/2 = 3

vu = 3

u2 - (xy - z2) = 0, u ≥ 0

3)
Exploit linear constraints as much as possible, e.g. mass balance

xi L + yi V = F zi  li + vi = fi

 L – ∑ li = 0

4)
Use bounds and constraints to enforce characteristic solutions.

 e.g.
a ≤ x ≤ b, g (x) ≤ 0

 to isolate correct root of h (x) = 0.

5)  Exploit global properties when possibility exists. Convex (linear equations?)

 Linear Program? Quadratic Program? Geometric Program?

6)
Exploit problem structure when possible.

e.g.
Min
[Tx - 3Ty]

s.t.
xT + y - T2 y = 5

4x - 5Ty + Tx = 7

0 ≤ T ≤ 1

(If T is fixed ⇒ solve LP) ⇒ put T in outer optimization loop.

Rules for Formulating Nonlinear Programs

88

State of Nature and Problem Premises

Restrictions: Physical, Legal
Economic, Political, etc.

Desired Objective: Yield,
Economic, Capacity, etc.

Decisions

Process Model Equations

Constraints Objective Function

Additional Variables

Process Optimization

Problem Definition and Formulation

Mathematical Modeling and Algorithmic Solution

45

89

Hierarchy of Nonlinear Programming
Formulations and Model Intrusion

CLOSED

OPEN

Decision Variables
101 102 103

Black Box

Direct Sensitivities

Multi-level Parallelism

SAND Tailored

Adjoint Sens & SAND Adjoint

SAND Full Space Formulation

100

Compute
Efficiency

90

Large Scale NLP Algorithms
Motivation: Improvement of Successive Quadratic Programming
as Cornerstone Algorithm

 process optimization for design, control and operations

Evolution of NLP Solvers:

1981-87: Flowsheet optimization
 over 100 variables and constraints

1988-98: Static Real-time optimization
 over 100 000 variables and constraints
2000 - : Simultaneous dynamic optimization
 over 1 000 000 variables and constraints

SQP rSQP IPOPT

rSQP++

Current: Tailor structure, architecture and problems

IPOPT 3.x

46

91

In Out

Modular Simulation Mode

Physical Relation to Process

- Intuitive to Process Engineer

- Unit equations solved internally
- tailor-made procedures.

• Convergence Procedures - for simple flowsheets, often identified

 from flowsheet structure

• Convergence "mimics" startup.
• Debugging flowsheets on "physical" grounds

Flowsheet Optimization Problems - Introduction

92

C

1
3

2 4

Design Specifications

Specify # trays reflux ratio, but would like to specify

overhead comp. ==> Control loop -Solve Iteratively

• Frequent block evaluation can be expensive

• Slow algorithms applied to flowsheet loops.

• NLP methods are good at breaking loops

Flowsheet Optimization Problems - Features

Nested Recycles Hard to Handle

Best Convergence Procedure?

47

93

Chronology in Process Optimization

Sim. Time Equiv.
1. Early Work - Black Box Approaches

Friedman and Pinder (1972)

75-150

Gaddy and co-workers (1977)

300

2. Transition - more accurate gradients

Parker and Hughes (1981)

64

Biegler and Hughes (1981)

13

3. Infeasible Path Strategy for Modular Simulators

Biegler and Hughes (1982)

<10

Chen and Stadtherr (1985)

Kaijaluoto et al. (1985)

and many more

4. Equation Based Process Optimization

Westerberg et al. (1983)

<5

Shewchuk (1985)

 2

DMO, NOVA, RTOPT, etc. (1990s)

 1-2

Process optimization should be as cheap and easy as process simulation

94

4

3 2

1

5

6
h (y) = 0

w(y) y

f(x, y(x))

x

Simulation and Optimization of Flowsheets

Min f(x), s.t. g(x) ≤ 0

For single degree of freedom:

•
work in space defined by curve below.
•
requires repeated (expensive) recycle convergence

�

48

95

Expanded Region with Feasible Path

�

96

"Black Box" Optimization Approach

• Vertical steps are expensive (flowsheet convergence)

• Generally no connection between x and y.
• Can have "noisy" derivatives for gradient optimization.

49

97

SQP - Infeasible Path Approach

• solve and optimize simultaneously in x and y
• extended Newton method

98

Architecture
 -
Replace convergence with optimization block
 -
Problem definition needed (in-line FORTRAN)
 -
Executive, preprocessor, modules intact.

Examples
1.
Single Unit and Acyclic Optimization
 -
Distillation columns & sequences

2.
"Conventional" Process Optimization

 - Monochlorobenzene process

 - NH3 synthesis

3.
Complicated Recycles & Control Loops
 -
Cavett problem
 -
Variations of above

Optimization Capability for Modular Simulators
(FLOWTRAN, Aspen/Plus, Pro/II, HySys)

50

99

S06
HC1

A-1
ABSORBER

15 Trays
(3 Theoret ical Stages)

32 psia

P

S04
Fe ed
80

o
F

37 psia

T

270o F

S01 S02

Steam
360o F

H-1
U = 100

Maximize
Profit

Fe ed F low Rates
LB Moles/Hr

HC1 10
Benzene 40
MCB 50

S07

S08

S05

S09

HC1

T-1
TREATER

 F-1
FLASH

S03

S10

25
ps ia

S12

S13
S15

P-1
C

1200 F
T

MCB

S14

U = 100 Cooling
Water
80o F

S11

Benzene,
0.1 Lb Mole/Hr

of MC B

D-1
DISTILLATION

30 Trays
(20 Theoreti cal Stages)

Steam
360oF

12,000
Btu/hr- ft2

90
o
F
H-2

U = 100

Water
80oF

PHYSICAL PROPERTY OPTIONS

Cavett Vapor Pressure

Redlich-Kwong Vapor Fugacity

Corrected Liquid Fugacity

Ideal Solution Activity Coefficient

OPT (SCOPT) OPTIMIZER

Optimal Solution Found After 4 Iterations

Kuhn-Tucker Error
 0.29616E-05

Allowable Kuhn-Tucker Error 0.19826E-04

Objective Function -0.98259

Optimization Variables

32.006 0.38578 200.00
120.00

Tear Variables

0.10601E-19 13.064 79.229 120.00 50.000

Tear Variable Errors (Calculated Minus Assumed)

-0.10601E-19 0.72209E-06

-0.36563E-04 0.00000E+00
0.00000E+00

-Results of infeasible path optimization

-Simultaneous optimization and convergence of tear streams.

Optimization of Monochlorobenzene Process

100

H2

N2

Pr

Tr

To
T Tf f

ν

Prod uc t

Hydrogen and Nitrogen feed are mixed, compressed, and combined
with a recycle stream and heated to reactor temperature. Reaction
occurs in a multibed reactor (modeled here as an equilibrium reactor)
to partially convert the stream to ammonia. The reactor effluent is
cooled and product is separated using two flash tanks with intercooling.
Liquid from the second stage is flashed at low pressure to yield high
purity NH3 product. Vapor from the two stage flash forms the recycle
and is recompressed.

Ammonia Process Optimization

Hydrogen Feed Nitrogen Feed
N2
 5.2%
 99.8%
H2
94.0%

CH4
0.79 %
 0.02%
Ar

 0.01%

51

101

Optimization Problem

Max
{Total Profit @ 15% over five years}

s.t.

• 105 tons NH3/yr.

• Pressure Balance

• No Liquid in Compressors

• 1.8 ≤ H2/N2 ≤ 3.5

 • Treact ≤ 1000o F

• NH3 purged ≤ 4.5 lb mol/hr

 • NH3 Product Purity ≥ 99.9 %
 • Tear Equations

Performance Characterstics

• 5 SQP iterations.
• 2.2 base point simulations.
• objective function improves by
$20.66 x 106 to $24.93 x 106.
• difficult to converge flowsheet

 at starting point

Item
 Optimum Starting point

Objective Function($106) 24.9286 20.659
1. Inlet temp. reactor (oF) 400 400
2. Inlet temp. 1st flash (oF) 65 65
3. Inlet temp. 2nd flash (oF) 35 35
4. Inlet temp. rec. comp. (oF) 80.52 107
5. Purge fraction (%) 0.0085 0.01
6. Reactor Press. (psia) 2163.5 2000
7. Feed 1 (lb mol/hr) 2629.7 2632.0
8. Feed 2 (lb mol/hr) 691.78 691.4

Ammonia Process Optimization

102

Recognizing True Solution
•
KKT conditions and Reduced Gradients determine true solution
•
Derivative Errors will lead to wrong solutions!

Performance of Algorithms
Constrained NLP algorithms are gradient based

 (SQP, Conopt, GRG2, MINOS, etc.)
Global and Superlinear convergence theory assumes accurate gradients

Worst Case Example (Carter, 1991)

Newton’s Method generates an ascent direction and fails for any ε !

How accurate should gradients be for optimization?

)(

)()()(
)(]11[

/1/1
/1/1

)(

0
1

00

000

xgAd
Oxfxg

xxfx

A

AxxxfMin

T

T

−−=

+∇=

=∇=










+−

−+
=

=

ε

ε

εεεε

εεεε -g0

dactual

d id
ea

l

0f∇−

2)/1()(εκ =A

52

103

Implementation of Analytic Derivatives

Module Equations

c(v, x, s, p, y) = 0

Sensitivity

Equations

x y

parameters, p exit variables, s

dy/dx
ds/dx
dy/dp
ds/dp

Automatic Differentiation Tools

JAKE-F, limited to a subset of FORTRAN (Hillstrom, 1982)
DAPRE, which has been developed for use with the NAG library (Pryce, Davis, 1987)
ADOL-C, implemented using operator overloading features of C++ (Griewank, 1990)
ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code .
TAPENADE, web-based source transformation for FORTRAN code

Relative effort needed to calculate gradients is not n+1 but about 3 to 5
(Wolfe, Griewank)

104

S1 S2

S3

S7
S4S5

S6

P

Ratio

M ax S3(A) *S3(B) - S3(A) - S3(C) + S3(D) - (S 3(E))2 2 3 1/2

M ix er Flas h

1 2
0

100

200

GRG
SQP
r SQP

Nu merical Exact

C
PU

 S
ec

on
ds

 (V
S

32
00

)

Flash Recycle Optimization

(2 decisions + 7 tear variables)

�

1 2
0

2000

4000

6000

8000

GRG
SQP
r SQP

Nu merical Exact

C
PU

 S
ec

on
ds

 (V
S

32
00

)

Reac tor

Hi P

Flas h

Lo P

Flas h

Ammonia Process Optimization

(9 decisions and 6 tear variables)

53

105

Min f(z) Min ∇f(zk)T d + 1/2 d T Wk d
s.t. c(z)=0 s.t. c(zk) + (Αk)T d = 0
 zL ≤ z ≤ zU zL ≤ zk + d ≤ zU

Characteristics

• Many equations and variables (≥ 100 000)

• Many bounds and inequalities (≥ 100 000)

Few degrees of freedom (10 - 100)

Steady state flowsheet optimization

Real-time optimization

Parameter estimation

Many degrees of freedom (≥ 1000)

Dynamic optimization (optimal control, MPC)

State estimation and data reconciliation

Large-Scale SQP

106

•
Take advantage of sparsity of A=∇c(x)
•
project W into space of active (or equality constraints)
•
curvature (second derivative) information only needed in space of degrees of

 freedom
•
second derivatives can be applied or approximated with positive curvature

 (e.g., BFGS)
•
use dual space QP solvers

+ easy to implement with existing sparse solvers, QP methods and line search

 techniques
+ exploits 'natural assignment' of dependent and decision variables (some

 decomposition steps are 'free')
+ does not require second derivatives

- reduced space matrices are dense
- may be dependent on variable partitioning
- can be very expensive for many degrees of freedom
- can be expensive if many QP bounds

Few degrees of freedom => reduced space SQP (rSQP)

54

107

�

Reduced space SQP (rSQP)
Range and Null Space Decomposition








∇
−=

















+)(
)(

0 k

k

Tk

kk

xc
xfd

A
AW

λ

Assume no active bounds, QP problem with n variables and m
constraints becomes:

•  Define reduced space basis, Zk∈ ℜn x (n-m) with (Ak)TZk = 0
•  Define basis for remaining space Yk∈ ℜn x m, [Yk Zk]∈ℜn x n
 is nonsingular.
•  Let d = Yk dY + Zk dZ to rewrite:

[] [] []







∇












−=












































+
)x(c
)x(f

I
ZY

d
d

I
ZY

A
AW

I
ZY

k

kTkk

Z

Ykk

Tk

kkTkk

0
0

0
0

00
0       

λ

108

Reduced space SQP (rSQP)
Range and Null Space Decomposition

•  (ATY) dY =-c(xk) is square, dY determined from bottom row.

•  Cancel YTWY and YTWZ; (unimportant as dZ, dY --> 0)
•  (YTA) λ = -YT∇f(xk), λ can be determined by first order estimate

•  Calculate or approximate w= ZTWY dY, solve ZTWZ dZ =-ZT∇f(xk) - w
•  Compute total step: d = Y dY + Z dZ

















∇

∇
−=

































+)x(c
)x(fZ
)x(fY

d
d

YA
ZWZYWZ

AYZWYYWY

k

kTk

kTk

Z

Y

kTk

kkTkkkTk

kTkkkTkkkTk

λ00
0

0
 0

55

109

Range and Null Space Decomposition
•
SQP step (d) operates in a higher dimension
•
Satisfy constraints using range space to get dY
•
Solve small QP in null space to get dZ
•
In general, same convergence properties as SQP.

Reduced space SQP (rSQP) Interpretation

dY

dZ

110

1. Apply QR factorization to A. Leads to dense but well-conditioned Y and Z.

2. Partition variables into decisions u and dependents v. Create
orthogonal Y and Z with embedded identity matrices (ATZ = 0, YTZ=0).

3. Coordinate Basis - same Z as above, YT = [0 I]

•
Bases use gradient information already calculated.
•
Adapt decomposition to QP step

•
Theoretically same rate of convergence as original SQP.
•
Coordinate basis can be sensitive to choice of u and v. Orthogonal is not.
•
Need consistent initial point and nonsingular C; automatic generation

Choice of Decomposition Bases

[] 







=








=

00
R

ZY
R

QA

[] []









=









−
=

=∇∇=
−

− I
CN

Y
NC

I
Z

CNccA
TT

T
v

T
u

T

 1

56

111

1.  Choose starting point x0.
2.  At iteration k, evaluate functions f(xk), c(xk) and their gradients.
3.
 Calculate bases Y and Z.
4.  Solve for step dY in Range space from

(ATY) dY =-c(xk)

5.  Update projected Hessian Bk ~ ZTWZ (e.g. with BFGS), wk (e.g., zero)
6.  Solve small QP for step dZ in Null space.

7.  If error is less than tolerance stop. Else

8.  Solve for multipliers using (YTA) λ = -YT∇f(xk)
9.  Calculate total step d = Y dY + Z dZ.
10.  Find step size α and calculate new point, xk+1 = xk + α d

13. Continue from step 2 with k = k+1.

rSQP Algorithm

UZY
k

L

Z
kT

ZZ
TkkT

xZdYdxxts
dBddwxfZMin

≤++≤

++∇

 ..

2/1))((

112

rSQP Results: Computational Results for
General Nonlinear Problems

Vasantharajan et al (1990)

57

113

rSQP Results: Computational Results
for Process Problems
Vasantharajan et al (1990)

114

Coupled Distillation Example - 5000 Equations
Decision Variables - boilup rate, reflux ratio

Method CPU Time Annual Savings Comments

1.

SQP*
2 hr
 negligible
 Base Case
2.

rSQP
15 min.
 $ 42,000
 Base Case
3.

rSQP
15 min.
 $ 84,000
 Higher Feed Tray Location
4.

rSQP
15 min.
 $ 84,000
 Column 2 Overhead to Storage
5.

rSQP
15 min
 $107,000
 Cases 3 and 4 together

18

10

1

QVK
QVK

Comparison of SQP and rSQP

58

RTO - Basic Concepts

Data Reconciliation & Parameter
Identification

• Estimation problem formulations
• Steady state model
• Maximum likelihood objective
 functions considered to get
 parameters (p)

Minp Φ(x, y, p, w)

s.t. c(x, u, p, w) = 0
x ∈ X, p ∈ P

Plant

DR-PE
c(x, u, p) = 0

RTO
c(x, u, p) = 0

APC

y

p

u

w

On line optimization
• Steady state model for states (x)
• Supply setpoints (u) to APC
 (control system)
• Model mismatch, measured and
 unmeasured disturbances (w)

Minu F(x, u, w)
s.t. c(x, u, p, w) = 0
x ∈ X, u ∈ U

 9

RTO Characteristics

Plant

DR-PE
c(x, u, p) = 0

RTO
c(x, u, p) = 0

APC

y

p

u

w

• Data reconciliation – identify gross errors and consistency in data
• Periodic update of process model identification
• Usually requires APC loops (MPC, DMC, etc.)
• RTO/APC interactions: Assume decomposition of time scales

• APC to handle disturbances and fast dynamics
• RTO to handle static operations

• Typical cycle: 1-2 hours, closed loop
10

59

RTO Consistency
(Marlin and coworkers)

•  How simple a model is
simple?

•  Plant and RTO model
must be feasible for
measurements (y),
parameters (p) and
setpoints (u)

•  Plant and RTO model
must recognize (close to)
same optimum (u*)
 => satisfy same KKT
conditions

•  Can RTO model be tuned
parametrically to do this?

11

RTO Stability
(Marlin and coworkers)

•  Stability of APC loop is different
from RTO loop

•  Is the RTO loop stable to
disturbances and input
changes?

•  How do DR-PE and RTO
interact? Can they cycle?

•  Interactions with APC and plant?
•  Stability theory based on small

gain in loop < 1.
•  Can always be guaranteed by

updating process sufficiently
slowly.

Plant

DR-PE
c(x, u, p) = 0

RTO
c(x, u, p) = 0

APC

y

p

u

w

12

60

RTO Robustness
(Marlin and coworkers)

•  What is sensitivity of the optimum
to disturbances and model
mismatch? => NLP sensitivity

•  Are we optimizing on the noise?

•  Has the process really changed?

•  Statistical test on objective
function => change is within a
confidence region satisfying a χ2
distribution

•  Implement new RTO solution only
when the change is significant

•  Eliminate ping-ponging
13

120

REACT OR E FFL UENT FROM
LOW PRES SURE S EPARATOR

PR
EF
LA
SH

M
AI
N
 F
RA

C.

RECYCLE
OIL

REFORMER
NAPHT HA

C3
/C
4

SP
LI
TT
ER

nC4

iC4

C3

M IXED LPG

FUE L GAS

LIGHT
NAPHT HA

AB
SO

RB
ER
/

ST
RI
PP

ER

D
EB
U
TA

N
IZ
ER

D
IB

• square parameter case to fit the model to operating data.

• optimization to determine best operating conditions

Existing process, optimization on-line at regular intervals: 17 hydrocarbon
components, 8 heat exchangers, absorber/stripper (30 trays), debutanizer (20
trays), C3/C4 splitter (20 trays) and deisobutanizer (33 trays).

Real-time Optimization with rSQP
Sunoco Hydrocracker Fractionation Plant

(Bailey et al, 1993)

61

121

Model consists of 2836 equality constraints and only ten independent variables. It
is also reasonably sparse and contains 24123 nonzero Jacobian elements.

P = z
i
C
i

G

i!G

" + z
i
C
i

E

i!E

" + z
i
C
i

P
m

m=1

NP

" # U

Cases Considered:

1. Normal Base Case Operation

2. Simulate fouling by reducing the heat exchange coefficients for the debutanizer

3. Simulate fouling by reducing the heat exchange coefficients for splitter

 feed/bottoms exchangers

4. Increase price for propane

5. Increase base price for gasoline together with an increase in the octane credit

Optimization Case Study Characteristics

122

62

123

Nonlinear Optimization Engines

Evolution of NLP Solvers:

 process optimization for design, control and operations

’80s: Flowsheet optimization
 over 100 variables and constraints
‘90s: Static Real-time optimization (RTO)
 over 100 000 variables and constraints
’00s: Simultaneous dynamic optimization
 over 1 000 000 variables and constraints

SQP rSQP IPOPT

124

Many degrees of freedom => full space IPOPT

•
work in full space of all variables
•
second derivatives useful for objective and constraints
•
use specialized large-scale Newton solver

+ W=∇xxL(x,λ) and A=∇c(x) sparse, often structured
+ fast if many degrees of freedom present
+ no variable partitioning required

- second derivatives strongly desired
- W is indefinite, requires complex stabilization
- requires specialized large-scale linear algebra








∇
−=















 Σ+

+)(
)(

0 k

k

Tk

kk

xc
xd

A
AW ϕ

λ

63

125

GAS STATIONS

Final Product tanks

Supply tanks

Intermediate tanks

Gasoline Blending Here

Gasoline Blending
OIL TANKS Pipelines

FINAL PRODUCT TRUCKS

126

Blending Problem & Model Formulation

⇒

⇒

Final Product tanks (k) Intermediate tanks (j) Supply tanks (i)

ijtf , jktf ,

jtv ,

itq ,

iq

jtq ,.. ktq ,..

kv

ktf ,..

f, v ------ flowrates and tank volumes
q ------ tank qualities

Model Formulation in AMPL

max
 ,

min

max
 ,

min

0
,,,,

,,,1,1,,,,

0
,,

,,1,,
 s.t.

)
t ,

(, max

jvjtvjv

kqktqkq

j jkt
f
jt

q
kt

f
kt

q

jt
v
jt

q
jt

v
jt

q
i ijt

f
it

q
k jkt

f
jt

q

j jkt
fktf

jt
v

jt
v

i ijt
f

k jkt
f

i i
c

kt
f

k k
c itf

≤≤

≤≤

=−

=
++

+−

=−

=
+

+−

∑−∑

∑

∑∑

∑

∑∑

∑

64

127

F1

F2

F3

P1

B1

B2

F1

F2

F3

P2

P1

B1

B2

B3

 Haverly, C. 1978 (HM) Audet & Hansen 1998 (AHM)

Small Multi-day Blending Models
Single Qualities

128

Honeywell Blending Model – Multiple Days
48 Qualities

65

129

Summary of Results – Dolan-Moré plot

Performance profile (iteration count)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1000000 10000000

τ

φ

IPOPT

LOQO

KNITRO

SNOPT

MINOS

LANCELOT

130

Comparison of NLP Solvers: Data Reconciliation

0.01

0.1

1

10

100

0 200 400 600

Degrees of Freedom

CP
U

Ti
m

e
(s

, n
or

m
.)

LANCELOT

MINOS

SNOPT

KNITRO

LOQO

IPOPT

0

200

400

600

800

1000

0 200 400 600
Degrees of Freedom

Ite
ra

tio
ns

LANCELOT
MINOS
SNOPT
KNITRO
LOQO
IPOPT

66

131

Comparison of NLP solvers
(latest Mittelmann study)

117 Large-scale Test Problems

500 - 250 000 variables, 0 – 250 000 constraints

Mittelmann NLP benchmark (10-26-2008)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

log(2)*minimum CPU time

fra
ct

io
n

so
lve

d
wi

th
in

IPOPT
KNITRO
LOQO
SNOPT
CONOPT

 Limits Fail
IPOPT 7 2
KNITRO 7 0
LOQO 23 4
SNOPT 56 11
CONOPT 55 11

132

Typical NLP algorithms and software

SQP - NPSOL, VF02AD, NLPQL, fmincon

reduced SQP - SNOPT, rSQP, MUSCOD, DMO, LSSOL…

Reduced Grad. rest. - GRG2, GINO, SOLVER, CONOPT

Reduced Grad no rest. - MINOS

Second derivatives and barrier - IPOPT, KNITRO, LOQO

Interesting hybrids -

• FSQP/cFSQP - SQP and constraint elimination

• LANCELOT (Augmented Lagrangian w/ Gradient Projection)

67

133

At nominal conditions, p0

 Min f(x, p0)
 s.t. c(x, p0) = 0
 a(p0) ≤ x ≤ b(p0)

How is the optimum affected at other conditions, p ≠ p0?

•  Model parameters, prices, costs
•  Variability in external conditions
•  Model structure

•  How sensitive is the optimum to parametric uncertainties?
•  Can this be analyzed easily?

Sensitivity Analysis for Nonlinear Programming

134

x1

x2

z1

z2

Saddle
Point

x*

- Nonstrict local minimum: If nonnegative, find eigenvectors for zero
eigenvalues,  regions of nonunique solutions

- Saddle point: If any are eigenvalues are negative, move along
directions of corresponding eigenvectors and restart optimization.

Second Order Optimality Conditions:
Reduced Hessian needs to be positive semi-definite

68

135

IPOPT Factorization Byproducts:
Tools for Postoptimality and Uniqueness

Modify KKT (full space) matrix if nonsingular

•  δ1 - Correct inertia to guarantee descent direction
•  δ2 - Deal with rank deficient Ak

KKT matrix factored by indefinite symmetric factorization

• Solution with δ1, δ2 =0  sufficient second order conditions

• Eigenvalues of reduced Hessian all positive – unique
minimizer and multipliers

• Else:
–  Reduced Hessian available through sensitivity calculations
–  Find eigenvalues to determine nature of stationary point










−

+Σ+

IA
AIW

T
k

kkk

2

1

δ

δ

136

NLP Sensitivity
Parametric Programming

NLP Sensitivity  Rely upon Existence and Differentiability of Path

  Main Idea: Obtain and find by Taylor Series Expansion

Optimality Conditions

Solution Triplet

69

137

NLP Sensitivity Properties (Fiacco, 1983)

Assume sufficient differentiability, LICQ, SSOC, SC:

 Intermediate IP solution (s(µ)-s*) = O(µ)

 Finite neighborhood around p0 and µ=0 with same
 active set

 exists and is unique

138

NLP Sensitivity

Optimality Conditions of

Obtaining

 Already Factored at Solution

 Sensitivity Calculation from Single Backsolve

 Approximate Solution Retains Active Set

KKT Matrix IPOPT

 Apply Implicit Function Theorem to around

70

139

Sensitivity for Flash Recycle Optimization

(2 decisions, 7 tear variables)

S1 S2

S3

S7
S4S5

S6

P

Ratio

M ax S3(A) *S3(B) - S3(A) - S3(C) + S3(D) - (S 3(E))2 2 3 1/2

M ix er Flas h

• Second order sufficiency test:
• Dimension of reduced Hessian = 1

• Positive eigenvalue

• Sensitivity to simultaneous change in feed rate
 and upper bound on purge ratio

140

Reac tor

Hi P

Flas h

Lo P

Flas h

17

17.5

18

18.5

19

19.5

20

O
bj

ec
tiv

e
Fu

nc
tio

n

0.
00

1

0.
01 0.
1

Relative perturbation change

Sensitivities vs. Re-optimized Pts

Actual

QP2

QP1

Sensitivity

Ammonia Process Optimization
(9 decisions, 8 tear variables)

• Second order sufficiency test:
• Dimension of reduced Hessian = 4
• Eigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5]
• Sensitivity to simultaneous change in feed rate

and upper bound on reactor conversion

71

141

Multi-Scenario Optimization
Coordination

Case 1 Case 2 Case 3 Case 4 Case N

1.  Design plant to deal with different operating scenarios (over time or with
uncertainty)

2. Can solve overall problem simultaneously

•  large and expensive

•  polynomial increase with number of cases

•  must be made efficient through specialized decomposition

3. Solve also each case independently as an optimization problem (inner

problem with fixed design)

•  overall coordination step (outer optimization problem for design)

•  require sensitivity from each inner optimization case with design
 variables as external parameters

Example: Williams-Otto Process
(Rooney, B., 2003)

GCP

EPBC

CBA

a

a

a

3

2

1

→+

+→+

→+

72

Design Under Uncertain Model Parameters
and Variable Inputs

E[P, …] : expected value of an objective function
h : process model equations
g : process model inequalities
y : state variables (x, T, p, etc)
d : design variables (equipment sizes, etc)
θp : uncertain model parameters
θv : variable inputs θ = [θp

T
 θv

T]
z : control/operating variables (actuators, flows, etc)
 (may be fixed or a function of (some) θ)
 (single or two stage formulations)

]0),,,(
,0),,,(..
),,,,([min

≤

=
Θ∈

θ

θ

θθ

yzdg
yzdhts

yzdPE

Multi-scenario Models for Uncertainty

]0),,,(
,0),,,(..

),,,,([
zd,

≤

=

Θ∈

θ

θ

θθ

yzdg
yzdhts

yzdPEMin

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway,
Perkins and Barton (1991), Srinivasan, Bonvin, Visser and Palanki (2002),
Walsh and Perkins (1994, 1996)

73

Multi-scenario Models for Uncertainty

0),,,(

0),,,(..

),,,()(0

≤

=

+∑

jjj

jjj

jjj
j

j

yzdg
yzdhts

yzdfdfMin

θ

θ

θω

z, d

y(θ)

Model
θi

yi

Model

θi

yi

Model

θi

yi

Model

θi

yi

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway,
Perkins and Barton (1991), Srinivasan, Bonvin, Visser and Palanki (2002),
Walsh and Perkins (1994, 1996)

Min f0(d) + Σi fi(d, xi)
s.t. hi(xi, d) = 0, i = 1,… N
 gi(xi, d) ≤ 0, i = 1,… N

r(d) ≤ 0
Variables:

x: state (z) and control (y) variables in each operating period
d: design variables (e. g. equipment parameters) used

δi: substitute for d in each period and add δi = d

Multi-scenario Design Model

Composite NLP

Min Σi (fi(δi, xi) + f0(δi)/N)
s.t. hi(xi, δi) = 0, i = 1,… N
 gi(xi, δi) +si = 0, i = 1,… N

 0 ≤ si, d – δi=0, i = 1,… N

r(d) ≤ 0

74

Solving Multi-scenario Problems:
Interior Point Method

0 ,0),,,(

0),,,(..

),,,()(0

≥=+

=

+∑

jjjjjj

jjjj

jjjj
j

j

ssyzdg
yzdhts

yzdfdfMin

θ

θ

θω

0, ,0),(..

),()(0

≥=

+∑

jjj

jj
j

j

xpxpcts

xpfpfMin ω

0),(..

lnln),()(
,,

0

=








+−+ ∑∑∑

jj

lj

l

lj

l
jjj

j
j

xpcts

pxxpfpfMin µω

],[)](),([0 pxpx iii →⇒→ µµµ

Newton Step for IPOPT










∇

∇∇
= T

ip

xpx
i c

cL
w ii



























−=





















































p

N

p

N

p
T
N

TTT
NN

r
r

r
r
r

u
u

u
u
u

Kwwww
wK

wK
wK
wK

......

...

......
3

2

1

3

2

1

321

33

22

11













∇

∇+∇
=

−

0),(
),())((1

,
Tkk

iix

kk
iix

k
i

k
i

k
xx

i pxc
pxcVXL

K
i

iii













∇

∇+∇
=

−

0
)(1

,
T

p

p
k
p

kk
pp

p c
cVPL

K










Δ

Δ
=

i

i
i

x
u

λ 








Δ

Δ
=

λ

p
up

75

Schur Complement Decomposition Algorithm

piiii

i
ii

T
ipp

i
ii

T
ipp

uwruK.

rKwruwKwK.

Δ−=Δ

−=Δ







− ∑∑ −−

 2

 1 11

Key Steps

1.

IPOPT
Line Search

& reduction of µ

2.

Computational cost is linear in number of periods
Trivial to parallelize

Evaluate functions and derivatives

Internal Decomposition
Implementation

•  Water Network Base Problem
–  36,000 variables
–  600 common variables

•  Testing
–  Vary # of scenarios
–  Vary # of common variables

NLP
Interface NLP Algorithm

Multi-scenario
NL P

Linear Algebra
Interface

Default
Linear Algebra

Block-Bordered
Linear Solver

1 2 3 4 5
Composite NLPs

76

151

Parallel Schur-Complement
Scalability

Multi-scenario Optimization
•  Single Optimization over many

scenarios, performed on parallel
cluster

Water Network Case Study
•  1 basic model

–  Nominal design optimization
•  32 possible uncertainty scenarios

–  Form individual blocks

Determine Injection time profiles as
common variables

Characteristics
•  36,000 variables per scenario
•  600 common variables

152

Parallel Schur-Complement
Scalability

Multi-scenario Optimization
•  Single Optimization over many

scenarios, performed on parallel
cluster

Water Network Case Study
•  1 basic model

–  Nominal design optimization
•  32 possible uncertainty scenarios

–  Form individual blocks

Determine Injection time profiles as
common variables

Characteristics
•  36,000 variables per scenario
•  600 common variables

77

153

Optimization Algorithms
-Unconstrained Newton and Quasi Newton Methods
-KKT Conditions and Specialized Methods
-Reduced Gradient Methods (GRG2, MINOS)
-Successive Quadratic Programming (SQP)
-Reduced Hessian SQP
-Interior Point NLP (IPOPT)

Process Optimization Applications
-Modular Flowsheet Optimization
-Equation Oriented Models and Optimization
-Realtime Process Optimization
-Blending with many degrees of freedom

Further Applications
-Sensitivity Analysis for NLP Solutions
-Multi-Scenario Optimization Problems

Summary and Conclusions

