

Optimization Algorithms for Parameter Estimation and Data Reconciliation

L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

Parameter Estimatio	n and Data Reconciliation
I. Motivation and FormulationProblem FormulationDerivation of Objectives	 V. Introduction to Data Reconciliation Optimization Problem Gross Error Detection
 II. Unconstrained Problems Linear Least Squares Gauss-Newton Methods Trust Region Methods 	VI. Contaminated NormalDerivationExamples
III. Constrained Least SquaresProblem FormulationSpecialization to SQPEVM Problems	 VII. Robust Statistics (M-Estimator) Huber (Fair function) Hampl (Redescending function) Examples
IV. Statistical InferenceLinear ProblemsNonlinear Problems	VIII. Mixed Integer ApproachesFormulationsComparisons

Data Reconciliation References

Texts:

Shankar Narasimhan, Cornelius Jordache, Data Reconciliation and Gross Error Detection: An Intelligent Use of Process Data, Gulf Pub Co, 2000

J.A. Romagnoli, M. Sanchez, Data processing and reconciliation for chemical process operation, Academic Press International, ISBN 0-12-594460-8 (2000).

Papers:

Tjoa, I-B and L.T. Biegler, "Simultaneous Strategies for Data Reconciliation and Gross Error Detection of Nonlinear Systems," Computers and Chemical Engineering 15, 10, p. 679 (1991)

Albuquerque, J. S., and L. T. Biegler, "Gross Error Detection and Variable Classification in Dynamic Systems," AIChE Journal, 42, 10, p. 2841 (1996)

Arora, N. and L. T. Biegler, "Redescending estimators for data reconciliation and parameter estimation," Computers and Chemical Engineering, 25, p. 1585 (2001)

and citations therein

Image: Maximum Likelihood Derivation - 2 Assume the following moment information: $\begin{aligned} & f(z) \in 0, \quad \int_{-\infty}^{\infty} p(z) dz = 1, \quad \int_{-\infty}^{\infty} z \ p(z) dz = \eta, \quad \int_{-\infty}^{\infty} (z - \eta)^2 \ p(z) dz = \sigma^2 \\ & f(z) = 0, \quad \int_{-\infty}^{\infty} p(z) dz = 1, \quad \int_{-\infty}^{\infty} p(z) dz = 1 \\ & f(z) = 0, \quad \int_{-\infty}^{\infty} p(z) dz = 1, \quad \int_{-\infty}^{\infty} p(z) dz = 0, \quad \int_{-\infty}^{\infty} p(z) dz = \sigma^2 \\ & f(z) = 0, \quad \int_{-\infty}^{\infty} p(z) dz = \eta, \quad \int_{-\infty}^{\infty} (z - \eta)^2 \ p(z) dz = \sigma^2 \\ & f(z) = 0, \quad \int_{-\infty}^{\infty} p(z) dz = 0, \quad \int_{-\infty}^{\infty} p(z) dz = 0, \quad p(z) = 0$

Maximum Likelihood Derivation - 3

Consider n multiple experiments (with index u). Each experiment has a mean η_u , covariance V_u and experimental error distribution, ϵ_u

 $p(\varepsilon_{u}) = (2\pi)^{-m/2} \det(V)^{-1/2} \exp(-1/2(\varepsilon_{u})^{T}(V)^{-1}(\varepsilon_{u}))$

and the joint probability distribution is given by:

$$\prod_{u=1}^{n} p(\varepsilon_{u}) = (2\pi)^{-mn/2} \left[\prod_{u=1}^{n} \det(V_{u})^{-1/2} \right] \exp(-1/2\sum_{u=1}^{n} (\varepsilon_{u})^{T} (V_{u})^{-1} (\varepsilon_{u}))$$

This distribution now needs to be converted into an objective function that 'maximizes information' about our data.

Let's make the following assumptions:

- Replace distributional errors, ε_u by the actual residuals, $e_u = (z_u y_u(\theta))$
- Experiments u are independent and V_u is the same for all experiments, $V = E(\varepsilon_u \varepsilon_u^T)$
- Define likelihood function $L(\theta) = \prod p(e_u)$, and maximize this function (or its log).

This leads to the general form:

$$\log L(\theta) = -(nm/2)\log(2\pi) - (n/2)\log(\det(V)) - 1/2\sum_{u=1}^{n} (e_u)^T (V)^{-1}(e_u)$$

Maximum Likelihood Objective Functions

Specialize objectives based on what we know about the error distributions.

Define moment matrix:

$$M(\theta) = \sum_{u=1}^{n} (e_u)(e_u)^T, \ Tr(V^{-1}M(\theta)) = \sum_{u=1}^{n} (e_u)^T(V)^{-1}(e_u)$$

and $\log L(\theta) = -(nm/2)\log(2\pi) - (n/2)\log(\det(V)) - 1/2\sum_{n=1}^{n} Tr(V^{-1}M(\theta))$

Since first two terms do not contain $\theta,$ we simply minimize $\text{Tr}(V^{-1}|M(\theta))^{u=1}$

Special cases:

• <u>Ordinary Least Squares:</u> V is known, all component errors e_{uj} have same distribution and are independent of each other, i.e., $V=v\,I$

$$\operatorname{Min} \operatorname{Tr}(\mathbf{M}(\boldsymbol{\theta})) = \sum_{u} \sum_{j} e_{uj}^{2}$$

• <u>Simple Weighted Least Squares</u>: V is known and diagonal, all component errors e_{uj} are independent of each other, i.e., $V = diag\{\sigma_j^2\}$

Min Tr(V⁻¹M(θ)) = $\sum_{u} \sum_{j} e_{uj}^{2} / \sigma_{j}^{2}$

• Weighted Least Squares: V is known but general, all component errors e_{ui} depend on each other:

 $\operatorname{Min} \operatorname{Tr}(V^{-1}M(\theta)) = \sum_{u} \sum_{j} e_{u}^{T} V^{-1} e_{u}$

Least Squares – Solution Methods

Linear Least Squares

Chemical FNG NEERING

Model is given by: $y_u = A_u \theta + b_u$

$$Min \Phi(\theta, \mathbf{z}) = 1/2 \sum_{u} (z_u - A_u \theta - b_u)^T W_u (z_u - A_u \theta - b_u)$$

From $\nabla_{\theta} \Phi(\theta, z) = 0$, we get the normal equation:

$$\sum_{u=1}^{n} (A_{u}^{T} W_{u} A_{u}) \theta = \sum_{u=1}^{n} A_{u}^{T} W_{u} (z_{u} - b_{u})$$

and this leads to: $\theta = \left(\sum_{u=1}^{n} (A_{u}^{T} W_{u} A_{u})\right)^{-1} \sum_{u=1}^{n} A_{u}^{T} W_{u} (z_{u} - b_{u})$

Note: A better way to solve this linear system is to do a QR factorization on a concatenation (over u) of $(Wu)^{1/2}A_u.$

Least Squares – Solution Methods

Nonlinear Least Squares

Model is given by: $y_u = f_u(x_u\theta)_n$

$$Min \Phi(\theta, \mathbf{z}) = 1/2 \sum_{u=1}^{\infty} (z_u f_u(\theta))^T W_u(z_u f_u(\theta))$$

And we solve this unconstrained problem with Newton's method

From Taylor series expansion: $\nabla_{\theta} \Phi(\theta^k, z) + \nabla_{\theta\theta} \Phi(\theta^k, z) \Delta \theta = 0$

$$\nabla_{\theta} \Phi(\theta^{k}, z) = -\sum_{u=1}^{n} J_{u}^{T} W_{u}(z_{u} - f_{u}(\theta^{k})), \ J_{u} = \nabla_{\theta} f_{u}^{T}$$
$$\nabla_{\theta\theta} \Phi(\theta^{k}, z) = \sum_{u=1}^{n} (J_{u}^{T} W_{u} J_{u} + R_{u}), \ \left\{ R_{u} \right\}_{j} = -\nabla_{\theta, \theta_{j}} f_{u}^{T} W_{u}(z_{u} - f_{u}(\theta^{k}))$$

Now assume that $(z_u - f_u(\theta))$ is nearly zero and therefore R_u is nearly zero. Then the Hessian simplifies to: $\nabla_{\theta\theta} \mathcal{P}(\theta^k, z) = \sum_{u} J_u^T W_u J_u$

and we have the Gauss-Newton Method:

$$\Delta \theta = \left(\sum_{u=1}^{n} (J_{u}^{T} W_{u} J_{u}) \right)^{-1} \sum_{u=1}^{n} J_{u}^{T} W_{u} (z_{u} - f_{u} (\theta^{k}))$$

Note: A better way to solve this linear system is to do a QR factorization on a concatenation (over u) of $(W_u)^{1/2}J_u$.

12

Chernical ENGINEERING	Trust region approach in MINPACK (More', 1980)	
	Choose λ so that $ \Delta \theta \leq \Delta$, comparing $\tau = \text{ared/pred}$ - actual reduction (ared): $\Phi(\theta^k) - \Phi(\theta^k + \Delta \theta)$ - predicted reduction (pred): $\nabla_{\theta\theta} \Phi^T \Delta \theta + 1/2 \Delta \theta^T \nabla_{\theta\theta} \Phi \Delta \theta$	
	At iteration k: • Calculate λ corresponding to Δ , and calculate $\Delta \theta$. • Evaluate (ared) and (pred). • Define τ = ared/pred a) If $\rho_1 < \tau \le \rho_0$, $\Delta = m_1 \Delta$ b) If $\rho_2 \le \tau < \rho_1$ or $\rho_0 < \tau$, $\Delta = \Delta$ b) If $\tau < \rho_2$, $\Delta = \Delta/m_1$ c) If $\tau < \rho_3$ reset $\Delta \theta = 0$ Set, $\theta^{k+1} = \theta^k + \Delta \theta$ Typical values for the parameters: $m_1 = m_2 = 2$ and $\rho_1 = 0.75$, $\rho_2 = 0.25$, $\rho_3 = 0$, $\rho_0 = 2$.	16

Convergence Rates for Gauss-Newton Methods

Small Residuals at Solution (Good Model Fit):

= 0, Ru* = 0,

$$\nabla_{\theta\theta} \Phi(\theta^*, z) = \sum_{u=1}^n J_u^T W_u J_u$$

- Gauss-Newton method is quadratically convergent.
- Trust region will be inactive if Hessian is nonsingular
- L-M is also quadratically convergent for unique θ^* .

<u>Large Residuals at Solution (Poor Model Fit):</u> $e_u^* \neq 0, R_u^* \neq 0,$

$$\nabla_{\theta\theta} \Phi(\theta^*, z) = \sum_{u=1}^n J_u^T W_u J_u + R_u$$

- Gauss-Newton method is linearly convergent.
- Trust region may not be inactive if Hessian is nonsingular
- L-M is also linearly convergent for unique θ^* .

19

20

Hybrid Methods (Gauss and quasi-Newton)

eu*

- Quasi-Newton Methods
- DFP and BFGS Methods apply secant formula, symmetry and positive definiteness of Hessian
- Do not exploit structure of least squares problem

Dennis, Gay and Welsh (1981) - NL2SOL

- Approximates true Hessian as G-N Hessian is known
- Specialized, self-scaling Q-N method developed that approximates R_u
- Incorporates Trust Region Approach of More'
- Leads to superlinear convergence

Fletcher and Xu (1987)

- Applies specialized Q-N method to approximate Ru
- Uses a switching rule to monitor if there are small or large residuals $\tau^{k} = (\Phi(\theta^{k}) - \Phi(\theta^{k+1}))/\Phi(\theta^{k})$

Large residuals: $\lim_{k\to\infty} \tau^k = 0$, Use specialized Q-N update if $\tau^k \leq \epsilon$ Small residuals: $\lim_{k\to\infty} \tau^k = 1$, Use specialized G-N formula if $\tau^k > \epsilon$ (Choose $\epsilon \sim 0.1$)

Optimization Strategy: SQP method	
Let $x^{T} = [\theta^{T}, y^{T}]$ and consider QP subproblems for SQP:	
$ \begin{array}{ll} \min & \nabla \Phi(x^k) \ ^Td + 1/2 \ d^TB \ d \\ \text{s.t. } h(x^k) + \nabla h(x^k) \ ^Td = 0 \\ & x^L \leq x^k + d \leq x^U \end{array} $	
First order necessary conditions	
$\begin{bmatrix} \mathbf{B} & \nabla \mathbf{h} \\ \nabla \mathbf{h}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ \mathbf{v} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi \\ \mathbf{h} \end{bmatrix}$ Problems:	
How to deal with a larger QP problems	
How to calculate the Hessian	
<u>Strategies:</u>	
 Use Range and Null space Decomposition strategy to 	
decompose the search direction into:	
- Null space movement	
- Range space movement	
 Use a hybrid Gauss-Newton and BGFS update formula 	
 Analogy to unconstrained approaches 	22

Range and Null Space Decomposition

Define linear QP system as: M = f, to give:

ΓB	∇h]	[d]		$\nabla \Phi$
∇h	го∫	v	= -	h_

and select an n x n nonsingular matrix: H = [Y | Z], where $\nabla h^T Z = 0$.

• Z, Y are null & range space bases for the linearized equalities

• Search direction with range (p_Y) and null space (p_Z) components:

$$d = Yp_Y + Zp_Z. \quad Y^T = [0 | I] \qquad Z^T = [I | N^TC^{-T}]$$

Now defining X = diag [[Y | Z], I], we can consider the equivalent system $X^T M X z = X^T f$ (with X z = s) as:

$$\begin{bmatrix} Y^{T}BY & Y^{T}BY & Y^{T}\nabla h \\ Z^{T}BY & Z^{T}BZ & 0 \\ \nabla h^{T}Y & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{Y} \\ p_{Z} \\ v \end{bmatrix} = -\begin{bmatrix} Y^{T}\nabla \Phi \\ Z^{T}\nabla \Phi \\ h \end{bmatrix}$$
Standard assumptions: set Y^TB Y = 0 and Y^TB Z = 0

Structure of Least Squares Hessian

$$B^{k} = \begin{bmatrix} \nabla_{\theta\theta} L \ \nabla_{\theta y} L \\ \nabla_{y\theta} L \ \nabla_{yy} L \end{bmatrix} \qquad \qquad \nabla_{\theta\theta} L = \sum_{j=1}^{m} v_{j} \nabla_{\theta\theta} h_{j} \qquad \nabla_{\theta y} L = \sum_{j=1}^{m} v_{j} \nabla_{\theta y} h_{j}$$
$$\nabla_{y\theta} L = \sum_{j=1}^{m} v_{j} \nabla_{y\theta} h_{j} \qquad \nabla_{yy} L = \nabla_{yy} \Phi + \sum_{j=1}^{m} v_{j} \nabla_{yy} h_{j}$$

where $L(\theta, y, v) = \Phi(y) + v^{T}h(\theta, y)$

KKT multipliers (based on first order estimates) are given by: $v = -(Y^T \nabla h)^{-1} Y^T \nabla \Phi = -(Y^T \nabla h)^{-1} Y^T [0 | \sum_u e_u^T W_u]^T$

Assumption: If the residuals are *small*, then at convergence $e_u \approx 0 \Rightarrow v \approx 0$

The Hessian becomes
$$B^{G-N} = \begin{bmatrix} 0 & 0 \\ 0 & (W_u) \end{bmatrix}$$

 \Rightarrow Newton-like rate of convergence

	Number of I	terations (Fu	nction Evalu	ations)	
.	CDEC		SQ	P based method	hods
Problem	GREG	MINOS	BFGS	GN	Hybri
1	6 (12)	8 (41)	8 (10)	3 (3)	3 (3)
2	14 (34	8 (72)	14 (17)	3 (3)	3 (3)
3	6 (12)	8 (55)	30 (31)	3 (3)	3 (3)
4	7 (20)	13 (95)	14 (15)	6 (6)	6 (6)
5	7 (19)	15 (236)	fail	13 (16)	13 (16
6	5 (10)*	7 (72)	13 (21)	5 (5)	5 (5)
7	8 (16)	10 (150)	24 (30)	5 (5)	6 (6)
8	fail	21 (271)	37 (61)	6 (6)	6 (6)
9	26 (95)*	33 (320)	19 (24)	fail	18 (18

<text><text><equation-block><equation-block><equation-block>

Elliptical Confidence Regions

Single parameter

For a given interval let $\gamma = \Pr(a \le \theta^* \le b) = \int_a^b p(\theta^*|\theta_{true}) d\theta$

and for a single parameter this becomes: $|\theta_{true} - \theta^*| \le \zeta$ where ζ is the confidence level for γ with σ_{θ} calculated with $n \rightarrow \infty$ and $\int_{0}^{\pi} \left(\partial f - \partial f \right)^{-1}$

$$\sigma_{\theta}^{2} = \sigma^{2} \sum_{u=1}^{\infty} \left(\frac{\partial f_{u}}{\partial \theta} \frac{\partial f_{u}}{\partial \theta} \right)$$

Otherwise, with a small sample size: $|\theta_{true} - \hat{\theta^*}| \le t s_{\theta}$

$$s = \frac{1}{n-1} \left[\sum_{u=1}^{n} (z_u f_u(\theta))^2 \right]^{-1} \qquad s_{\theta}^2 = s^2 \sum_{u=1}^{n} \left(\frac{\partial f_u}{\partial \theta} \frac{\partial f_u}{\partial \theta}^T \right)^{-1}$$

Multiple parameters

Map out a region $S(\theta)$ so that $\gamma = Pr(\theta_{true} \in S(\theta))$

This can be done using the principal directions of $V_{\boldsymbol{\theta}}$ which leads to:

$$\gamma = \Pr((\theta_{\text{true}} - \theta^*)^T V_{\theta}^{-1} (\theta_{\text{true}} - \theta^*))$$

Large-Scale Param	eter Estimation
Complex Kinetic Mechanisms	
$ \begin{array}{c c} \hline \textbf{Complex Kinetic Mechanisms} \\ \hline \textbf{Iitiator decomposition} \\ \hline I_i & \frac{k_{d_i}}{2R} & i = 1, N_I \\ \hline \textbf{Chain Initiation} \\ \hline R^+ + M_1 & \frac{k_{I_1}}{2R} & P_{1,0} \\ \hline R^+ + M_2 & \frac{k_{I_2}}{2Q} & Q_{0,1} \\ \hline \textbf{Chain Propagation} \\ \hline P_{r,s} + M_1 & \frac{k_{P11}}{2P} & P_{r+1,s} \\ \hline P_{r,s} + M_2 & \frac{k_{P22}}{2Q} & Q_{r,s+1} \\ \hline Q_{r,s} + M_1 & \frac{k_{P22}}{2Q} & Q_{r,s+1} \\ \hline \textbf{Chain Transfer to Monomer} \\ \hline P_{r,s} + M_2 & \frac{k_{P22}}{2Q_{r,s+1}} & Q_{0,1} + M_{r,s} \\ \hline P_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_1 & \frac{k_{P21}}{2Q} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{0,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{1,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{1,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{1,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & Q_{1,1} + M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{0,1}} & M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{1,1}} & M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{1,1}} & M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{1,1}} & M_{r,s} \\ \hline Q_{r,s} + M_2 & \frac{k_{P22}}{2Q_{1,1}} & M_{r,s} \\ \hline Q_{r,s} + M_{r,s} & M_{r,s} \\ \hline Q_{r,s} + M_{r,s} & M_$	Chain Transfer to Polymer $P_{r,s} + M_{x,y} \stackrel{k_{Ip_{11}}}{=} P_{x,y} + M_{r,s}$ $P_{r,s} + M_{x,y} \stackrel{k_{Ip_{12}}}{=} Q_{x,y} + M_{r,s}$ $Q_{r,s} + M_{x,y} \stackrel{k_{Ip_{21}}}{=} P_{x,y} + M_{r,s}$ $Q_{r,s} + M_{x,y} \stackrel{k_{Ip_{22}}}{=} Q_{x,y} + M_{r,s}$ Termination by Combination $P_{r,s} + P_{x,y} \stackrel{k_{re_{11}}}{=} M_{r+x,s+y}$ $P_{r,s} + Q_{x,y} \stackrel{k_{re_{12}}}{=} M_{r+x,s+y}$ $Q_{r,s} + Q_{x,y} \stackrel{k_{re_{12}}}{=} M_{r+x,s+y}$ Termination by Disproportionation $P_{r,s} + P_{x,y} \stackrel{k_{rd_{12}}}{=} M_{r,s} + M_{x,y}$ $P_{r,s} + Q_{x,y} \stackrel{k_{rd_{12}}}{=} M_{r,s} + M_{x,y}$ $Q_{r,s} + Q_{x,y} \stackrel{k_{rd_{12}}}{=} M_{r,s} + M_{x,y}$ Backbitting $P_{r,s} \stackrel{k_{h_{1}}}{=} P_{r,s} \text{ or } Q_{r,s}$ $P_{r,s} \stackrel{k_{h_{2}}}{=} Q_{r,s} \text{ or } P_{r,s}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$k = k_0 \exp\left(-\frac{E_a + P E_v}{RT}\right)$ Carnegie Mellon	 ~ 35 Elementary Reactions ~100 Kinetic Parameters

Chernical	Adva	nce	d Re	gres	ssion N	letho	ds		
Errors-In- EVM D	Variables Prawback - Deg	(EVM rees of F	[) reedom	DOF =	$= \Pi + \sum_{k=1}^{NS} \prod_{j=1}^{I}$	$\sum_{j=1}^{NZ} \pi_{k,j} + \prod_{j=1}^{NZ} \pi_{k,j}$	$\sum_{k=1}^{NS} \sum_{j=1}^{NZ} \sum_{i=1}^{NM}$	$\sum_{i=1}^{n} u_{k,j,i}$	
Formu	min $\Pi, \pi_{k,j}, u_{k,j}$	$\sum_{k=1}^{NS} \sum_{j=1}^{N}$	$\sum_{i=1}^{NS} \sum_{k=1}^{NS} (w_i)$ $+ \sum_{k=1}^{NS} \sum_{k=1}^{NS} (w_i)$	$egin{aligned} & (y_{k,j}) \ & (y_{k,NZ} - & \ & \sum_{j=1}^{NZ} ig(u_{j}) \end{aligned}$	$egin{aligned} & (x_i) - y_{k,j,i}^M \end{pmatrix}^T \mathbf{V}_{\mathbf{x}_{k,NZ}} \end{pmatrix}^T \mathbf{V}_{\mathbf{x}_{k,j}} \end{aligned}$	$\mathbf{V}_{\mathbf{y}}^{T} \mathbf{V}_{\mathbf{y}}^{-1} \left(y_{k,NZ} \right)$ $\mathbf{v}_{\mathbf{u}}^{-1} \left(w_{k,NZ} \right)$ $\mathbf{V}_{\mathbf{u}}^{-1} \left(u_{k,j} \right)$	$egin{aligned} & y_{k,j}^M \ & -w_{k,NZ}^M \Big) \ & -u_{k,j}^M \Big) \end{aligned}$,i)	
EVM vs. Star	ndard Least S	Squares							
Data Sets	Constraints	DOF	LB	UB	Iterations	CPUs	NZJ	NZH	-
6 (EVM)	68627	529	2653	2575	71	1010.74	1059512	1119780	
6 (SLS)	68421	217	2467	2389	58	900.21	1058412	1119258	
									50

Outliers drawn from broad random distribution					
(distributional a	assumptio	on satisfied)			
•Data reconcilia well by	ation and	parameter estimates done			
•Ravesian annr	oach and				
Dayesian appr	Uach anu	I WI-estimators			
Bayesian appr		I M-estimators			
Parameters	<u> </u>	<u>1/A₂</u>			
Parameters True Values	1/A₁ 0.5	1/A 2 0.5			
Parameters True Values Least Squares	1/A₁ 0.5 0.698	1/A₂ 0.5 0.503			
Parameters True Values Least Squares Bayesian	1/A 1 0.5 0.698 0.490	1/A ₂ 0.5 0.503 0.50			
Parameters True Values Least Squares Bayesian Fair Function	1/A ₁ 0.5 0.698 0.490 0.501	1/A ₂ 0.5 0.503 0.501			

Che	Tank Exam	ple –	Case 2
	•Outliers systematic (dis for L ₁ and F ₂ stuck	stributio	nal assumption violated); measurements
	 Data reconciliation and approch 	parame	ter estimation poor with Bayesian
	•Data reconciliation doe	s and pa	rameter estimates done better by
	•M-estimators		
	Parameters	1/A ₁	<u>1/A₂</u>
	True Values	0.5	0.5
	Least Squares	0.25*	0.55
	Bayesian	0.25	0.25
	Fair Function	0.25	0.439
	Redesc. Tuned	0.499	0.500
	*lower bound		
			••
			80

$\mathbf{P} = \frac{\# \mathbf{b}}{-}$	iases correctly i # biases simula	dentifie ated	$\frac{d}{d}$, AVT	$1 = \frac{\# \text{ unb}}{1}$	iased wror # simulatio	ngly identified on trials
Sample	results for ho	rizon	size = 5	5, 3 biase	es:	
	Method	wi	OP	AVT1	\mathcal{AIC}	CPU (s)/ horizon
	Fair function	-	0.640	3.907	-	-
	RE (a, b, c)					
	0.5, 1, 2	-	0.673	5.820	3.491	1.114
	1, 2, 4	-	0.626	2.065	14.112	1.075
	2, 4, 8	-	0.571	0.305	40.299	1.057
	4, 8, 16	-	0.455	0.069	96.399	1.019
	MINLP	-	0.885	0.071	1.067	42.989
	MILP	1	0.685	2.265	1.211	4.369
	MILP	2H	0.704	0.081	1.117	0.592
	MILP	100	0.112	0.000	17.148	0.386

- Redescending estimators superior for gross error detection and provide good parameter estimates
- Redescending estimators
 - More robust than Huber estimator: Fair function
 - Can be tuned

Chemical

- Simple two-step tuning strategy utilized: considerably improves DRPE
- MINLP and MILP: good but computationally intensive and useful only for linearly constrained problems