

Optimization of Differential-Algebraic Equation Systems

L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

Chemical ENGINEERING	DAE Optimization Outline					
	Ι	Introduction Process Examples				
	II	Parametric Optimization - Gradient Methods				
		 Perturbation Direct - Sensitivity Equations Adjoint Equations 				
	III	Optimal Control Problems - Optimality Conditions				
		 Model Algorithms Sequential Methods Multiple Shooting 				
	IV	Indirect Methods <u>Simultaneous Solution Strategies</u>				
		 Formulation and Properties Process Case Studies Software Demonstration 				
			2			

Example: Sensitivity Equations

Chemical INCINERING

 $z'_{1} = z_{1}^{2} + z_{2}^{2}$ $z'_{2} = z_{1}z_{2} + z_{1}p_{b}$ $z_{1}(0) = 5, z_{2}(0) = p_{a}$ $s(t)_{a,j} = \partial z(t)_{j} / \partial p_{a}, \quad s(t)_{b,j} = \partial z(t)_{j} / \partial p_{b}, j = 1, 2$ $s'_{a,1} = 2z_{1}s_{a,1} + 2z_{2}s_{a,2}$ $s'_{a,2} = z_{1}s_{a,2} + z_{2}s_{a,1} + s_{a,1}p_{b}$ $s_{a,1}(0) = 0, s_{a,2}(0) = 1$ $s'_{b,1} = 2z_{1}s_{b,1} + 2z_{2}s_{b,2}$ $s'_{b,2} = z_{1} + z_{1}s_{b,2} + z_{2}s_{b,1} + s_{b,1}p_{b}$ $s_{b,1}(0) = 0, s_{b,2}(0) = 0$

15

Car Problem Chemical Travel a fixed distance (rest-to-rest) in minimum time. Min $x_3(t_f)$ Min t_f s.t. $x_1' = x_2$ *s.t.* x'' = u $x_2' = u$ $a \leq u(t) \leq b$ $x_3' = 1$ $x(0) = 0, x(t_f) = L$ $a \le u(t) \le b$ $x'(0) = 0, x'(t_f) = 0$ $x_1(0) = 0, x_1(t_f) = L$ $x_2(0) = 0, x_2(t_f) = 0$ Hamiltonian : $H = \lambda_1 x_2 + \lambda_2 u + \lambda_3$ Adjoints : $\dot{\lambda}_1 = 0 \implies \lambda_1(t) = c_1$ $\dot{\lambda}_2 = -\lambda_1 = > \lambda_2(t) = c_2 + c_1(t_f - t)$ $\dot{\lambda}_3 = 0 = > \lambda_3(t_f) = 1, \ \lambda_3(t) = 1$ $\frac{\partial H}{\partial u} = \lambda_2 = c_2 + c_1(t_f - t) \begin{cases} t = 0, c_1 t_f + c_2 < 0, u = b \\ t = t_f, c_2 > 0, u = a \end{cases}$ Crossover $(\lambda_2 = 0)$ occurs at $t = t_s$ 26

Instabilities in DAE Models

This example cannot be solved with sequential methods (Bock, 1983):

 $dy_1/dt = y_2$

 $dy_2/dt = \tau^2 y_1 - (\pi^2 + \tau^2) \sin(\pi t)$

The characteristic solution to these equations is given by:

 $y_1(t) = \sin(\pi t) + c_1 \exp(-\tau t) + c_2 \exp(\tau t)$

 $y_2(t) = \pi \cos(\pi t) - c_1 \tau \exp(-\tau t) + c_2 \tau \exp(\tau t)$

Both c_1 and c_2 can be set to zero by either of the following equivalent conditions:

<u>IVP</u>: $y_1(0) = 0, y_2(0) = \pi$ <u>BVP</u>: $y_1(0) = 0, y_1(1) = 0$

33

Function is the sensitivity to the analytic solution profile is seen by arguments of the solution. For the IVP case, the sensitivity to the analytic solution profile is seen by arguments of the profiles y₁(t) and y₂(t) given by: y₁(t) = sin (π t) + (e₁ - e₂/τ) exp(-τ t)/2 (+(e₁ + e₂/τ) exp(τ t)/2 y₂(t) = π cos (π t) - (τ e₁ - e₂) exp(-τ t)/2 (+ (τ e₁ + e₂) exp(τ t)/2 Therefore, even if e₁ and e₂ are at the level of machine precision (< 10⁻¹³), a fage value of τ and t will lead to unbounded solution profiles.

34

Leaendr	e and Radau	Roots	
Degree K	Legendre Roots	Radau Roots	
1	0.500000	1.000000	
2	0.211325	0.333333	
	0.788675	1.000000	
3	0.112702	0.155051	
	0.500000	0.644949	
	0.887298	1.000000	
4	0.069432	0.088588	
	0.330009	0.409467	
	0.669991	0.787659	
	0.930568	1.000000	
5	0.046910	0.057104	
	0.230765	0.276843	
	0.500000	0.583590	
	0.769235	0.860240	
	0.953090	1.000000	

Collocation Example 1 $z_{K+1}(t) = \sum_{k=0}^{K} z_k \ell_k(t), \ell_k(t) = \prod_{\substack{j=0\\j\neq k}}^{K} \frac{(t-t_j)}{(t_k-t_j)} = z_{N+1}(t_k) = z_k$ $t_0 = 0, t_1 = 0.21132, t_2 = 0.78868$ $\ell_0(t) = 6t^2 - 6t + 1, \quad \ell_0(t) = 12t - 6$ $\ell_1(t) = -8.195t^2 + 6.4483t, \quad \ell_1(t) = 6.4483 - 16.39 t$ $\ell_2(t) = 2.19625t^2 - 0.4641t, \quad \ell_2(t) = 4.392t - 0.4641$ $Solve \quad z' = z^2 - 3z + 2, z(0) = 0$ $= z_0 = 0$ $z_0 \ell_0(t_1) + z_1 \ell_1(t_1) + z_2 \ell_2(t_1) = z_1^2 - 3z_1 + 2$ $(2.9857 z_1 + 0.46412 z_2 = z_1^2 - 3z_1 + 2)$ $z_0 \ell_0(t_2) + z_1 \ell_1(t_2) + z_2 \ell_2(t_2) = z_2^2 - 3z_2 + 2$ $(-6.478 z_1 + 3 z_2 = z_2^2 - 3 z_2 + 2)$ $z_0 = 0, z_1 = 0.291 (0.319), z_2 = 0.7384 (0.706)$ $z(t) = 1.5337 t - 0.76303 t^2$

Example 10.2 (Demonstration of Orthogonal Collocation) Consider a single differential equation: $\frac{dz}{dt} = z^2 - 2z + 1, \ z(0) = -3. \qquad (10.16)$ with $t \in [0, 1]$. This equation has an analytic solution given by z(t) = (4t - 3)/(4t + 1). Using Lagrange interpolation and applying the collocation and continuity equations (10.7) and (10.14), respectively, with K = 3 collocation points, N elements and h = 1/N leads to: $\sum_{j=0}^{3} z_{ij} \frac{d\ell_j(\tau_k)}{d\tau} = h(z_{ik}^2 - 2z_{ik} + 1), \ k = 1, \dots, 3, \ i = 1, \dots, N$

51

Chemica

$$z_{i+1,0} = \sum_{j=0}^{3} \ell_j(1) z_{ij}, \quad i = 1, \dots, N-1$$
$$z_f = \sum_{j=0}^{K} \ell_j(1) z_{Nj}, \ z_{1,0} = -3.$$

Using Radau collocation, we have $\tau_0 = 0$, $\tau_1 = 0.155051$, $\tau_2 = 0.644949$ and $\tau_3 = 1$. For N = 1, and $z_0 = -3$ the collocation equations are given by:

$$\sum_{j=0}^{3} z_j \frac{d\ell_j(\tau_k)}{d\tau} = (z_k^2 - 2z_k + 1), \ k = 1, \dots, 3,$$

which can be written out as:

$$z_0(-30\tau_k^2 + 36\tau_k - 9) + z_1(46.7423\tau_k^2 - 51.2592\tau_k + 10.0488) + z_2(-26.7423\tau_k^2 + 20.5925\tau_k - 1.38214) + z_3(10\tau_k^2 - \frac{16}{3}\tau_k + \frac{1}{3}) = (z_k^2 - 2z_k + 1), \ k = 1, \dots, 3.$$

Solving these three equations gives $z_1 = -1.65701$, $z_2 = 0.032053$, $z_3 = 0.207272$

Comparison of Computational Complexity ($\alpha \in [2, 3], \beta \in [1, 2], n_w, n_u$ - assume N _m = O(N))									
	Single Shooting	Multiple Shooting	Simultaneous						
DAE Integration	n _w ^β Ν	n _w ^β Ν							
Sensitivity	(n _w N) (n _u N)	$(n_{w} N) (n_{u} + n_{w})$	N (n _u + n _w)						
Exact Hessian	(n _w N) (n _u N) ²	$(n_{w} N) (n_{u} + n_{w})^{2}$	N (n _u + n _w)						
NLP Decomposition		n _w ³ N							
Step Determination	(n _u Ν) ^α	(n _u Ν) ^α	$((n_u + n_w)N)^{\beta}$						
Backsolve			$((n_u + n_w)N)$						
	$O((n_u N)^{\alpha} + N^2 n_w n_u^{\alpha} + N^3 n_w n_u^2)$	$ \begin{array}{l} O((n_{u}N)^{\alpha} + N n_{w}^{3} \\ + N n_{w} (n_{w} + n_{u})^{2}) \end{array} \end{array} $	$O((n_u + n_w)N)^{\beta}$						
				62					

Number of variables	
of which are fixed	1092
52 Number of constraints	1026
Number of lower bounds	78
41 Number of upper bounds	54
11 Number of nonzeros in Jacobian	4923
Number of nonzeros in Hessian	1470
	of which are fixed 52 Number of constraints 41 Number of lower bounds 11 Number of upper bounds 11 Number of nonzeros in Jacobian Number of nonzeros in Hessian

Process variable	Туре	Magnitude
Production rate change	Step	-15% Make a step change to the variable(s) used to set the process production rate so that the product flow leaving the stripper column base changes from 14,228 to 12,094 kg h ⁻¹
Reactor operating pressure change	Step	-60 kPa Make a step change so that the reactor operating pressure changes from 2805 to 2745 kPa
Purge gas composition of component B change	Step	+2% Make a step change so that the composition of component B in the gas purge changes from 13.82 to 15.82%

$$\min \Phi(z(t_f))$$
s.t. $\frac{dz}{dt} = f(z(t), u(t)), \quad z(t_0) = z_0$
 $h_E(z(t_f)) = 0$

Min $\Phi(z_f)$
s.t. $\sum_{j=0}^{K} \dot{\ell}_j(\tau_k) z_{ij} - h_i f(z_{ik}, u_{ik}) = 0$
 $k \in \{1, \dots, K\}, \ i \in \{1, \dots, N\}$
 $z_{i+1,0} = \sum_{j=0}^{K} \ell_j(1) z_{ij}, \quad i = 1, \dots, N-1$
 $z_f = \sum_{j=0}^{K} \ell_j(1) z_{Nj}, \quad z_{1,0} = z(t_0)$
 $h_E(z_f) = 0,$

$$\mathcal{L} = \Phi(z_{f}) + \eta_{E}^{T} h_{E}(z_{f}) + \sum_{i=1}^{N} \sum_{j=1}^{K} \left\{ \bar{\lambda}_{ij}^{T} \left[h_{i} f(z_{ij}, u_{ij}) - \sum_{k=0}^{K} \dot{\ell}_{k}(\tau_{j}) z_{ik} \right] \right\} \\ + \sum_{i=1}^{N-1} \bar{\nu}_{i}^{T} (z_{i+1,0} - \sum_{j=0}^{K} \ell_{j}(1) z_{ij}) + \bar{\nu}_{0}^{T} (z_{1,0} - z(t_{0})) + \bar{\nu}_{N}^{T} (z_{f} - \sum_{j=0}^{K} \ell_{j}(1) z_{N,j}). \\ \omega_{j} \lambda_{ij} = \bar{\lambda}_{ij}, \ \omega_{j} > 0 \\ \nabla_{z_{f}} \mathcal{L} = \nabla_{z} \Phi(z_{f}) + \nabla_{z} h_{E}(z_{f}) \eta_{E} + \bar{\nu}_{N} = 0 \\ \nabla_{z_{ij}} \mathcal{L} = \omega_{j} h_{i} \nabla_{z} f(z_{ij}, u_{ij}) \lambda_{ij} - \sum_{k=1}^{K} \omega_{k} \lambda_{ik} \dot{\ell}_{j}(\tau_{k}) - \bar{\nu}_{i} \ell_{j}(1) = 0 \\ \nabla_{u_{ij}} \mathcal{L} = \omega_{j} h_{i} \nabla_{u} f(z_{ij} u_{ij}) \lambda_{ij} = 0 \\ \nabla_{z_{i,0}} \mathcal{L} = \bar{\nu}_{i-1} - \bar{\nu}_{i} \ell_{0}(1) - \sum_{k=1}^{K} \omega_{k} \lambda_{ik} \dot{\ell}_{0}(\tau_{k}) = 0$$

$$\sum_{k=1}^{K} \omega_k \lambda_{ik} \dot{\ell}_j(\tau_k) = \int_0^1 \lambda_i(\tau) \dot{\ell}_j(\tau) d\tau$$
$$= \lambda_i(1)\ell_j(1) - \lambda_i(0)\ell_j(0) - \int_0^1 \dot{\lambda}_i(\tau)\ell_j(\tau) d\tau$$
$$= \lambda_i(1)\ell_j(1) - \lambda_i(0)\ell_j(0) - \sum_{k=1}^{K} \omega_k \dot{\lambda}_i(\tau_k)\ell_j(\tau_k)$$
$$\sum_{k=1}^{K} \omega_k \lambda_{ik} \dot{\ell}_j(\tau_k) = \lambda_i(1)\ell_j(1) - \omega_j \dot{\lambda}_i(\tau_j), \ j = 1, \dots, K$$
$$\sum_{k=1}^{K} \omega_k \lambda_{ik} \dot{\ell}_0(\tau_k) = \lambda_i(1)\ell_0(1) - \lambda_i(0)$$
Substituting these relations into (10.32b) and (10.32d) leads to:
$$\nabla - \zeta = \omega_i [h_i(\nabla, f(\tau_i, u_i))\lambda_i + \dot{\lambda}_i(\tau_i)] - (\bar{u}_i + \lambda_i(1))\ell_i(1) = 0$$

$$\nabla_{z_{ij}} \mathcal{L} = \omega_j [h_i (\nabla_z f(z_{ij}, u_{ij}) \lambda_{ij} + \dot{\lambda}_i(\tau_j)] - (\bar{\nu}_i + \lambda_i(1)) \ell_j(1) = 0$$

$$\nabla_{z_{i,0}} \mathcal{L} = \lambda_i(0) + \bar{\nu}_{i-1} - (\bar{\nu}_i + \lambda_i(1)) \ell_0(1) = 0$$

Consistent Optimality Conditions

$$\begin{aligned} \frac{dz}{dt} &= f(z, u), \quad z(t_0) = z_0 \\ h_E(z(t_f)) &= 0 \\ \frac{d\lambda}{dt} &= -\frac{\partial f(z, u)}{\partial z} \lambda(t) \\ \lambda(t_f) &= \frac{\partial \Phi(z(t_f))}{\partial z} + \frac{\partial h_E(z(t_f))}{\partial z} \eta_E \\ \frac{\partial f(z, u)}{\partial u} \lambda &= 0 \end{aligned}$$
$$\begin{aligned} \nabla_{z_f} \mathcal{L} &= \nabla_{z_f} \Phi + \nabla_{z_f} h_E \eta_E - \lambda_N(1) = 0 \\ \nabla_{z_{ij}} \mathcal{L} &= \omega_j [\dot{\lambda}_i(\tau_j) + h_i \nabla_z f(z_{ij}, u_{ij}) \lambda_{ij}] = 0 \\ \nabla_{u_{ij}} \mathcal{L} &= \omega_j h_i \nabla_u f(z_{ij}, u_{ij}) \lambda_{ij} = 0 \\ \nabla_{z_{i,0}} \mathcal{L} &= \lambda_{i-1}(1) - \lambda_i(0) = 0 \end{aligned}$$

EXAMPLE Elements of MFE Formulation

$$\begin{aligned}
\text{min} \quad \Phi(z_f) \\
\text{s.t.} \quad \sum_{j=0}^{K} \hat{\ell}_j(\tau_k) z_{ij} - h_i f(z_{ik}, y_{ik}, u_{ik}) = 0 \\
g(z_{ik}, y_{ik}, u_{ik}) = 0 \\
u_L \le u_{ik} \le u_U, \quad u_{ik} = \sigma(\tau_k, v_i) \\
k \in \{1, \dots, K\}, \ i \in \{1, \dots, N\} \\
z_{i+1,0} = \sum_{j=0}^{K} \hat{\ell}_j(1) z_{ij}, \quad i = 1, \dots, N-1 \\
z_f = \sum_{j=0}^{K} \hat{\ell}_j(1) z_{Nj}, \quad z_{1,0} = z(t_0) \\
\Psi(z_f) \le 0
\end{aligned}$$

Elements of MFE Formulation Chennical ENGINEERING min $\Phi(z_f)$ $\sum_{j=0}^{K} \dot{\ell}_j(\tau_k) z_{ij} - \frac{h_i}{h_i} f(z_{ik}, y_{ik}, u_{ik}) = 0$ s.t. Solution Strategy Concerns $g(z_{ik}, y_{ik}, u_{ik}) = 0$ What is N? Too few $u_L \leq u_{ik} \leq u_U, \quad u_{ik} = \sigma(\tau_k, v_i)$ elements leads to $k \in \{1, \ldots, K\}, i \in \{1, \ldots, N\}$ $z_{i+1,0} = \sum_{j=0}^{K} \ell_j(1) z_{ij}, \quad i = 1, \dots, N-1$ • Error constraints are nonlinear, hard to $z_f = \sum_{j=0}^{K} \ell_j(1) z_{Nj}, \quad z_{1,0} = z(t_0)$ converge? • When/how should $\psi(z_f) \leq 0$ elements be added? $-\varepsilon \leq \overline{C} T_i(t_{i,nc}) \leq \varepsilon$ Termination criterion for $0 \leq h_i \leq t_f, \sum_{i=1}^N h_i = t_f.$ an optimal solution? 122

· "Multiple shooting version" for unstable forward modes

$$\begin{split} \min_{\bar{H},h_i,w_j} & \Phi(z_f(h)) + \rho \sum_{j=1}^{NK} w_j \\ & -\varepsilon \leq \bar{C} \, T_i(h) \leq \varepsilon \\ & H_{(i-1)K+k}(h) = \frac{\bar{\lambda}_{ik}(h)}{\omega_k h_i} \sum_{j=}^{K} \dot{\ell}_j(\tau_k) z_{ij}(h) \\ & -(\varepsilon_h + w_j) \leq H_j - \bar{H} \leq (\varepsilon_h + w_j), \, w_j \geq 0, \, j = 1, \dots NK \\ & 0 \leq h_i \leq h_{max}, \, \sum_{i=1}^N h_i = t_f, \end{split}$$

Few decision variables (2N+1)

- · Manipulates element mesh to satisfy state error constraints
- · Allows for optimal placement of break points in controls
- · Enforces constant Hamiltonian over time
- User-specified tolerances: ε , ε_h
- · Generic formulation fully independent of DAEs
- Sensitivities for z(h), $\lambda(h)$, T(h) obtained from Inner Problem
- Solved with L-BFGS version of IPOPT
- Remove zero elements; bisect and augment maximum elements

References
F. Allgöwer and A. Zheng (eds.), Nonlinear Model Predictive Control, Birkhaeuser, Basel (2000)
R. D. Bartusiak, "NLMPC: A platform for optimal control of feed- or product-flexible manufacturing," in <i>Nonlinear Model Predictive Control 05</i> , Allgower, Findeisen, Biegler (eds.), Springer (2007)
Biegler Homepage: http://dynopt.cheme.cmu.edu/papers.htm
Biegler, L. T., Nonlinear Programming: Concepts, Algorithms and Applications to Chemical Engineering, SIAM (2010)
Forbes, J. F. and Marlin, T. E Model Accuracy for Economic Optimizing Controllers: The Bias Update Case. <i>Ind.Eng.Chem.Res.</i> 33, 1919-1929. 1994
Forbes, J. F. and Marlin, T. E "Design Cost: A Systematic Approach to Technology Selection for Model-Based Real-Time Optimization Systems," <i>Computers Chem.Engng.</i> 20[6/7], 717-734. 1996
M. Grötschel, S. Krumke, J. Rambau (eds.), Online Optimization of Large Systems, Springer, Berlin (2001)
K. Naidoo, J. Guiver, P. Turner, M. Keenan, M. Harmse "Experiences with Nonlinear MPC in Polymer Manufacturing," in <i>Nonlinear Model Predictive Control 05,</i> Allgower, Findeisen, Biegler (eds.), Springer, to appear
Yip, W. S. and Marlin, T. E. "Multiple Data Sets for Model Updating in Real-Time OperationsOptimization," Computers Chem.Engng. 26[10], 1345-1362. 2002.42

See also Biegler homepage

