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Maximum Likelihood Derivation - 1

Motivation:

• fit models to data to find 'optimal' parameters

• determine levels of confidence of fitted parameters

• evaluate suitability of models

Derivation of Objective Function

Let zuj = yuj(θ) + εuj

zuj - jth component of data for uth experiment

yuj - corresponding (correct) model value

εuj - observation error following probability 
distribution function (pdf), p(z)

θ - adjustable parameters in model

What is p(z)? For a scalar z, how is it derived?

z uj

yuj
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Maximum Likelihood Derivation - 2
Assume the following moment information:

Define measure of information (Shannon, 1948) and find the distribution function that 
maximizes the information assuming only the moment information:

Problem can be solved analytically to yield:

If z is an m-vector for a single experiment, this can be extended to a joint multivariable 
distribution to give:

where V is a covariance matrix defined by: 
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Maximum Likelihood Derivation - 3
Consider n multiple experiments (with index u). Each experiment has a mean ηu, covariance 
Vu and experimental error distribution, εu

and the joint probability distribution is given by:

This distribution now needs to be converted into an objective function that ’maximizes 
information’ about our data. 

Let’s make the following assumptions:

• Replace distributional errors, εu by the actual residuals, eu = (zu - yu(θ))

• Experiments u are independent and Vu is the same for all experiments, V = E(εu εu
T)

• Define likelihood function L(θ) = Π p(eu), and maximize this function (or its log). 

This leads to the general form:
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Maximum Likelihood Objective Functions

Specialize objectives based on what we know about the error distributions. 

Define moment matrix: 

and

Since first two terms do not contain θ, we simply minimize Tr(V-1 M(θ)) 

Special cases:

• Ordinary Least Squares:V is known, all component errors euj have same distribution and are 
independent of each other, i.e., V = v I

Min Tr(M(θ))  = Σu Σj euj
2

• Simple Weighted Least Squares:V is known and diagonal, all component errors euj are 
independent of each other, i.e., V = diag{σj

2}

Min Tr(V -1M(θ)) = Σu Σj euj
2/σj

2

• Weighted Least Squares:V is known but general, all component errors euj depend on each other:

Min Tr(V -1M(θ)) = Σu Σj eu
TV-1eu
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Maximum Likelihood – Unknown Covariance
Maximize L(θ) wrt V as well as θ. 

Assuming V is symmetric and nonsingular, we get:

which leads to: V* = 1/n M(θ)

Substitution into L(θ) leads to:

so we minimize:  n/2 log det(M(θ))

Notes:

• If the structure of V is known, we can further specialize the objective for unknown 
covariance (e.g., diagonal covariance, same covariance)

• V* is biased but can be corrected by using  V" = n/(n-m nθ) V*
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Unconstrained Least Squares

Basic Problem:

• Wu can be chosen to be (Vu)
-1

• hu (xu, yu, θ) = 0 is a model of the system

• xu are fixed independent variables

• Bounds are not expected to be active

Consider the case where yu is an explicit function of θ,

hu (xu, yu, θ) = 0 ==> yu = fu (xu, θ)
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Least Squares – Solution Methods

Linear Least Squares

Model is given by:  yu = Auθ + bu

From                        , we get the normal equation:

and this leads to: 

Note: A better way to solve this linear system is to do a QR factorization on a 
concatenation (over u) of (Wu)1/2Au.
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Least Squares – Solution Methods
Nonlinear Least Squares

Model is given by:  yu = fu(xuθ)

And we solve this unconstrained problem with Newton’s method

From Taylor series expansion:                 

Now assume that (zu-fu(θ)) is nearly zero and therefore Ru is nearly zero. Then the 
Hessian simplifies to: 

and we have the Gauss-Newton Method: 

Note: A better way to solve this linear system is to do a QR factorization on a 
concatenation (over u) of (Wu)

1/2Ju.
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Globalization of Gauss-Newton Method 

To ensure convergence from poor starting points:

Line search method

Choose α ∈ (0, 1] so that a sufficient decrease is found for Φ(θ)
with: θk+1 = θk + α ∆θ.

This will converge to a stationary point (∇ θΦ = 0) as long as   

is sufficiently positive definite. What if singular? 

Add λ I to Hessian to get the Levenberg-Marquardt method.

How should λ be adjusted?
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Unconstrained Problems: TR Motivation

Take: 
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Extremes of Trust Region Method

For given ¨, solve for λ directly  

1/||∆θ(λ)|| í 1/¨ = 0 

λ = 0, ¨ large: ∆θ is the Gauss-
Newton Step

λ íí> �, ¨ = 0: ∆θ is a small step in 
the steepest descent direction

Trust Region Methods - guaranteed to converge to local optima, 
with much weaker assumptions than line search methods.

16

Trust region approach in MINPACK 
(More’, 1980)

Choose λ so that || ∆θ || ∆, comparing  τ = ared/pred
- actual reduction (ared): Φ(θk) - Φ(θk +∆θ)
- predicted reduction (pred):   ∇ θθΦΤ∆θ + 1/2 ∆θΤ∇ θθΦ ∆θ

At iteration k:
• Calculate λ corresponding to ∆, and calculate ∆θ. 
• Evaluate (ared) and (pred). 
• Define τ = ared/pred

a) If ρ1 < τ ρ0,  ∆ =  m1 ∆
b) If ρ2 τ  <  ρ1 or ρ0 < τ,  ∆ =  ∆
b) If  τ  <  ρ2,  ∆ =  ∆/ m1
c) If  τ  < ρ3 reset ∆θ = 0

Set, θk+1 = θk + ∆θ
Typical values for the parameters:
m1= m2 = 2 and ρ1 = 0.75, ρ2 = 0.25, ρ3 = 0, ρ0 = 2. 
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Why is trust region required for parameter
estimation?

First order reaction: A(t) = A(0) exp(-k t);  k = k0 exp(-E/RT)

Data available only at one temperature.

Results:
• Nonunique parameter estimates, k0, E
• Singular Hessian
• Can be due to poor model and/or poor data
• Trust region methods will ensure convergence to “some” solution, 
• Postoptimality analysis will establish nonuniqueness, insensitivity

18

Example: Catalytic Cracking of Gasoil
(Tjoa, 1991)

k1 k2 k3

A --> Q --> S, A --> S

yA' = -(k1+k3) yA
2

yQ' = -k1yA
2 - k2 yQ

yA(0) = 1, yQ(0) = 0 

ODEs can be solved to yield explicit form: y = f(θ,t)

Apply Trust Region method (GREG):
(k1, k2, k3)0 = (6, 4, 1)
(k1, k2, k3)* = (11.95, 7.99, 2.02)
(k1, k2, k3)true = (12, 8, 2)
Converges in 5 iterations (11 function calls)

1.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

YA_data

YQ_data

YA_estimate

YQ_estimate

t

Yi
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Convergence Rates for Gauss-Newton Methods 

Small Residuals at Solution (Good Model Fit):
eu* = 0, Ru* = 0,

• Gauss-Newton method is quadratically convergent.
• Trust region will be inactive if Hessian is nonsingular 
• L-M is also quadratically convergent for unique θ*.

Large Residuals at Solution (Poor Model Fit):
eu* 0, Ru* 0, 

• Gauss-Newton method is linearly convergent.
• Trust region may not be inactive if Hessian is nonsingular 
• L-M is also linearly convergent for unique θ*.
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Hybrid Methods (Gauss and quasi-Newton)

Quasi-Newton Methods
• DFP and BFGS Methods apply secant formula, symmetry and positive

definiteness of Hessian
• Do not exploit structure of least squares problem

Dennis, Gay and Welsh (1981) - NL2SOL
• Approximates true Hessian as G-N Hessian is known
• Specialized, self-scaling Q-N method developed that approximates Ru
• Incorporates Trust Region Approach of More'
• Leads to superlinear convergence

Fletcher and Xu (1987)
• Applies specialized Q-N method to approximate Ru

• Uses a switching rule to monitor if there are small or large residuals
τ k = (Φ(θk) − Φ(θk+1))/Φ(θk)

Large residuals: limk-->∞ τ k = 0, Use specialized Q-N update if τ k ε
Small residuals: limk-->∞ τ k = 1, Use specialized G-N formula if τ k > ε
(Choose ε ∼ 0.1)
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Constrained Least Squares 

Motivation:
• Model cannot be reformulated as y = f(θ)
• Too expensive to converge hu (yu, θ) = 0 for each parameter value
Basic Formulation:

• Any NLP method can be used to solve this problem
• SQP can be tailored to take advantage of special form of Φ allows for 

tailored algorithm.
• Leads to faster algorithm than standard SQP with BFGS updates
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Optimization Strategy:  SQP method
Let xT = [θT, yT] and consider QP subproblems for SQP:

min ∇Φ (x k) Td + 1/2 dTB d
s.t. h(xk) + ∇ h(xk) Td = 0

xL x k + d xU

First order necessary conditions

B    ∇ h

T∇ h  0
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Problems:
• How to deal with a larger QP problems
• How to calculate the Hessian
Strategies:
• Use Range and Null space Decomposition strategy to 

decompose the search direction into:
- Null space movement
- Range space movement 

• Use a hybrid Gauss-Newton and BGFS update formula
• Analogy to unconstrained approaches
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Range and Null Space Decomposition

Define linear QP system as: M s = f, to give: 

and select an n x n nonsingular matrix: H = [ Y | Z ], where ∇ hT Z = 0.

• Z, Y are null & range space bases for the linearized equalities 

• Search direction with range (pY) and null space (pZ) components: 

d = YpY + ZpZ.     YT= [ 0 | I ] ZT = [ I | NTC -T]

Now defining X = diag [ [ Y | Z ] , I ], we can consider the equivalent 
system XT M X z = XTf (with X z = s) as:
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Standard assumptions:  set YTB Y = 0 and YTB Z = 0
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Structure of Least Squares Hessian

Bk = 
∇ θθL ∇ θyL

∇ yθL ∇ yy L

θθ∇ L = jv
j =1

m

∑ θθ∇ jh         θy∇ L = jv
j =1

m

∑ θy∇ jh

  y θ∇ L = jv
j=1

m

∑ yθ∇ jh       yy∇ L = yy∇ Φ + jv
j =1

m

∑ yy∇ jh

BG-N = 0 0
0 (Wu)

where L(θ, y, v) = Φ(y) + vTh(θ,y)

KKT multipliers (based on first order estimates) are given by:

v = - (YT∇ h)-1 YT ∇Φ = - (YT∇ h)-1 YT [ 0 | Σu eu
TWu]T

Assumption: If the residuals are small, then at convergence eu ≈ 0 ⇒ v ≈ 0

The Hessian becomes

⇒ Newton-like rate of convergence
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Least Squares Hybrid SQP Method

Motivation: Choose best Hessian approximation for different problem types

Strategies: Develop a switching rule to decide if Q-N or G-N approximation 
should be made for Bk. (Fletcher and Xu, 1987)

• Define merit function: L*(xk) = Φ(xk) + vTh(xk) + 1/2 γ ||h(xk)||2

• Uses a switching rule to monitor if there are small or large residuals

τk = (L*(x k) − L*(x k+1))/L*(x k)

Large residuals: limk-->∞ τk = 0, Use specialized Q-N  for ZTBZ if τk ε

Small residuals: limk-->∞ τk = 1, Use ZTBGNZ, ZTBGNYpY formula, τk > ε

Choose ε ∼ 0.2

26

Example: Catalytic Cracking of Gasoil
(Tjoa, 1991)

k1 k2 k3

A --> Q --> S, A --> S

yA' = -(k1+k3) yA
2

yQ' = -k1yA
2 - k2 yQ

yA(0) = 1, yQ(0) = 0 

number of ODEs: 2
number of parameters: 3
discretized ODEs: 68 variables

(k1, k2, k3)0 = (6, 4, 1)
(k1, k2, k3)* = (11.95, 7.99, 2.02)
(k1, k2, k3)true = (12, 8, 2)

1.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

YA_data

YQ_data

YA_estimate

YQ_estimate

t

Yi

Method Obj.     Iters.  CPU (s, V3200)
BFGS SQP 8.23e-5 10 4.31
Gauss-Newton 8.23e-5 4 2.25
Hybrid SQP 8.23e-5 4 2.31
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Small Residual Example: D-Pinene Kinetics

Method Iters.  CPU (s, V3200)
BFGS SQP 37 90.8
MINOS 21 64.8
Gauss-Newton 6 23.5
Hybrid SQP 6 23.6

number of ODEs: 5
number of parameters: 5
discretized ODEs: 245 variables

28

Further Results  (Tjoa and Biegler,1990)
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Comparison of Hybrid vs. General Purpose 
NLP Codes (Tjoa)

• Summary on 10 parameter estimation (kinetics) problems
• Few parameters, degrees of freedom
• Hybrid method for Hessian structure:  

(Fletcher and Xu) quasi-Newton method.

0

200

400

600

800

Hybrid

SQP/RND

MINOS

CPU Time Function Evaluations

30

Further Comparison – Constrained Trust 
Region Method (Arora, 2003)
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Statistical Inference of Estimated Parameters
Covariance of Optimal Parameters

Given an error distribution for the data (assumed Gaussian with covariance, Vz) 
How does this affect the accuracy of the estimated parameters?

Recall: Vz = E(δz δzT) and Vθ = E(δθ* δθ*T)

How does θ change with data z?

TT

z

TT

TT

z

z

z
V

z

zz
V

z

z

z
zzE

z

zz
EV

:so we havez
z

zz
and

z
z

z

z
byeApproximat

zzz
ei

−−

−−

−









∂

Φ∂
∂∂

Φ∂
∂∂

Φ∂








∂

Φ∂=⇒









∂

Φ∂
∂∂

Φ∂
∂∂

Φ∂








∂

Φ∂==

∂∂
Φ∂









∂

Φ∂=

=
∂

Φ∂+
∂∂

Φ∂

=
∂

++Φ∂=
∂

Φ∂

2

2221

2

2

2

2221

2

2

21

2

2

2

22

)*,(

 

)*,(

 

)*,()*,(

)*,(

 

)*,(
) (

 

)*,()*,(
) ( 

  ,
 

)*,()*,(
   

0
)*,(

 

)*,(
 : 

0
),*(

    ,0
)*,(

  .,.

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θδδ

θ
θ

θ
θδθδθ

δ
θ
θ

θ
θδθ

δθ
θ
θδ

θ
θ

θ
δδθθ

θ
θ

θ

θ

32

Special Cases for Covariance

1. If the objective function has covariance independent of u, i.e.:
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4. For general likelihood functions, Vθ = -(∇ θθ(log L(θ*)) -1 is 

asymptotically correct as n Æ �.
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Elliptical Confidence Regions

Single parameter

For a given interval let  γ = Pr( a θ* b) = ∫ab p(θ*|θtrue) dθ

and for a single parameter this becomes: |θtrue - θ*| ζ where ζ is the confidence level 
for γ with σθ calculated with n --> ∞ and 

Otherwise, with a small sample size: |θtrue - θ*| t sθ

Multiple parameters

Map out a region S(θ) so that γ = Pr(θtrue ∈ S(θ)) 

This can be done using the principal directions of Vθ which leads to:

γ = Pr((θtrue-θ*) TVθ
-1 (θtrue-θ*))
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For normal, unbiased distributions, linear models and a known Vθ, this probability 
follows a χ2 distribution so that the region can be defined by:

(θtrue-θ*)TVθ
-1 (θtrue-θ*) c(γ)

c(γ) is χ2 value for γ level of confidence with nθ degrees of freedom. 

• For a scalar z, the χ2 test simplifies to an F-test for determination of c(γ). 

• Elliptical confidence regions are correct if the model is linear or for small levels of 
confidence, γ. Otherwise, confidence regions can deviate greatly from ellipses. 

• Elliptical confidence regions are most commonly used. Nonlinear confidence 
regions much more expensive to calculate. 

principal  

axes of V θ

99%

95%

90%
θ*
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Errors in Variables Models (EVM) 

y

x

Conventional model: y = f(x,θ) or h(x, y, θ) = 0

No. of independent variables (x) = s1
No. of dependent variables (y) = s2
No. of parameters (θ) = p
No. of constraints = m
No. of data sets = r
⇒ No error in the "independent" variables, x

Number of degrees of freedom for optimization = p 
Minimize vertical distance, e.g. (yu - zu)2

36

Errors in Variables Models (EVM) - 2
Implicit Model: f(x,y,θ) = 0
Both x and y have inherent measurement errors

⇒ under-determined system
(e.g., pressure vs. temperature data)

y

x

Number of degrees of freedom for optimization 
= p + (s-m)r

⇒ NLP size grows linearly with the number of data sets
Minimize a nonvertical distance
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EVM Problem Statement

Formulation:
• Least squares nonlinear constraints with 
many degrees of freedom

Current Approaches
• Nonlinear Programming Strategies –
Expensive if sparsity not exploited
• Linearized Least Squares - Not robust, 
global convergence not enforced
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Introduce
New variables:   ζu

New constraints:  gu = ζu - θ = 0.

Solution Strategy:
•Apply decoupling strategy to   
SQP method
•Decompose for each data set
•Computational cost linear in # 
of data sets

•Can solve in parallel

][ where

0),,  ..

2/1  
11

T
u

T
u

T
u

uuu

r

u
u

T
u

r

u
u

gfh

ba

(whts

WeeMin

=

≤≤
=

==Φ ∑∑
==

θ
θζ

φ

38

KKT Conditions for EVM

1 2 3

w,v,ζ( )1

w,v,ζ( )2

w,v,ζ( )
3

    .. ...

w,v,ζ( )
n

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Structure of the KKT matrix after decoupling:

= RHS(∆θ)

Once θ is fixed, can solve for remaining variables independently. 

Can exploit each KKT system further.

Structure of Hessian (Gauss-Newton):  







=

00

0u
u

W
B

           
0

     
0 








=








∆
∆

=







∇
∇

=∇






 ∇
−=
















∇

∇

u

u
u

u

u

u

uw

u
u

u

u

u

T
u

uu v
w

d
If

f
h

hv

d

h

hB

γ
λ

ζ
φ

ζ



20

39

EVM Decomposition

Apply Range and Null space Decomposition
• Subspace search directions: ∇ hu

TZu = 0, Yu
TZu = 0

• Define: du = ZupZ,u + YupY,u

Null space step:     pZ,u =  - (Zu
TBu

GNZu)-1 Zu
T ∇φ u

Range space step:  pY,u =  - (∇ hu
TYu )-1 hu

• Note: pY,u is dependent on ∆θ, pZ,u is not!

Reconstruct QP Problem is space of ∆θ
• Sum up contributions from all data sets
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EVM Examples

120100806040200
0
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Full-space NLP Formulation for Parameter 
Estimation 

0        

0)(s.t    

)(min

≥
=

ℜ∈

x

xc

xf
nx

Original Formulation

0)(s.t    

ln)()(  min
1

=

−= ∑
=ℜ∈

xc

xxfx
n

i
i

x n
µϕµBarrier 

Approach

Can generalize for 

bxa ≤≤        

⇒ As  µ Æ 0,     x*(µ)  Æ x*           Fiacco and McCormick (1968)
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Solution of the Barrier Problem - IPOPT

⇒ Newton Directions (KKT System)
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⇒ Solve
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What are the Benefits for Parameter Estimation?What are the Benefits for Parameter Estimation?
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Monomer
Comonomer

Initiator(s)

1 2 3 NZ

z z z z

Material & Energy

Physical Properties

Zone Transitions

8 Stiffness  + Highly Nonlinear   +  Parametric Sensit ivity  +  Algebraic Coupling

500   ODEs
1000    AEs

LargeLarge --Scale Parameter EstimationScale Parameter Estimation

44

LargeLarge --Scale Parameter EstimationScale Parameter Estimation

~  35 Elementary Reactions
~100 Kinetic Parameters 

� Complex Kinetic Mechanisms
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LargeLarge --Scale Parameter EstimationScale Parameter Estimation

� Parameter Estimation for Industrial Applications 

� Use Rigorous Model to Match Plant Data Directly

� Start with Standard Least-Squares Formulation

Rigorous 
Reactor Model

� Special Case of Multi-Stage Dynamic Optimization Pr oblem

� Solve using Simultaneous Collocation-Based Approach

Least-Squares

1 data set 6 data sets
x 6500   ODEs

1000    AEs
3000   ODEs
6000    AEs

46

� Multi-Zone Tubular Reactor – Quasi Steady-State

� Data Sets: Operating Conditions and Properties for Different Grades

� Match: Temperature Profiles and Product Properties

� On-line Adjusting Parameters Æ Track Evolution of Disturbances 

� Kinetic Parameters Æ Development and Discrimination among Rigorous 
Models

� Results  

� Single Data Set (On-line Adjusting Parameters)

� Multiple Data Sets (On-line Adjusting Parameters + Kinetics)

Bottleneck (Memory Requirements) 
Factorization Step 

LargeLarge --Scale Parameter EstimationScale Parameter Estimation
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Improved Match of Reactor Temperatures Profile

LargeLarge --Scale Parameter EstimationScale Parameter Estimation

48

IPOPT Factorization Byproduct 

Modify KKT (full space) matrix if nonsingular

� δ1 - Correct inertia to guarantee descent direction

� δ2 - Deal with rank deficient Ak

KKT matrix factored by indefinite symmetric factorization

•Solution with δ1=0 Î sufficient second order conditions 

•Parameter Estimation Result – unique parameters

•Reduced Hessian available to calculate confidence regions 
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Outputs

Cw Cw

1 2 NZ

Cw Cw

Cw

Cw

Ethylene

Initiator(s) Initiator(s)

Modifier
Comonomer

Reaction Cooling Reaction

Inputs

Advanced Regression MethodsAdvanced Regression Methods

Errors-In-Variables (EVM)

- Standard Least Squares   - Errors in Output Variables -Biased  Parameters

- EVM - Errors in Output AND Input Variables - Unbiased Parameters

Inputs

50

Errors-In-Variables (EVM)
EVM Drawback - Degrees of Freedom 

Formulation is Straightforward

Advanced Regression MethodsAdvanced Regression Methods

EVM vs. Standard Least Squares



26

51

Industrial Case StudyIndustrial Case Study

� Results - Reactor Overall Monomer Conversion 
( up to 20 Different Grades )( up to 20 Different Grades )

Avg. Conversion Deviation
Base Model – 12.1 %
New Model – 2.5  %

EVM Results - 0.12 %

Predicted Conversion (%)

P
la

nt
 C

on
ve

rs
io

n 
(%

)

Next Generation IPOPT

• IPOPT 3.2, Fall, 2006, CPL (www.coin-or.org)
– Based on Fortran version 
– Object-oriented, NLP Solver

• Primal-Dual Interior Point method
• Full space - exact Hessian information
• Monotone/Adaptive µ update
• Filter line search strategy

– Flexible algorithm structure
– Interfacing to other linear solvers
– Modeling Environments - AMPL, AIMMS, MATLAB…

• Ideal for Internal Decomposition
– Consistent linear system structure at every iteration
– Separation of algorithm and specialized linear algebra
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High Level IPOPT Design

NLP
Interface

NLP Algorithm

Standard
NLP

Linear Algebra
Interface

Default
Linear Algebra

Large
Structured

NLP

Specialized
Linear Algebra

• Provide structured NLP elements
– Hessian, jacobian, gradients, residuals, variables, 

• Vector operations
– BLAS, norms, dot products, axpy, element- wise, max, min, etc.

• Matrix-Vector operations
– M v,   MTv

• Solution of Linear KKT system

54

Modeling the Block NLP

NLP

DistributedABINLP
1..*

NLP NLP NLP NLP

q=1 q=2 q=3 q=4

AMPL AMPL AMPL AMPL
Native
Code

Native
Code
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Exploit Structure of KKT Matrix – Laird, Biegler 2006

Parameter Estimation in Parallel Architectures Parameter Estimation in Parallel Architectures 

Direct Factorization MA27
Memory Bottlenecks

Factorization Time Scales Superlinearly
with Data sets

Block-bordered Diagonal Structure
Coarse-Grained Parallelization

56

Schur Complement Technique –Laird, Biegler 2006

Parameter Estimation in Parallel Architectures Parameter Estimation in Parallel Architectures 

1)

2)

3)

Parallelizable
Sparse Factorization         in each Block
Inertia Correction

Non-parallelizable
Dense Factorization of     Æ

Parallelizable
Final Backsolve
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Computational Results – LDPE Reactor EVM Problem
Beowulf Cluster – ChemE Department, Carnegie Mellon University

Intel Pentium 4 Xeon 2.4ghz, 2gb RAM

Parameter Estimation in Parallel Architectures Parameter Estimation in Parallel Architectures 

58

Computational Results – LDPE Reactor EVM Problem

Parameter Estimation in Parallel Architectures Parameter Estimation in Parallel Architectures 
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Conclusions – Parameter Estimation

• Trust Region (Levenberg-Marquardt) methods: standard for  unconstrained 
problems - MINPACK, NaG, NL2SOL, Harwell

• Constrained problem formulations - more model flexibility 

• SQP codes adapted to exploit least squares structure, faster methods

• EVM problems - expensive for conventional optimization codes
– Many degrees of freedom for optimization
– Decomposition of KKT conditions required
– ODRPACK (netlib) developed for yu = fu(θ)

• Large-scale SQP methods developed for:
– Parameter estimation
– EVM methods
– Data Reconciliation

• IPOPT has useful characteristics for large-scale parameter estimation

60

Optimization Algorithms for Data Reconciliation

Introduction to Data Reconciliation

M-Estimators 
• Bayesian Forms
• Fair Function
• Redescending Estimator

Akaike Information Criterion

Mixed Integer Formulations

Static Examples

Dynamic Examples

Conclusions
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Introduction

62

Data Reconciliation Framework
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Effects of Gross Error in Regression

64

Data Reconciliation – Literature Review
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Treatment of Outliers: M-Estimators

M-Estimator: modeling the influence of residual outliers 
through modification of maximum likelihood (ML) functions

Bayesian Statistics and Bernoulli Trials
• Statistical definitions and ML function
• Allows statistical inference

Robust Statistics
• Modification without inferential aspects

Akaike Information Criterion (AIC)
• Based on ML extended to discrete parameters 

66

Bayesian Approach: Bernoulli Trial
Assume separate probability distributions for random and gross 
errors:
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Bayesian Approach: Bernoulli Trial

Combine both distributions into ML function:

itmeasuremen

onsdistributiof scaleb
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Bayesian Approach: Gross Error Test
Solve optimization problem and perform gross error tests at solution:

bpbperrorgrossIf

bpbp

iiii

iiii
i

/))/(exp()1)(/exp(:   

)/))/(exp()1)(/(exp(logmax

2222

2222

σεσε

σεσε

−<−−

−+−−∑

G(G(εε))

R(R(εε))

εε

Gross ErrorGross Error
Random ErrorRandom Error

+ Statistical basis for determining gross errors+ Statistical basis for determining gross errors
--Assumes gross errors follow proposed distributionAssumes gross errors follow proposed distribution
--Not robust to deviations from assumptionsNot robust to deviations from assumptions
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Example (Pai and Fisher, 1988)

06.1262

02

03)(

02.11123

02.111232

08.255)(2)(7.0)(5.0

321321

3235

32
2

314

3221231113

322122121

2
3321

2
2132

2
1

=−−++
=−

=++−−

=+−−+−
=+−−+−

=−+++−

uuuxxx

uuxx

uuxxx

uuxuxxxxux

uuxuxxxxx

uxuuxuxxx

5 measured variables (x)5 measured variables (x)

3 unmeasured variables (u)3 unmeasured variables (u)

b= 20, p=0.2, b= 20, p=0.2, VV=0.1=0.1

Introduce 20% gross error intoIntroduce 20% gross error into

500 data sets generated randomly500 data sets generated randomly

100 right100 right

0 wrong0 wrong

87 right87 right

0 wrong0 wrong

99 right99 right

1 wrong1 wrong

70

Robust Statistics for Gross Errors
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Robust Statistics Properties

Find estimators that are insensitive to deviations in assumptions of 
noise distribution. 

F – assumed distribution of data

G – actual distribution of data

T(-) – test statistic or distribution of estimator

Example:

S1: [2.0, 2.1, 2.2, 2.3, 2.4] Mean = 2.2, Median=2.2

S2: [2.0, 2.1, 2.2, 2.3, 24] Mean = 6.56, Median=2.2

Î Median is a robust statistic, Mean is not. 

γδεδ <⇒< ))(),((),( GTFTGF
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Huber Class of Robust Estimators (1981)

∑
i

Fiρ• Use            instead of least squares objective

•Convex function of normalized residual

•Small residuals – quadratic behavior

•Large residuals – linear behavior

•C – Tuning parameter based on Cramer-Rao bound (trade off 
efficiency (high C) with robustness (low C))

Fair Function (Fair Function ( ReyRey, 1988), 1988)

FairV
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Hampel Class of Robust Estimators

Three Part Redescending Estimator (Hampel, 1974)

Three parameters define regions: c > b+2a

Quadratic, linear and constant parts involving norm alized residual

Nonsmooth – requires some smoothing approximations

Not clear how to tune a, b, c

74

M-Estimators in Robust Statistics
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Properties of M-Estimators

76

Properties of M-Estimators

Bayesian Robust

Distributional Assumptions?                  Yes                No

Sensitive to Assump. Deviations?         Yes                  No

Statistical Inference at Solution?           Yes                No

Incorporate prior knowledge?                Yes                 No

-For robust case, apply exploratory statistics (e.g., boxplots) at solution

- Need data redundancy to identify gross errors
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Dynamic Data Reconciliation

78

Case 1: Comparison of Results
Reconciled LReconciled L 11 Reconciled FReconciled F 22

•Discretize DAEs and solve as large scale NLP problem 
with appropriate objective function

•Add random outlier noise to flow and level data



40

79

Tank Example – Case 1

•Outliers drawn from broad random distribution 
(distributional assumption satisfied)

•Data reconciliation and parameter estimates done 
well by 

•Bayesian approach and M-estimators

Parameters 1/A 1 1/A2

True Values 0.5 0.5

Least Squares 0.698 0.503

Bayesian 0.490 0.50

Fair Function 0.501 0.501

Redesc. Tuned 0.50 0.50

80

Tank Example – Case 2
•Outliers systematic (distributional assumption viol ated); measurements 
for L 1 and F 2 stuck

•Data reconciliation and parameter estimation poor w ith Bayesian 
approch

•Data reconciliation does and parameter estimates do ne better by 

•M-estimators

Parameters 1/A 1 1/A2

True Values 0.5 0.5

Least Squares 0.25* 0.55

Bayesian 0.25 0.25

Fair Function 0.25 0.439

Redesc. Tuned 0.499 0.500

*lower bound



41

81

Case 2: Comparison of Results

82

Gross Errors Modeled with AIC



42

83

AIC for Data Reconciliation

Objective FunctionObjective Function

••Contains discrete and continuous variablesContains discrete and continuous variables

••dim(pdim(p ) = # gross errors in problem) = # gross errors in problem

••Leads to MINLP problem Leads to MINLP problem 

••Can be simplified to MILP for linear systemsCan be simplified to MILP for linear systems

••AIC can also be used as an offAIC can also be used as an off --line objective for line objective for 
calibrationcalibration

84

MINLP formulation
(Yamamura et al, 1988; Arora and B, 2001)

-Direct minimization of AIC function

-Model is for linear system, but 
straightforward extension for nonlinear 
systems

- µL = positive or negative biases, 
U � |µL| � L 

-Binary variables enforce this:
y = 0,1: existence of gross error
z = 0,1: positive or negative sign
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MILP Simplification 
(Soderstrom et al., 2000)

•Quadratic terms become absolute values (like Huber)

•Weighting values (wi) not clear

•Limited to linear models

•Much faster solution times

86

Mixed Integer Formulation for Gross Errors
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Tuning the Redescending Parameters

88

Tune Redescending Estimator Using AIC
Tanks Example
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Steam Metering Example

90

Steam Metering Results 



46

91

Conclusions – Data Reconciliation


