## Assignment 3

## Fall, 2024

## 06-606

## Nonlinear Optimization in Process Systems Engineering

Due: 10/1/24

1. Using Taylor series expansion and the chain rule for partial differentiation for dy/dx = f(x, y), derive the implicit 2nd order Gauss formula

$$y_{n+1} = y_n + k_1$$
  
 $k_1 = h f(x_n+h/2, y_n + k_1/2)$ 

2. The reaction  $A \rightarrow B$  takes place at steady state in two isothermal CSTR reactors in series as shown below in the figure, with a constant flowrate of 100 ft<sup>3</sup>/min. Obtain the concentrations  $C_{A1}$ ,  $C_{A2}$  as a function of time given that the inlet concentration  $C_{A0}$  is perturbed from 1.5 to 2.0 moles/ft<sup>3</sup>. Integrate for the first ten minutes using your favorite method. Plot your results and compare them with the analytical solution.



3. Show that the trapezoidal rule:  $y_{n+1} = y_n + h/2 \{f(x_n, y_n) + f(x_{n+1}, y_{n+1})\}$ also corresponds to a 2nd order implicit Runge-Kutta method, and obtain its coefficients in the Butcher block matrix.

4. Show that for any v, the following Runge-Kutta method, is consistent of order 2.

 $y_{n+1} = y_n + 1/2 (k_2 + k_3),$   $k_1 = hf(x_n, y_n)$   $k_2 = hf(x_n + vh, y_n + v k_1)$  $k_3 = hf(x_n + (1-v)h, y_n + (1-v) k_1)$ 

5. Investigate the numerical stability of the following methods for  $y' = \lambda y, \lambda < 0$ 

i)  $y_{n+1} = y_n + h/12[5f_{n+1} + 8f_n - f_{n-1}]$  (3rd Order Adams-Moulton Corrector) ii)  $y_{n+1} = y_{n-1} + h/3[f_{n+1} + 4f_n + f_{n-1}]$  (Milne-Simpson Formula) iii)  $y_{n+1} = y_{n-1} + h/2[f_n + 3f_{n-1}]$ 

6. The equation y' = -Ay + B has a general solution  $y(x) = c e^{-Ax} + B/A$  where c is an arbitrary constant and thus  $y(x) \rightarrow B/A$  as x goes to infinity. If Euler's method is applied to this equation, show that  $y_n \rightarrow B/A$  as n goes to infinity only if h < 2/A.

7. Consider the system

 $\begin{array}{ll} y_1' = -0.1 \ y_1 - 49.9 \ y_2 & y_1(0) = 3 \\ y_2' = -50 \ y_2 & y_2(0) = 1.5 \\ y_3' = 70 \ y_2 - 120 \ y_3 & y_3(0) = 3 \end{array}$ 

a) Calculate the stiffness ratio and the eigenvalues for this system

b) Find the analytic solution.

c) Find the maximum value for which h is stable for a fourth order explicit Runge-Kutta method (see Carnahan and Wilkes paper on website for the stability plot.)