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     tf, final time 
     u, control variables 
     p, time independent parameters 

     t,  time 
     z, differential variables 
     y, algebraic variables 

Dynamic Optimization Problem   

        min       Φ(z(tf))  
s.t. dz(t)/dt = f(z(t), y(t), u(t), t, p),   
                       z(0) = z0 

               0 = g(z(t), y(t), u(t), t, p) 

               zl ≤ z(t) ≤ zu 

               yl ≤ y(t) ≤ yu 

               ul ≤ u(t) ≤ uu 

               pl ≤  p  ≤ pu 
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DAE Models in Process Engineering 
Differential Equations 

• Conservation Laws (Mass, Energy, Momentum) 
 
Algebraic Equations 

• Constitutive Equations, Equilibrium (physical properties, 
hydraulics, rate laws) 
• Semi-explicit form 
• Assume to be index one (i.e., algebraic variables can be solved 
uniquely by algebraic equations) 
• If not, DAE can be reformulated to index one (see Ascher and 
Petzold) 

 
Characteristics 

• Large-scale models – not easily scaled 
• Sparse but no regular structure 
• Direct linear solvers widely used 
• Coarse-grained decomposition of linear algebra 
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Catalytic Cracking of Gasoil (Tjoa, 1991)	

 

	

	

 
 
 
 

	

number of states and ODEs: 2 

number of parameters:3 

no control profiles 

constraints: pL ≤ p ≤ pU 

	

Objective Function: Ordinary Least Squares	

 

(p1, p2, p3)0 = (6, 4, 1) 

(p1, p2, p3)* = (11.95, 7.99, 2.02) 

(p1, p2, p3)true = (12, 8, 2)	
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Batch Distillation Multi-product Operating Policies 

 
• Run between distillation batches 
• Treat as boundary value optimization problem 

• When to switch from A to off-cut to B? 
• How much off-cut to recycle? 
• Reflux? 
• Boil-up Rate?   
• Operating Time? 

A B 
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Nonlinear Model Predictive Control (NMPC) 

Process 

NMPC Controller 
 
 
 

d : disturbances 
z : differential states 
y : algebraic states 

u : manipulated 
     variables 

ysp : set points 
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NMPC Subproblem 

Why NMPC? 
  Track a profile 
  Severe nonlinear dynamics (e.g, 

sign changes in gains) 
  Operate process over wide range 

(e.g., startup and shutdown) 

Model Updater 
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Optimization of dynamic batch process operation resulting from reactor and 
distillation column 	

	
DAE models: 

z' = f(z, y, u, p) 	
 
g(z, y, u, p) = 0 	
 

	

Number of states and DAEs: 	
nz + ny 

Parameters for equipment design 	

(reactor, column) 

nu control profiles for optimal operation 

	

Constraints: 	
uL ≤ u(t) ≤ uU 	
 	
zL ≤ z(t) ≤ zU 

	
 	
 	
 	
yL ≤ y(t) ≤ yU 	
 	
pL ≤ p ≤ pU	

Objective Function: amortized economic function at end of cycle time tf 

optimal reactor temperature policy         optimal column reflux ratio  

Batch Process Optimization 
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Reactor Optimization Example 
	

The cracking furnace is an important example in the olefin production industry, where various 
hydrocarbon feedstocks react. Consider a simplified model for ethane cracking (Chen et al., 
1996). The objective is to find an optimal profile for the heat flux along the reactor in order to 
maximize the production of ethylene. 	

	


Max F(C2H4)exit	

s.t. DAE Model	


        Texit ≤ 1180 K	

 

The reaction system includes six molecules, three free radicals, and seven reactions. The 
model also includes the heat balance and the pressure drop equation. This gives a total of 
eleven differential equations. 

Concentration and Heat Addition Profile 

���
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Dynamic Optimization Approaches   

DAE Optimization Problem 

Multiple Shooting      

Embeds DAE Solvers/Sensitivity Handles instabilities 

Sequential Approach 

     Sullivan (1977), Vassiliadis (1994) Discretize 
controls 

Full Discretization 

Large/Sparse NLP 

Apply a NLP solver 
     Efficient for constrained problems 

Simultaneous Approach 

Large NLP 

Discretize all 
variables 

Indirect/Variational  

     Pontryagin(1962) 

     Inefficient for constrained problems 

 Bock and coworkers 
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Dynamic Optimization Approaches   

DAE Optimization Problem 

Sequential Approach 

     Vassiliadis(1994) Discretize 
controls 

Variational Approach 

     Pontryagin(1962) 

     Inefficient for constrained 
problems 

Apply a NLP solver 
     Efficient for constrained problems 
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Sequential Approaches - Parameter Optimization 
 

Consider a simpler problem without control profiles: 	


e.g., equipment design with DAE models - reactors, absorbers, heat exchangers	


Min 	
 Φ (z(tf))	


          dz/dt = f(z, p), z (0) = z0	


	
g(z(tf)) ≤ 0, h(z(tf)) = 0	


By treating the ODE model as a "black-box," a sequential algorithm can be 
constructed that can be treated as a nonlinear program.	


Task:  How are gradients calculated for optimizer?	


ODE  
Model 

NLP   
Solver 

Gradient 
Calculation 

z(t), φ(z(tf)) 	

g(z(tf)), h(z(tf))	


p 
dφ/dp 	


dg/dp, dh/dp	
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Gradient Calculation 

Perturbation	


Sensitivity Equations	


Adjoint Equations	


Perturbation	


Calculate approximate gradient by solving ODE model  (np + 1) times	


Let ψ = Φ, g and h (at t = tf)	


	
 	
dψ/dpi ~ {ψ (pi + ∆pi) - ψ (pi)}/ ∆pi	


- Very simple to set up	


- Leads to poor performance of optimizer and poor detection of optimum 
unless roundoff error (O(1/∆pi) and truncation error (O(∆pi)) are small. 	


- Work is proportional to np (expensive)	
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Direct Sensitivity 

From ODE model:	


 	


	


	


	
 	
 	
     	


	
 	
 	
 	
(nz x np sensitivity equations)	


• z and si , i = 1,…np, can be integrated forward simultaneously.	


• for implicit ODE solvers, si(t) can be carried forward in time after converging on z	


• linear sensitivity equations exploited in ODESSA, DASSAC, DASPK, DSL48s and a 
number of other DAE solvers	


Sensitivity equations are efficient for problems with many more constraints than 
parameter variables (1 + ng + nh > np)	
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Example:  Sensitivity Equations 
 

!z1 = z1
2 + z2

2

!z2 = z1 z2 + z1 pb
z1(0) = 5, z2 (0) = pa
s(t)a, j = ∂z(t) j /∂pa,   s(t)b, j = ∂z(t) j /∂pb, j =1, 2

!sa,1 = 2z1sa,1 + 2z2sa,2

!sa,2 = z1sa,2 + z2sa,1 + sa,1pb
sa,1(0) = 0, sa,2 (0) =1

!sb,1 = 2z1sb,1 + 2z2sb,2

!sb,2 = z1 + z1sb,2 + z2sb,1 + sb,1pb
sb,1(0) = 0, sb,2 (0) = 0
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Adjoint Sensitivity  
 

Adjoint or Dual approach to sensitivity	


Adjoin model to objective function or constraint 	


(ψ = Φ,g or h)	


	
 	
	


	
 	
 	
(λ(t)) serve as multipliers on ODE's)	


Now, integrate by parts	


	


	


	


	


	


Take variations and  find  dψ/dp subject to feasibility of ODE's	


Now, set all terms not in dp to zero.	
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Adjoint System 
 

Integrate model equations forward	


Integrate adjoint equations backward and evaluate integral and sensitivities.  	


Notes:	


• nz (ng + nh + 1) adjoint equations must be solved backward (one for each 
objective and constraint function)	


• for implicit ODE solvers, profiles (and even matrices) can be stored and 
carried backward after solving forward for z as in DASPK/Adjoint (Li and 
Petzold) and CVODES (Serban and Hindmarsh)	


• more efficient on problems where: np > 1 + ng + nh	
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Example:  Adjoint Equations 
 

€ 

′ z 1 = z1

2
+ z2

2

′ z 2 = z1 z2 + z1 pb

z1(0) = 5,z2 (0) = pa

Form  λT
f (z, p,t) = λ1(z1

2
+ z2

2
) + λ2(z1 z2 + z1 pb )

′ λ = −
∂f

∂z
λ(t),  λ(t f ) =

∂ψ(z(t f ))

∂z(t f )

dψ

dp
=
∂z0( p)

∂p
λ(0) +

∂f

∂p
λ(t)

 

 
 

 

 
  dt

0

t f

∫

then becomes :

′ λ 1 = −2λ1z1 − λ2(z2 + pb ),   λ1(t f ) =
∂ψ(t f )

∂z1(t f )

′ λ 2 = −2λ1z2 − λ2z1 ,   λ2(t f ) =
∂ψ(t f )

∂z2(t f )

dψ(t f )

dpa

= λ2(0)

dψ(t f )

dpb

= λ2(t)
0

t f

∫ z1(t)dt
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A + 3B --> C + 3D
L

Ts

TR

TP

3:1 B/A 
383 K

TP  =  specified product temperature 
TR  =  reactor inlet, reference temperature 
L    =  reactor length 
Ts   =  steam sink temperature 
q(t) =  reactor conversion profile	

T(t) = normalized reactor temperature profile	


Cases considered: 

• 	
Hot Spot - no state variable constraints 

• 	
Hot Spot with T(t) ≤ 1.45	


Example:  Hot Spot Reactor 
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Method: SQP (perturbation derivatives)	

 

	
 	
 	
L(norm)  TR(K) 	
TS(K) 	
TP(K) 

Initial:	
 	
 	
1.0 	
462.23 	
425.26 	
250 

Optimal:	
 	
1.25 	
500 	
470.1 	
188.4 

13 SQP iterations / 2.67 CPU min. (µVax II) 

Constrained Temperature Case (T ≤ 1.45): no solution for sequential method 	

(without constraint reformulation) 	


Hot Spot Reactor: Unconstrained Case 
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Variable Final Time  (Miele, 1980)	

 

Define 	
   t = pn+1 τ,  0 ≤ τ ≤ 1, pn+1 = tf	

 

Let  dz/dt = (1/ pn+1) dz/dτ = f(z, p) ⇒  dz/dτ = (pn+1) f(z, p)	

	

 

Converting Path Constraints to Final Time 

	

Define measure of infeasibility as a new variable, znz+1(t) (Sargent & Sullivan, 1977): 

	
 

Tricks to generalize classes of problems 
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Profile Optimization - (Optimal Control) 
 

Optimal Feed Strategy (Schedule) in Batch Reactor 	


Optimal Startup and Shutdown Policy	


Optimal Control of Transients and Upsets	


	


Sequential Approach: Approximate control profile through parameters (piecewise 
constant, linear, polynomial, etc.)	


Apply NLP to discretization as with parametric optimization	


Obtain gradients through adjoints (Hasdorff; Sargent and Sullivan; Goh and Teo) or 
sensitivity equations (Vassiliadis, Pantelides and Sargent; Gill, Petzold et al.)	


	


Variational (Indirect) approach: Apply optimality conditions and solve as boundary 
value problem	
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Optimality Conditions (Bound constraints on u(t))	

 

Min 	
φ(z(tf)) 

s.t.   dz/dt = f(z, u), z (0) = z0 
g (z(tf)) ≤ 0 

h (z(tf)) = 0 

a ≤ u(t) ≤ b	

 

Form Lagrange function - adjoin objective function and constraints: 

	

���
 

Derivation of Variational Conditions  
Indirect Approach 

φ = φ(z(t f ))+ g(z(t f ))
Tµ + h(z(t f ))

T v

+ λT ( f (z,u)− z)+αa
T (a−u(t))+

0

t f∫ αb
T (u(t)− b) dt

Integrate by parts:
φ = φ(z(t f ))+ g(z(t f ))

Tµ + h(z(t f ))
T v+λT (0)z(0)−λT (t f )z(t f )

+ λT z+λT f (z,u)+αa
T (a−u(t))+

0

t f∫ αb
T (u(t)− b) dt

24 

At optimum, dφ ≥ 0.  Since u is the control variable, let all other terms vanish. 
	

⇒ 	
δz(tf):	
 

	
 	
δz(0): 	
λ(0) = 0  (if z(0) is not specified) 

	
 	
	

	
 	
δz(t): 	
 

���
 

Derivation of Variational Conditions 

λ = −∂f (z,u)
∂z
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'(
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0

t f∫  dt ≥ 0

φ = φ(z(t f ))+ g(z(t f ))
Tµ + h(z(t f ))

T v+λT (0)z(0)−λT (t f )z(t f )

+ λT z+λT f (z,u)+αa
T (a−u(t))+

0

t f∫ αb
T (u(t)− b) dt

λ(t f ) =
∂φ
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+
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#
$

%
&
't f



13 

25 

λ(t f ) =
∂φ
∂z

+
∂g
∂z
µ +

∂h
∂z
γ

"
#
$

%
&
't f

∂f
∂u
λ =

∂H
∂u
=0

∂H
∂u

=
∂ f
∂u

λ =αa −αb

∂H
∂u

= −αb ≤ 0

∂H
∂u

=αa ≥ 0

	
 	
(λ(0) = 0, if z(0) is not specified) 	
 

 

For u not at bound: 	
 

Upper bound, u(t) = b,  

Lower bound, u(t) = a,  

���
 

Derivation of Variational Conditions 
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Car Problem 
Travel a fixed distance (rest-to-rest) in minimum time. 
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tf

u(t)

b

a

ts

x1(t) =
1/ 2 bt2,  t <  ts
1/ 2 bt2 + (a− b) t - ts( )2( ),  t ≥ ts

#
$
%

&%

x2 (t) =
bt,  t <  ts
bts + a t - ts( )( ),  t ≥ ts

#
$
%

&%

Optimal Profile 
From state equations:	

 

Apply boundary conditions at t = tf: 

• Problem is linear in u(t) and x(t) – has 
"bang-bang" character.	


• For nonlinear and larger problems, the 
Euler-Lagrange (variational) conditions 
are solved as boundary value problems.	


Car Problem - Variational Solution 

x1(t) =1/ 2 bt f
2 + (a− b) t f - ts( )

2( ) = L
x2 (t) = bts + a t f - ts( )( ) = 0

and solving for two unknowns leads to:
ts = (2L / (b− b2 / a))1/2 ,   t f = (1− a / b)ts

28 

Batch Reactor 
A B C

1 2

T
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Batch reactor – Optimal temperature profile  
Maximize yield of B after one hour's operation by manipulating transformed 
temperature, u(t). 	

 

	
     	
 
	
 	
 	
 
	
	

	
 	
 	
	


	

Optimality conditions:	

	

	

	

	

	

 

	

Cases Considered 

1. 	
NLP Approach - piecewise constant and linear profiles. 
2. 	
Indirect Approach – solve conditions as boundary value problem (BVP)	
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λ
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u(t )
B,  A ⇒

u(t )2 /2
C

30 

Results: Optimum (B/A):  0.57354 
Solved directly from Euler-Lagrange Equations 

Batch Reactor Optimal Temperature Program  
Indirect Approach (analytical solution)  
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Batch Reactor Optimal Temperature Program  
Piecewise Constant (SNOPT) 

NT  Obj.             Iters.     Fcn Evals 
  5  0.57177   25    52 
10          0.57305   47    93 
20  0.57343   81  163 
50          0.57352               131          227 
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Dynamic Optimization - Sequential Strategies 
 

Small NLP problem, O(np+nu) (large-scale NLP solver not required) 	

•  Use NPSOL, NLPQL, etc. 	

•  Second derivatives difficult to get	


Repeated solution of DAE model and sensitivity/adjoint equations, scales with 
nz and np	


•  Dominant computational cost	

•  May fail at intermediate points	


Sequential optimization is not recommended for unstable systems. State 
variables blow up at intermediate iterations for control variables and 
parameters.	


Discretize control profiles to parameters (at what level?)	


Path constraints are difficult to handle exactly for NLP approach	
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Instabilities in DAE Models 
This example cannot be solved with sequential methods (Bock, 1983):	


dy1/dt = y2	


dy2/dt = τ2 y1 - (π2 + τ2) sin (π t)	


The characteristic solution to these equations is given by:	


y1(t) = sin (π t) + c1 exp(-τ t) + c2 exp(τ t)	


y2 (t) = π cos (π t) - c1 τ exp(- τ t) + c2 τ exp(τ t) 	


	


Both c1 and c2 can be set to zero by either of the following equivalent 
conditions:	


IVP: y1(0) = 0, y2 (0) = π	


BVP: y1(0) = 0, y1(1) = 0	


	


34 

IVP Solution 
If we now add round-off errors e1 and e2 to the IVP and BVP conditions, we 
see significant differences in the sensitivities of the solutions. 	


For the IVP case, the sensitivity to the analytic  solution profile is seen by 
large changes in the profiles y1(t) and y2(t) given by:	


	


y1(t) = sin (π t) + (e1 - e2/τ) exp(-τ t)/2  	


+(e1 + e2/τ) exp(τ t)/2	


	


y2 (t) = π cos (π t) -  (τ e1 - e2) exp(-τ t)/2 	


+ (τ e1 + e2) exp(τ t)/2	


	


Therefore, even if e1 and e2 are at the level of machine precision (< 10-13), a 
large value of τ and t will lead to unbounded solution profiles. 	
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BVP Solution 
On the other hand, for the boundary value problem, the errors 
affect the analytic solution profiles in the following way: 	


y1(t) = sin (π t) + [e1 exp(τ)- e2] exp(-τ t)/[exp(τ) - exp(- τ)] 	


+ [e1 exp(- τ) -  e2] exp(τ t)/[exp(τ) - exp(- τ)] 	


y2(t) = π cos (π t) – τ [e1 exp(τ)- e2] exp(-τ t)/[exp(τ) - exp(- τ)] 	


+ τ [e1 exp(-τ) -  e2] exp(τ t)/[exp(τ) - exp(- τ)] 	


Errors in these profiles never exceed τ (e1 + e2); as a result a 
solution to the BVP is readily obtained.	


36 

BVP and IVP Profiles 

e1, e2 = 10-9	


Linear BVP solves easily	


IVP blows up before midpoint	
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Dynamic Optimization Approaches   

DAE Optimization Problem 

Multiple Shooting 

Sequential Approach 

     Vassiliadis(1994) 

Can not handle instabilities properly 
Small NLP 

Handles instabilities Larger NLP 

Discretize some 
state variables 

Discretize 
controls 

Variational Approach 

     Pontryagin(1962) 

     Inefficient for constrained 
problems 

Apply a NLP solver 
     Efficient for constrained problems 

38 

Multiple Shooting for Dynamic Optimization 

Divide time domain into separate regions 

 

 

 

 

 

 

 

Integrate DAEs state equations over each region j 

Evaluate sensitivities in each region j as in sequential approach wrt uij, p and zj 

Impose matching constraints in NLP for state variables over each region 

Variables in NLP due to control profiles (uij, p) and initial conditions (zj) in each region 
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Multiple Shooting 
Nonlinear Programming Problem   

uL

x

xxx

xc

xf
n

≤≤

=

ℜ∈

        

0)(s.t    

)(min

( ))(),(  min
,,

ffpu
tytz

ji

ψ

( )   z)z(tpuyzf
dt
dz

jjji ==⎟
⎠

⎞
⎜
⎝

⎛    ,,,, ,

( ) 0,ji, =pz,y,ug

ul

u
iji

l
i

u
kkjij

l
k

u
kkjij

l
k

jjjij

ppp

uuu

ytpuzyy

ztpuzzz

ztpuzz

≤≤

≤≤

≤≤

≤≤

=− ++

,

,

,

11,

),,,(

),,,(

0),,,(
s.t.  

(0)0 zz o = Solved Implicitly 

40 

BVP Problem Decomposition 

Consider: Jacobian of Constraint Matrix for NLP (Aj = -I,  Bj =  dzj+1/dzj)	


• bound unstable modes with boundary conditions (dichotomy)	


• done implicitly by determining stable pivot sequences in multiple shooting	


• well-conditioned problem implies dichotomy in BVP problem (deHoog and Mattheij)	


Bock Problem (with τ = 50)	


• Sequential approach blows up (starting within 10-9 of optimum)	


• Multiple Shooting optimization requires 4 SQP iterations	


B1 A1

A2

A3

A4

AN

B2

B3

B4

BN

IC

FC
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Dynamic Optimization – Multiple Shooting Strategies 
 

Larger NLP problem O(np+NE (nu+nz)) 	

•  Use SNOPT, MINOS, etc.	

•  Second derivatives difficult to get	


Repeated solution of DAE model and sensitivity/adjoint equations, scales with nz 
and np	


•  Dominant computational cost	

•  May fail at intermediate points	


Multiple shooting can deal with unstable systems with sufficient time elements. 	


Discretize control profiles to parameters (at what level?)	


Path constraints are difficult to handle exactly for NLP approach	


Block elements for each element (Bj =  dzj+1/dzj) are dense!	


Extensive developments and applications by Bock and coworkers using MUSCOD 
code	


	


42 

Dynamic Optimization Approaches   

DAE Optimization Problem 

Multiple Shooting      

Embeds DAE Solvers/Sensitivity Handles instabilities 

Sequential Approach 

     Sullivan (1977), Vassiliadis (1994) Discretize 
controls 

Full Discretization 

Large/Sparse NLP 

Apply a NLP solver 
     Efficient for constrained problems 

Simultaneous Approach 

Large NLP 

Discretize all 
variables 

Indirect/Variational  

     Pontryagin(1962) 

     Inefficient for constrained problems 

 Bock and coworkers 
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Nonlinear Dynamic 
Optimization Problem  

Collocation on 
finite Elements 

Continuous variables 

Nonlinear Programming 
Problem (NLP) Discretized variables 

Nonlinear Programming Formulation  
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Discretization of Differential Equations  
Orthogonal Collocation 

Given: dz/dt = f(z, u, p), z(0)=given	

	

Approximate  z and u by Lagrange interpolation polynomials (order 
K+1 and K, respectively) with interpolation points, tk 
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Collocation Points Using  
Legendre and Radau Roots 

46 

Collocation Example 1  
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Collocation - Example 1  
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z(t)

zN+1(t)
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Min 	
φ(z(tf)) 

   s.t. 	
z' = f(z, u, p), z(0)=z0 	
 
	
 	
 	
g(z(t), u(t), p) ≤ 0 

	
 	
 	
h(z(t), u(t), p) = 0	

 

Discretize as Nonlinear Program 

How accurate is approximation  

Converted Optimal Control Problem 
Using Collocation 
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Results of Optimal Temperature Program  
Batch Reactor (Revisited) 

 

Results - NLP with Orthogonal Collocation 

Optimum B/A - 0.5728 

# of ODE Solutions - 0.7   (Equivalent) 
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to tf 

×	
 ×	
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Simple Model -  Example 2 

52 
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Nonlinear Programming Problem   
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Finite elements, hi, can also be variable to 
determine break points for u(t). 	


Add  hu ≥  hi ≥ 0, Σ hi=tf	


Can add constraints g(h, z, u) ≤ ε for 
approximation error	
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A + 3B --> C + 3D
L

Ts

TR

TP

3:1 B/A 
383 K

TP  =  specified product temperature 
TR  =  reactor inlet, reference temperature 
L    =  reactor length 
Ts   =  steam sink temperature 
q(t) =  reactor conversion profile	

T(t) = normalized reactor temperature profile	


Cases considered: 

• 	
Hot Spot - no state variable constraints 

• 	
Hot Spot with T(t) ≤ 1.45	


Hot Spot Reactor Revisited 
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Base Case Simulation 
 
Method: OCFE at initial point with 6 equally spaced elements 

	
 	
 	
L(norm)  TR(K) 	
TS(K) 	
TP(K) 

Base Case: 	
1.0 	
462.23 	
425.26 	
250 

 

���
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Unconstrained Case 
Method: 	
OCFE combined formulation with rSQP  

	
 	
identical to integrated profiles at optimum  
	
 	
 	
L(norm)  TR(K) 	
TS(K) 	
TP(K) 

Initial: 	
 	
 	
1.0 	
462.23 	
425.26 	
250 

Optimal: 	
 	
1.25 	
500 	
470.1 	
188.4 

	

123 CPU s. (µVax II) 

φ* = -171.5 
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Temperature Constrained Case 
 T(t)  ≤ 1.45 

	

Method: 	
OCFE combined formulation with rSQP, 	
 	
 	
	

identical to integrated profiles at optimum  

	
 	
 	
L(norm)     TR(K) 	
 TS(K) 	
TP(K) 

Initial: 	
 	
 	
1.0 	
462.23       425.26 	
250	

Optimal: 	
 	
1.25 	
500 	
450.5 	
232.1	

	

57 CPU s. (µVax II), φ* = -148.5 
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Theoretical Properties of Simultaneous Method 
 
A.  Stability and Accuracy of Orthogonal Collocation 
	

• 	
Equivalent to performing a fully implicit Runge-Kutta integration of 	

        the DAE models at Gaussian (Radau) points 
• 	
2K order (2K-1) method which uses K collocation points 
• 	
Algebraically stable (i.e., possesses A, B, AN and BN stability)	

 
B.  Analysis of the Optimality Conditions 
	

• 	
An equivalence has been established between the KKT	

       conditions of NLP and the variational necessary conditions 
• 	
Rates of convergence have been established for the NLP method	


60 

Dynamic Optimization Engines  

Evolution of NLP Solvers: 

è  for dynamic optimization, control and estimation 

  

E.g., NPSOL and Sequential Dynamic  
Optimization - over 100 variables and constraints   
E.g, SNOPT and Multiple Shooting - over 100 
d.f.s but over 105 variables and constraints 
E.g., IPOPT - Simultaneous dynamic optimization 
over 1 000 000 variables and constraints 

SQP rSQP Full-space 
Barrier 

Object Oriented Codes tailored to structure, sparse linear 
algebra and computer architecture (e.g., IPOPT 3.x) 
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Hierarchy of Nonlinear Programming for 
Dynamic Optimization Formulations  

Variables/Constraints 
102 104 106 

Black Box 

Direct Sensitivities 
Single Shooting 

Multiple Shooting 
Adjoint Sensitivity 

Simultaneous  
Full Space Formulation 

100 

SQP 

rSQP 

Interior Point 

DFO 

C
om

putational E
fficiency 

62 

Comparison of Computational Complexity 
(α ∈ [2, 3], β ∈ [1, 2], nw, nu - assume Nm = O(N)) 

Single 
Shooting 

Multiple 
Shooting  

Simultaneous 

DAE Integration nw
β N nw

β N --- 

Sensitivity (nw N) (nu N) (nw N) (nu + nw) N (nu + nw) 

Exact Hessian (nw N) (nu N)2 (nw N) (nu + nw)2 N (nu + nw) 

NLP Decomposition --- nw
3 N --- 

Step Determination (nu N)α	
 (nu N)α ((nu + nw)N)β	


Backsolve --- --- ((nu + nw)N) 

O((nuN)α + N2nwnu  
+ N3nwnu

2) 
O((nuN)α + N nw

3  
+ N nw (nw +nu)2) 

O((nu + nw)N)β	
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Case Studies 
• 	
Reactor - Based Flowsheets 
• 	
Fed-Batch Penicillin Fermenter 
• 	
Temperature Profiles for Batch Reactors 
• 	
Parameter Estimation of Batch Data 
• 	
Synthesis of Reactor Networks 
• 	
Batch Crystallization Temperature Profiles 
• 	
Grade Transition for LDPE Process 
• 	
Ramping for Continuous Columns 
• 	
Reflux Profiles for Batch Distillation and Column Design	

•          Source Detection for Municipal Water Networks	

•          Air Traffic Conflict Resolution	

•          Satellite Trajectories in Astronautics	

• 	
Batch Process Integration	

•          Optimization of Simulated Moving Beds 

Simultaneous DAE Optimization 

64 

Production of High Impact Polystyrene (HIPS) 
Startup and Transition Policies (Flores et al., 2005a) 

 

Catalyst  

Monomer,  
Transfer/Term. 
agents 

Coolant 

Polymer 
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Polymer Reactor - Unstable Steady State 

CSTR steady state cannot be maintained without stabilization  

Drift to another steady state with sequential approach  

66 

Phase Diagram of Steady States 
 

Transitions considered among all steady states 

Bifurcation Parameter 

Process  
State 
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Phase Diagram of Steady States 
 

Transitions considered among all steady states 

68 

Startup to Unstable Steady State 
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HIPS Process Plant (Flores et al., 2005b) 

• Many grade transitions considered with stable/unstable pairs 

• 1-6 CPU min (P4) with IPOPT 

• Study shows benefit for sequence of grade changes to 
achieve wide range of grade transitions.  

70 

Simulated Moving Beds 
(Kawajiri, B., 2005, 2006) 

Sequential batch process,  

making use of difference in affinity to the adsorbent 

Column, packed with adsorbent

1. Initial state
Column is filled with desorbent

Desorbent Desorbent

2. Feed
Feed is supplied at the end

Desorbent

3. Elution
Push the feed to the other end
Two components separates as moving toward the end

(Difference in affinity)

Glucose product

4, Recovery of 1st  product

Fructose product

5.  Recovery of 2nd product
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Cyclic Steady State 
Step 

Liquid Flow

FeedDesorbent

Extract Raffinate

1

Liquid Flow

FeedDesorbent

Extract Raffinate

2

Liquid Flow

FeedDesorbent

Extract Raffinate

3

Liquid Flow

FeedDesorbent

Extract Raffinate

4

Liquid Flow

FeedDesorbent

Extract Raffinate

5

Liquid Flow

FeedDesorbent

Extract Raffinate

6

Liquid Flow

FeedDesorbent

ExtractRaffinate

7

Liquid Flow

FeedDesorbent

ExtractRaffinate

8

Liquid Flow

FeedDesorbent

ExtractRaffinate

9

Liquid Flow

FeedDesorbent

ExtractRaffinate

10

Liquid Flow

Feed Desorbent

ExtractRaffinate

11

Liquid Flow

Feed Desorbent

ExtractRaffinate

12

Liquid Flow

Feed Desorbent

ExtractRaffinate

13

Liquid Flow

Feed Desorbent

ExtractRaffinate

14

Liquid Flow

Feed Desorbent

Extract Raffinate

15

Liquid Flow

Feed Desorbent

Extract Raffinate

16

Liquid Flow

FeedDesorbent

Extract Raffinate

17

SMB Applications 
•  Petrochemical (Xylene isomers) 
•  Sugars (Fructose/glucose separation) è High fructose corn syrup 
•  Pharmaceuticals (Enantiomeric separation) 

 Separate ‘good’ from ‘bad’ compounds based on chirality 
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Simulated Moving Bed 
 

Direction of liquid flow
and valve switching

Feed

Raffinate

Desorbent

Extract
Repeats exactly 

 the same operation 

(Symmetric) 

Feed Raffinate

DesorbentExtract

Operating parameters: 

4 Zone velocities 

+ 

Step time 

Zone 4 Zone 2

Zone 3

Zone 1

Feed

RaffinateDesorbent

Extract
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Formulation of Optimization Problem 
 

Zone velocities Step time 

(Maximize average feed velocity) 

Bounds on liquid velocities 

Product requirements 

CSS constraint SMB model 

€ 

Ci(x, t0) = Ci+1(x,t0 + tstep )

qi(x, t0) = qi+1(x,t0 + tstep )

74 

Treatment of PDEs: Single Discretization 

t 

x 

1. PDE is discretized only in x ( turn a PDE into ODEs) 

2. Set of ODEs are Integrated 

ODE (Handled by integrator) PDE 

C(xi,t) 

t 

Step size determined 
as integration proceeds 
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Treatment of PDEs: Simultaneous Approach 

t 

x 

(Orthogonal Collocation on Finite Elements) 

k=1 
k=2 
k=3 

Algebraic equations  PDE 

Step size is 
determined a priori 

t 
Huge number of variables 
(handled by optimizer) 

C(xi,t) 

76 

Comparison of two approaches 

CPU Time* 

1.53 min Simultaneous Approach 

# of iteration 

47 

Shooting and Simultaneous 
methods find the same optimal 

solution 

# of variables 

33999 Implemented on AMPL, solved using IPOPT 

*On Pentium IV 2.8GHz 

Shooting Approach 111.8 min 49 644 
Implemented on gPROMS, solved using SRQPD (89% spent by integrator) 

(Linear isotherm, fructose/glucose separation) 

Initial feed velocity: 0.01 m/h 
 
 
 
Optimal feed velocity: 0.52 m/h 

Optimization 
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Superstructure for Zone Configuration  

uD1 uF1

uE1 uE2uR1

uF2

uE3uR2

uF3

uE4uR3

uF4

uE5uR4

uF5

uE6uR5 uR6

All velocities are constant 

8 columns, multiple streams 

Repeat exactly same stream policies for each step  

Constraints: 

78 

Allows straightforward zone configuration optimization 

2-2-2-2 

5 6

2 1

Feed Raffinate

DesorbentExtract

3

4 7

8

Superstructure configuration AVOIDS enumerating all configurations 

CPU Time*: 1.73 min 

Optimal feed velocity: 1.158 m/h 
*On Xeon 3.2GHz 

Optimal : 
 1-3-3-1 

3

4

8

2

5 6 7

1

Feed Raffinate

DesorbentExtract

Optimal feed velocity: 0.906 m/h 

4

5

8
3

6 7

1

Feed Raffinate

Extract

2

Desorbent

1-4-2-1 

1.052 m/h 

8

4

6 7

3

Feed Raffinate

Extract Desorbent
2 1

5

0.957 m/h 

3-2-2-1 

# of columns   8  10  12  14 

# of zone configurations  35  84  165  286 

Too many configurations to enumerate! 
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l  Standard SMB 

Nonstandard SMB: Addressed by  
Extended Superstructure NLP  

l  Three Zone 
(Circulation loop is cut open) 

l  VARICOL 
(Asynchronous switching) 
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Optimal Operating Scheme:  
Result of Superstructure Optimization 

S tanda rd	  
SMB

PowerFeed S uper -‐
S truc ture

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

O
p
tim

a
l	  T

h
ro

u
g
h
p
u
t	  
[m

/h
]

CPU Time for optimization: 9.03 min* 
34098 variables, 34013 equations  

 
*on Xeon 3.2 GHz 
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Nonlinear Model Predictive Control (NMPC) 

Process 

NMPC Controller 
 
 
 

d : disturbances 
z : differential states 
y : algebraic states 

u : manipulated 
     variables 

ysp : set points 

( )
( )dpuyzG

dpuyzFz
,,,,0
,,,,

=

=ʹ′

NMPC Estimation and Control 

min
u

|| y(tk+ j )− y
sp ||Qy

2 + ||u(tk+ j )−u(tk+ j-1) ||Qu
2

j
∑

j
∑

s.t.
#z (t) = F(z(t), y(t),u(t), t)

0 =G(z(t), y(t),u(t), t)

z(t) = z(tk )
Bound Constraints
Other Constraints

NMPC Subproblem 

Why NMPC? 
  Track a profile 
  Severe nonlinear dynamics (e.g, 

sign changes in gains) 
  Operate process over wide range 

(e.g., startup and shutdown) 

Model Updater 
 
 

( )
( )dpuyzG

dpuyzFz
,,,,0
,,,,

=

=ʹ′
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Dynamic optimization in a 
MATLAB Framework 

Dynamic Optimization 
Problem 

Process Model 

Inequality Constraints 

Initial Conditions 
 

Constraints at Final Time 

Objective Function 
 

( ) 0puyxxf =ʹ′ t,,,,,

( ) 0=t,,,, puyxg

0),,,,,( ≤ʹ′ tpuyxxh

0xx =)( 0t

( ) 0,,,)(,)(,)(,)( 0 =ʹ′ fffff ttttt pxuyxxϕ

( )fff
t

ttt
f

,,),(t,)(,)( P 0f
,,(t),

min
0

xpuyx
xpu

NLP Optimization 
Problem 

Process Model 

Inequality Constraints 

Constraints at Final Time 

Objective Function 
 

( ) 0xpuyxf 0 =,,,ˆ,ˆ,ˆˆ ft

( ) 0puyxg =ft,,ˆ,ˆ,ˆˆ

0),,ˆ,ˆ,ˆ(ˆ ≤ftpuyxh

( ) 0,,,, =fNNN t
ttt
puyxϕ

( )fNNN t
ttt

,,,, Pmin puyx

Full 
Discretization  
of State and 

Control 
Variables 

Discretization 
Method 

No. of Time 
Elements 

Collocation 
Order 

 Saturator-System

copy ofDesign

Wärmeschaltplan
Nr. -F Ref T - 
Erlangen, 13.Oct.1999

SIEMENS AG
F Ref T In Bearbeitung

P..Druck..bar

M..Massenstrom..kg/s

PHI..Luft-Feuchte..%

H..Enthalpie..kJ/kg

T..Temperatur..°C

bar kJ/kg
kg/s °C  (X)

JOBKENNUNG : C:\Krawal-modular\IGCC\IGCC_Puertollano_komplett.gek

Alle Drücke sind absolut

Dynamic Process 
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Tennessee Eastman Process 

Unstable Reactor 

11 Controls; Product, Purge streams 

Model extended with energy balances 

84 

Tennessee Eastman Challenge Process 

Method of Full Discretization of State and Control Variables 

Large-scale Sparse block-diagonal NLP 

DAE Model 
Number of differential equations 30 

Number of algebraic variables 152 

Number of algebraic equations 141 

Difference (control variables) 11 

NLP Optimization problem 
Number of variables 
   of which are fixed 

10920 
0 

Number of constraints 10260 

Number of lower bounds 780 

Number of upper bounds 540 

Number of nonzeros in Jacobian 49230 

Number of nonzeros in Hessian 14700 
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Setpoint change studies 

Setpoint changes for the base case [Downs & Vogel] 

Process variable 
 
Type 
 

Magnitude 

Production rate change Step 

-15% 
Make a step change to the variable(s) used to set 
the process production rate so that the product 
flow leaving the stripper column base changes 
from 14,228 to 12,094 kg h-1 

Reactor operating pressure 
change Step 

-60 kPa 
Make a step change so that the reactor operating 
pressure changes from 2805 to 2745 kPa 

Purge gas composition of 
component B change Step 

+2% 
Make a step change so that the composition of 
component B in the gas purge changes from 
13.82 to 15.82% 
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Case Study: 
Change Reactor pressure by 60 kPa 

Control profiles  

 All profiles return to their 
base case values 

 Same production rate 

 Same product quality 

 Same control profile 

Lower pressure – leads to 
larger gas phase (reactor) 
volume 

Less compressor load 
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TE Case Study – Results I 

Shift in TE process  

 Same production rate 

 More volume for reaction 

 Same reactor temperature 

 Initially less cooling water flow 
(more evaporation) 
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Case Study- Results II 

Shift in TE process  

 Shift in reactor effluent to more 
condensables 

 Increase cooling water flow 

 Increase stripper steam to 
ensure same purity 

 Less compressor work 
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Case Study:  
Change Reactor Pressure by 60 kPa 

Optimization with IPOPT 

 1000 Optimization Cycles 

 5-7 CPU seconds 

 11-14 Iterations 

Optimization with SNOPT 

Often failed due to poor 
conditioning 

Could not be solved within 
sampling times 

 > 100 Iterations 
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Parameter/State Estimation 

Process 

NMPC Controller 
 
 
 

d : disturbances 
z : differential states 
y : algebraic states 

u : manipulated 
     variables 

ysp : set points 

( )
( )dpuyzG

dpuyzFz
,,,,0
,,,,

=

=ʹ′

NMPC Estimation and Control 

sConstraintOther 
sConstraint Bound

0

22

Nk

j
Q

k
Qjkjk

z)t(z
)t),t(u,),t(y),t(z(G
)t),t(u,),t(y),t(z(F)t(z

.t.s

||p||||)t(ŷ)t(y||min
uy

−

−−

=
=

=ʹ′

+−∑ ∑

p
p

p

Parameter Estimation Subproblem 

Moving Horizon Estimation? 
  Estimate a finite number of 

states and model parameters 
(unmeasured disturbances, rate 
constants, transport parameters) 

  Compensate for process drifts 
and slowly changing conditions 

  Allow better controller 
performance 

Model Updater 
 
 

( )
( )dpuyzG

dpuyzFz
,,,,0
,,,,

=

=ʹ′
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Early Warning Detection System 
Municipal Water Networks 

• Installed sensors provide an early warning of contamination 

• System provides only a coarse measure of contamination time 
and location 

• Desired: Accurate and fast time & location information 
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Optimization Problem 
Node Concentrations & 

Injection Terms Only 

Pipe Boundary 
Concentrations 

Injection Terms Only 

Only Constraints 
with Spatial 

Dependence 
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Collapsed Node Models 

Plug Flow 

Complete Mixing 

No Reaction 

Known Sources Contaminant Free 

Time Dependent Mass Injections at All Nodes 
(Negligible Flow rates) 

Decoupled Hydraulics and Water Quality 
Calculations  

 

Water Quality Model 

Pipes, Valves, Pumps 

 

Storage Tanks, Junctions 
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Modeling Water Distribution Systems 
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Existing Simulation Techniques 
Eulerian 

Discretize in time and space 

Track concentration at fixed points or volumes 

Local process for simulation, but global 
treatment needed for simultaneous 
optimization 

Lagrangian 

Discretize in time alone 

Track concentration of elements as they move  

Algorithmic in nature 

Review of these methods by Rossman and Boulos, 1996.  

Same as our Discretization 

Too Many Constraints 

No Straightforward Representation 

Derivative Calculations?  
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Origin Tracking Algorithm 

Known Hydraulics – Function of Time 

Pipe Network PDEs Linear in Concentration 

Pipe by Pipe PDEs  
•  Efficient for Large Networks 
•  Convert PDEs to DAEs with variable time 

delays 

Removes Need to Discretize in Space 
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Water network demands known. 

Linear PDEs for concentration 

Convert to delay-differential equations 

Apply implicit R-K formulation 

Source Inversion Formulation 

Hydraulic 
Simulator 
(EPANET) 

Formulation 
Tool Flow  

demands 
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Municipal Source Detection Example 

Algorithm successful on over 1000 numerical tests with real municipal water 
networks 

Solution time < 2 CPU minutes for ~ 250,000 variables, ~45,000 degrees of 
freedom 

•  Effective in a real time setting 

Formulation tool links to existing water network software 

Can impose unique solutions through an extended MIQP formulation (post-
processing phase) 

0
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Dynamic Optimization Problems: 
A Closer Look at Simultaneous Methods 

(S. Kameswaran) 

Variational / Indirect Approach 

Discretize MPBVP 

Use NLP Solver / Direct Approach 

Direct Simultaneous 
Approach 

Sequential Multiple 
Shooting 

L.T. Biegler 
J.T. Betts 
J. F. Bonnans 
W. Hager 

H.G. Bock R.W.H. Sargent 
C.C. Pantelides 
P.I. Barton 
W. Marquardt 

Optimize then discretize Discretize then Optimize 
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Orthogonal Collocation 

to tf Collocation pts 

•	
 •	

•	
•	
 •	


•	

•	
 •	


•	

•	


•	

•	


Polynomials •	


Mesh points 

hi 

∑
=

=
K

0k
ikz(t)z(t)  k

x 
x 

x 
x 
element i 

k = 1 

k = 2  

Differential variables 
Continuous 

×	


×	
 x x x x 

∑
=

=
K

1k
ik(t)uu(t) k

 
Control variables 

Need not be 
Continuous 

×	
 ×	


 Orthogonal collocation is one particular discretization method 

 Radau and Gauss Collocations – Choice of interpolation points 
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Are we doing the right thing ? 

 Example – Hager (1976, 2001) 

Second Order Explicit Runge-Kutta Discretization 

 Second Order Explicit Runge-Kutta method for discretization 

102 

Are we doing the right thing ? 

 Example – Hager (1976, 2001) 

Second Order Explicit Runge-Kutta Discretization 

10 Elements (Meshes) 
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Are we doing the right thing ? 

 Example – Hager (1976, 2001) 

Second Order Explicit Runge-Kutta Discretization 

DOES NOT CONVERGE ! 

NLP solution Solution of the 
Original Problem 

•  Discretization scheme is a crucial component for success 
•  Extremely important to know if the solution obtained is correct 
•  Literature Review: Hager (1976,2001), Polak (1996), Malanowski and 

Maurer (1997) – restricted to convex problems (or) just consistency 
(or) results only at selected points 
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(P) 

NLP solution 
Convergence  

to OCP 

Direct Simultaneous Approach Indirect Approach 

Convergence Properties for Gauss Collocation 
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Consistent Optimality Conditions 

110 

Convergence Rates – Runge-Kutta Methods 

q  Symmetric Implicit R-K methods and Gauss collocation – 

Indirect Approach True Solution of  
Optimal Control Problem (P) 

Numerical Methods for BVP/DAEs 

Necessary Conditions 
NLP 

Indirect Approach 

True Solution of  
Optimal Control Problem (P) 

q  Radau collocation 

 

§  Highest Precision after Gauss Collocation 
§  Better Stability Properties than Gauss 

Necessary Conditions 
NLP 

Indirect Approach 
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Convergence Rates Unconstrained  
Optimal Control Problems 

Tool : Mean Value theorem for vector functions of vector variables. 

- Optimality Conditions for the NLP (KKT conditions) 

- NLP solution (primal variables and Lagrange multipliers) 
- Sampled true solution (states, controls and multipliers) 
- KKT matrix 

CAUTION – finer meshes imply increase in linear system 

0 
= O(hK) 

- Jacobian matrix of Collocation Equations – need nonsingular KKT 
  matrix  

Â
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Linear Transformation 
“Range and Null Space Decomposition” 

Convergence Rates for Unconstrained OCPs - 2 
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  Solve Linear System to determine convergence properties 

Convergence Rates for Unconstrained OCPs - 3 

  Assumptions (can be relaxed easily) 
•  Equally spaced meshes 
•  NLP solution (primal and dual) does not diverge as h→0 

  Theorem: 

  Assumption: 
•  Diagonally dominant red. Hess. 
•  Systems satisfying Coercivity  

 (Dontchev and Hager, 1998) 
•  Numerical experiments 

REGULAR (or Nonsingular) OCPs 

114 

Radau Convergence Results 

q Convergence for states, control, adjoints/multipliers (scaled by ωj) 
at the rate of O(hK)   

q Requires regularity assumptions on KKT matrix 

q Analysis extended to include final-time equality constraints 
 

Controllability of the associated LTV system è regularity 
of expanded KKT matrix and same order properties 
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Regularity Assumptions 

•  Equally spaced meshes –  

•  The NLP solution (primal and dual) does not diverge from the “true” 
continuous-time solution as hà  0. 

  

•  Matrix sizes increase with h, and this needs to be handled appropriately. 

•  Requires linearly independent constraint gradients    
 Guaranteed with ODEs and index 1 DAEs 
High index models require further analysis, open questions, see 
Betts, Campbell example… 

•  Require  
   
  Applies to Regular (Nonsingular Control Problems) 

  

- Positive Definite 
- Full row rank 

- invertible 

)()( 11 −− = hOHZZT

What about choosing element length, hi? 
Mesh placement heuristics  

 
⇒ For a sufficient number of elements 

   An algorithm that guarantees no changes in the 
active set within each element is consistent with 
discrete variational conditions 

⇒ Adjoint variables approximated as piecewise 
polynomials in each element from multipliers 

⇒ Still need to check for sufficient number of 
elements  
⇒ Error control 
⇒ Constant Hamiltonian 
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     tf, final time 
     u, control variables 
      

     t,  time 
     z, differential variables 
     y, algebraic variables 

Dynamic Optimization Problem   

min  Φ z(tf )( )

dz(t)
dt

= f z(t),y(t),u(t),t( )

( ) 0,),(),(),( =pttutytzg

zo = z(0)
zl ≤ z(t) ≤ zu

yl ≤ y(t) ≤ yu

ul ≤ u(t) ≤ uu

s.t.  

Index 1 DAE 

to tf 

×	
 ×	
 ×	
 ×	


Collocation points 

•	
 •	

•	
•	
 •	


•	

•	


•	

•	


•	

•	


•	


Polynomials 

×	
 ×	
×	
 ×	


•	


Finite element, i 

ti 

Mesh points 
hi	


×	
 ×	
 ×	
 ×	


∑
=

=
K

q
iqq(t) zz(t)

0


×	
 ×	

×	


×	


element i 

q = 1 
q = 2  

×	
×	
×	
×	

Continuous Differential Variables 

Piecewise Continuous Algebraic and  
Control Variables 

×	


×	


×	
 ×	


Radau Collocation on Finite Elements   

∑
=

=
K

q
iqq(t) yy(t)

1
 ∑

=

=
K

q
iqq(t) uu(t)

1


τd
dz

hdt
dz

i

1
=

),( uzfh
d
dz

i=
τ

r(tik ) = zij j (τ k )
j=0

K

∑
"

#
$$

%

&
''− hi f (zik,uik, tik ) = 0,   k =1,..K, i =  1,.. N

]1,0[,
1

1'
' ∈+=∑

−

=

ττ ji

i

i
iij hht

 Monotonic polynomials for u(t) 
(e.g., piecewise linear) 
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Nonlinear Programming Problem   
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Use finite elements, hi, as variables 
to enforce accurate solution and 
determine break points for u(t). 	


•  Add 0 ≤ hi ≤ hu, Σ hi=tf	


•  Add –ε ≤ T(h, z, u) ≤ ε to 
enforce state error	


Properties of Gauss/Radau Direct Transcription 
 
Stability and Accuracy of Orthogonal Collocation 
•  Equivalent to performing a fully implicit Runge-Kutta integration of  
        the DAE models at Gaussian (Radau) points 
•  Superconvergence (O(h2K) or (O(h2K-1)) at τ = 1 for K collocation pts. 
•  State Variable Error Criteria (Russell and Christensen, 1978) 
 
 
 
 
 
 
Analysis of the Optimality Conditions 
•  Equivalence between NLP KKT and discretized variational necessary  
       conditions 
•  Convergence Rate for Radau discretization (Kameswaran, B. 2008) 

•  Error in States = O(hK) 
•  Error in Adjoints = O(hK) 
•  Error in Controls = O(hK) 

 

We can directly relate the periods in (1) indexed by l to the finite elements indexed by i in (6),
with collocation equations in each element, along with continuity of the differential variables
and breakpoint locations for the controls. The collocation approximation is a sufficiently ac-
curate approximation to the DAE system (1c)-(1d). Since this is a fully implicit Runge-Kutta
method, order results for the approximation error are well known and can be enforced with the
addition of error constraints discussed in the next subsection. Moreover, the NLP (6) provides
an accurate approximation to (1). If we maintain hi sufficiently small, the multipliers and the
controls with Radau collocation converge to the true solution at the rate of O(hK), while the
Lagrange multipliers scaled by ⇥ j provide estimates of the adjoint profiles for problem (1).
Following the same analysis, convergence to the true solution with Gauss-Legendre collocation
occurs at the rate of O(hK+1) [13].

2.1 Treatment of Finite Elements
An important concern in the solution of the direct transcription problem (6) is the appropriate
selection of element lengths hi = ti� ti�1. Clearly, if hi is fixed in the NLP, then the resulting
problem is less nonlinear and often easier to solve. In fact, for a linear DAE system, fixing hi,
leads to a linearly constrained NLP.

On the other hand, treating hi as variables in (6), where they can “move” during the solu-
tion of the NLP, may provide a more accurate approximation to (1) with fewer finite elements.
Moreover, provided that values of hi remain suitably small, variable finite elements can locate
breakpoints in the optimal control profile as well as profile segments (i.e., periods) with ac-
tive bounds. Moreover, as Runge-Kutta methods require state profiles to remain smooth only
within a finite element, problem (6) can deal with variable finite elements using the following
guidelines.

We begin by noting that the number of finite elements N must be chosen sufficiently large.
This is often estimated by trial and error through comparison with numerically integrated state
profiles evaluated at different values of the decision variables p and u(t). This forms the initial-
ization step of our overall moving element strategy. In addition, moving finite element formu-
lations have been described extensively in [2, 16] for the solution of boundary value problems.
Moreover, assuming that the state profiles are smooth over the domain of interest, the global
error from the polynomial approximation, e(t) = z(t)� zK(t), can be estimated from:

maxt⇤[0,t f ] ⌃e(t)⌃ ⇥C1maxi⇤{1,...,N}(maxt⇤[ti�1,ti] ⌃Ti(t)⌃)+O(hK+p
i ) (7)

where p = 2 is for Gauss-Legendre points and p = 1 for Radau points, C1 is a computable
constant and Ti(t) can be computed from the polynomial solution. Choices for Ti(t) are re-
viewed in Russell and Christensen [16]. In particular, we may compute the residual DAEs at
noncollocation points, ti,nc as follows:

Ti(ti,nc) =

�
dzK(t)

d� �hi f (zK(ti,nc),yK(z(ti,nc)),uK(ti,nc), p)
g(zK(ti,nc),yK(z(ti,nc)),uK(ti,nc), p)

⇥
. (8)

As shown in [16], with ti,nc = ti�1 +hi�i,nc, �i,nc ⇤ [0,1] this leads to ⌃ei(t)⌃ ⇥ C̄ ⌃Ti(ti,nc)⌃ with
the constant C̄ given by:

C̄ =
1
A

⇤ �i,nc

0

K

�
j=1

(s� � j)ds, A =
K

�
j=1

(�i,nc� � j).
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We can directly relate the periods in (1) indexed by l to the finite elements indexed by i in (6),
with collocation equations in each element, along with continuity of the differential variables
and breakpoint locations for the controls. The collocation approximation is a sufficiently ac-
curate approximation to the DAE system (1c)-(1d). Since this is a fully implicit Runge-Kutta
method, order results for the approximation error are well known and can be enforced with the
addition of error constraints discussed in the next subsection. Moreover, the NLP (6) provides
an accurate approximation to (1). If we maintain hi sufficiently small, the multipliers and the
controls with Radau collocation converge to the true solution at the rate of O(hK), while the
Lagrange multipliers scaled by ⇥ j provide estimates of the adjoint profiles for problem (1).
Following the same analysis, convergence to the true solution with Gauss-Legendre collocation
occurs at the rate of O(hK+1) [?].

2.1 Treatment of Finite Elements
An important concern in the solution of the direct transcription problem (6) is the appropriate
selection of element lengths hi = ti� ti�1. Clearly, if hi is fixed in the NLP, then the resulting
problem is less nonlinear and often easier to solve. In fact, for a linear DAE system, fixing hi,
leads to a linearly constrained NLP.

On the other hand, treating hi as variables in (6), where they can “move” during the solu-
tion of the NLP, may provide a more accurate approximation to (1) with fewer finite elements.
Moreover, provided that values of hi remain suitably small, variable finite elements can locate
breakpoints in the optimal control profile as well as profile segments (i.e., periods) with ac-
tive bounds. Moreover, as Runge-Kutta methods require state profiles to remain smooth only
within a finite element, problem (6) can deal with variable finite elements using the following
guidelines.

We begin by noting that the number of finite elements N must be chosen sufficiently large.
This is often estimated by trial and error through comparison with numerically integrated state
profiles evaluated at different values of the decision variables p and u(t). This forms the initial-
ization step of our overall moving element strategy. In addition, moving finite element formu-
lations have been described extensively in [?, ?] for the solution of boundary value problems.
Moreover, assuming that the state profiles are smooth over the domain of interest, the global
error from the polynomial approximation, e(t) = z(t)� zK(t), can be estimated from:

maxt⇤[0,t f ] ⌃e(t)⌃ ⇥C1maxi⇤{1,...,N}(maxt⇤[ti�1,ti] ⌃Ti(t)⌃)+O(hK+p
i ) (7)

where p = 2 is for Gauss-Legendre points and p = 1 for Radau points, C1 is a computable
constant and Ti(t) can be computed from the polynomial solution. Choices for Ti(t) are re-
viewed in Russell and Christensen [?]. In particular, we may compute the residual DAEs at
noncollocation points, ti,nc as follows:

Ti(ti,nc) =

�
dzK(t)

d� �hi f (zK(ti,nc),yK(z(ti,nc)),uK(ti,nc))
g(zK(ti,nc),yK(z(ti,nc)),uK(ti,nc))

⇥
. (8)

As shown in [?], with ti,nc = ti�1 +hi�i,nc, �i,nc ⇤ [0,1] this leads to ⌃ei(t)⌃ ⇥ C̄ ⌃Ti(ti,nc)⌃ with
the constant C̄ given by:

C̄ =
1
A

⇤ �i,nc

0

K

�
j=1

(s� � j)ds, A =
K

�
j=1

(�i,nc� � j).
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min �(z f ) (10a)

s.t.
K

⇥
j=0

⇤̇ j(⇧k)zi j�hi f (zik,yik,uik) = 0 (10b)

g(zik,yik,uik) = 0 (10c)
uL ⇥ uik ⇥ uU , uik = ⌅(⇧k,vi) (10d)
k ⇤ {1, . . . ,K}, i ⇤ {1, . . . ,N}

zi+1,0 =
K

⇥
j=0

⇤ j(1)zi j, i = 1, . . . ,N�1 (10e)

z f =
K

⇥
j=0

⇤ j(1)zN j, z1,0 = z(t0) (10f)

⌃(z f )⇥ 0 (10g)
�� ⇥ C̄ Ti(ti,nc)⇥ � (10h)

0⇥ hi ⇥ t f ,
N

⇥
i=1

hi = t f . (10i)

where the finite element lengths are initialized to nominal values generated in (11). While the
error constraints (10h) are useful to maintain a reasonable distribution of the approximation
error among the elements, there are a number of difficulties within this formulation, as noted in
[?]. First, (10) is a highly constrained problem that may be difficult to converge. Moreover, the
solution of (10) may lead to suboptimal profiles if insufficient elements are chosen to represent
the optimal solution. Related to this, active constraints (10h) and (10i) exert a strong bias on
⇤̄ and ⇥̄ , which are used to approximate the adjoint profiles. Finally, problem (10) becomes
ill-conditioned because finite elements often do not have a direct influence on the objective and
constraint functions. Because of these issues, we consider a two-level decomposition based
on NLP sensitivity of the fixed mesh problem, beginning with a systematic mesh initialization
strategy.

To develop the two-level strategy, we first generate a feasible mesh that is consistent with
the discretized optimization problem and feasible for a specified level of approximation error.
For this we consider two initialization approaches, one based on single shooting and one based
on multiple shooting.

6

Elements of MFE Formulation 

122 

min �(z f ) (10a)

s.t.
K

⇥
j=0

⇤̇ j(⇧k)zi j�hi f (zik,yik,uik) = 0 (10b)

g(zik,yik,uik) = 0 (10c)
uL ⇥ uik ⇥ uU , uik = ⌅(⇧k,vi) (10d)
k ⇤ {1, . . . ,K}, i ⇤ {1, . . . ,N}

zi+1,0 =
K

⇥
j=0

⇤ j(1)zi j, i = 1, . . . ,N�1 (10e)

z f =
K

⇥
j=0

⇤ j(1)zN j, z1,0 = z(t0) (10f)

⌃(z f )⇥ 0 (10g)
�� ⇥ C̄ Ti(ti,nc)⇥ � (10h)

0⇥ hi ⇥ t f ,
N

⇥
i=1

hi = t f . (10i)

where the finite element lengths are initialized to nominal values generated in (11). While the
error constraints (10h) are useful to maintain a reasonable distribution of the approximation
error among the elements, there are a number of difficulties within this formulation, as noted in
[?]. First, (10) is a highly constrained problem that may be difficult to converge. Moreover, the
solution of (10) may lead to suboptimal profiles if insufficient elements are chosen to represent
the optimal solution. Related to this, active constraints (10h) and (10i) exert a strong bias on
⇤̄ and ⇥̄ , which are used to approximate the adjoint profiles. Finally, problem (10) becomes
ill-conditioned because finite elements often do not have a direct influence on the objective and
constraint functions. Because of these issues, we consider a two-level decomposition based
on NLP sensitivity of the fixed mesh problem, beginning with a systematic mesh initialization
strategy.

To develop the two-level strategy, we first generate a feasible mesh that is consistent with
the discretized optimization problem and feasible for a specified level of approximation error.
For this we consider two initialization approaches, one based on single shooting and one based
on multiple shooting.

6

Elements of MFE Formulation 

Solution Strategy Concerns 
  
•  What is N? Too few 

elements leads to 
suboptimal solution 

•  Error constraints are 
nonlinear, hard to 
converge? 

•  When/how should 
elements be added?  

•  Termination criterion for 
an optimal solution? 
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Analysis of the Optimality Conditions 
 
•  Error Criteria for Euler-Lagrange Equations 
       Requires multiplier estimates (after NLP is solved)  
 
 
 
 
 
 
 
•  Alternate Criterion (Constant Hamiltonian Function, Stengel (1994)) 
 
 
 
 

We could also develop criteria similar to (12b) to monitor whether ⌅ (t), ⇤(t) and NCO
are approximated accurately. We define polynomial approximations to the adjoint profiles as
follows:

⌅ K(t) =
K

�
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⇤ j(⇧)⌅i j, ⇤K(t) =
K

�
j=0

⇤̄ j(⇧)⇤i j

�L,K(t) =
K

�
j=0

⇤̄ j(⇧)�L
i j, �U,K(t) =

K

�
j=0

⇤̄ j(⇧)�U
i j

HK(t) = ⌅ K(t)T f (zK(t),yK(t),uK(t))+⇤K(t)T g(zK(t),yK(t),uK(t))
+�L,K(t)T (uK(t)�uL)+�U,K(t)T (uU �uK(t)).

and the corresponding error criterion at noncollocation points, ti,nc is given by:

Si(ti,nc) =

�

⇧⇧⇧⇧⇧⇧⇤

d⌅ K(t)
d⇧ +hi

⌃HK(ti,nc)
⌃ z

⌃HK(ti,nc)
⌃y

⌃HK(ti,nc)
⌃u

�L,K(ti,nc)T (uK(ti,nc)�uL)
�U,K(ti,nc)T (uU �uK(ti,nc)

⇥

⌃⌃⌃⌃⌃⌃⌅
. (13)

From this we can impose the error constraint on the optimality conditions:

C̄ ⇤Si(ti,nc)⇤ ⇥ ⇥. (14)

The mesh refinement difficulties posed by breakpoint selection and satisfaction of (12), (14)
lead us to consider a two-level optimization strategy. We consider an inner optimization prob-
lem with a fixed mesh, while the outer problem considers the placement of the finite elements.
This is similar to some of our previous studies. In [18, 19], a two-level strategy was proposed
that uses (12), but NLP solvers and sensitivity were limited to rSQP methods. This led to a
nondifferentiable outer problem along with a specialized bundle solver. On the other hand, in
[3] a two-level strategy was proposed where only the collocation equations were considered in
the inner problem, while the outer problem was solved in the space of the controls and finite
elements. Finally, in [5, 7] the overall problem was solved in full space with a barrier method,
and refinement of the finite elements was made along with adjustment of the barrier parameter.
In this way a two-level strategy was formulated naturally as part of the nested solution of the
barrier problem.

In this study we extend our previous work through direct development of the two-level
approach, enabled by a barrier NLP solver (IPOPT [21]) coupled with an efficient NLP sensi-
tivity strategy (sIPOPT [15]) that is seamlessly embedded within the solver. Additionally, we
incorporate Hamiltonian-based constraints in the outer problem as well as efficient sensitivity
calculation of the inner problem, for both the state and adjoint variables.

3 Decomposition for Moving Finite Element Optimiza-
tion Strategy
A natural extension to the direct transcription problem (9) is to treat the element lengths hi as
decision variables and to enforce the approximation errors with additional constraints (12) to
form the following NLP.
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decision variables and to enforce the approximation errors with additional constraints (12) to
form the following NLP.

6

To address this issue, we choose an alternate optimality criterion based on (4b) instead of
(3a)-(3f). As shown in [13], KKT multipliers for the constraints (17b), (17c) provide an O(hK)
approximation of the adjoint variables. Using these multipliers as well as constraint values from
(17) we approximate the Hamiltonian at the collocation points as follows:

H(i�1)K+k = HK(tik) = ⇤ik f (zik,yik,uik)+⇥ikg(zik,yik,uik) =
⇤̄ik

⌥khi

K

⇥
j=0

⇧̇ j(⌃k)zi j (26)

where ⇤ik = ⇤̄ik/⌥k, ⇤̄ik is the corresponding KKT multiplier from the Inner Problem (17) and
⌥k is the quadrature weight. (Note that at tik the complementarity terms in (13) are zero and are
omitted in (26)). To ensure that enough elements are chosen for the optimal control solution, we
enforce the condition that the Hamiltonian profile, represented by (26), is constant over time.

We now consider the following Outer Problem, where only the variables hi remain to locate
the breakpoints and satisfy the error constraints. This problem is stated as follows:

min
H̄,hi,w j

�(z f (h))+⇧
NK

⇥
j=1

(w j + v j) (27a)

�(v j + �)⇥ C̄ Ti(h)⇥ � + v j (27b)

H(i�1)K+k(h) =
⇤̄ik(h)
⌥khi

K

⇥
k⌅=0

⇧̇ j(⌃k)zik⌅(h) (27c)

�(�h +w j)⇥ Hj � H̄ ⇥ (�h +w j), w j,v j ⇤ 0, j = 1, . . .NK (27d)
0 ⇥ hi ⇥ hmax (27e)
N

⇥
i=1

hi = t f , (27f)

where the variables zik(h), ⇤̄ik(h),Ti(h) arise from fully converged solutions of (17) with a fixed
mesh h̄. Hence, solution of problem (17) must be nested within the solution of (27). In solving
(27) gradients with respect to z f (h),zik(h), ⇤̄ik(h) and Ti(h) are determined from the sensitivity
terms ds(µ,h̄)

dh , which are well-defined for µ > 0. Second order sensitivities are not calculated
here since Problem (27) is relatively small, and an NLP solver with quasi-Newton Hessian
update is sufficient to find a solution to (27).

A key objective in (27) is to enforce a constant Hamiltonian profile (27d) using the vari-
able H̄. However, this constraint may require additional finite elements. As a result artificial
variables w j and an ⇧1 penalty, with parameter ⇧ > 0 sufficiently large, are introduced to en-
force a solution to the outer problem with an error tolerance �h for the Hamiltonian profile.
Moreover, since the adjoint profiles are determined directly from the multipliers of the inner
problem, additional constraints on hi, approximation error or regularization do not interfere
with the Hamiltonian criterion. This has a clear advantage over the approach in [7] based on
the solution of (15).

Lastly, we analyze the quality of the solution of (27). In addition to the constraints in (27)

12

H j −H ≤ εh,  j =1,...NK

Initialize feasible 
states and mesh 

Solve Inner Problem 
(IP)  

(Fixed Element NLP) 

Two-Level Optimization Strategy 

Solve Outer Problem 
(OP) 

(Mesh Adjustment) 

Remove/Add 
Elements based on 

OP Solution 

Calculate NLP 
Sensitivity  
wrt Mesh 

Feasible with Constant 
Hamiltonian (Outer 

Problem Converged)? 
Done 

•  Separate direct transcription and mesh adjustment into IP and OP 
•  Add constant Hamiltonian constraints into OP using adjoints from IP 
•  Link IP and OP with NLP sensitivity (New Solvers!) 
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Automated Mesh Initialization 

•  Choose initial placement of finite elements based on 
state errors 

•  Based on initial control profiles u(t) 
•  Feasible for solution of inner problem 
•  Mimics Implicit Runge-Kutta initial value solver  
•  “Multiple shooting version” for unstable forward modes  

3.1 Mesh Initialization
In the single shooting initialization, we generate the initial mesh by fixing u(t) and p to initial
(guessed) values ū(t) and p̄ and solving a sequence of NLPs indexed by i = 1,2,3 . . . given by:

h̄i ⇥ arg{max hi (11a)

s.t.
K

�
j=0

⇧̇ j(⇥k)zi j �hi f (zik,yik, ūik) = 0 (11b)

zi+1,0 =
K

�
j=0

⇧ j(1)zi j (11c)

g(zik,yik, ūik) = 0, k = 1,K (11d)
�� ⇥ C̄ Ti(ti,nc)⇥ � (11e)

0 ⇥ hi ⇥ min(hmax, t f �
i�1

�
i⌅=1

h̄i⌅), (11f)

where z1,0 = z0, and for i ⇤ 2, zi,0 = �K
j=0 ⇧ j(1)zi�1, j, solved in the previous interval. This

approach mimics an initial value DAE solver with time steps h̄i, and leads to a feasible initial-
ization for (6). It is particularly suitable for DAEs with stable forward modes, and is our default
strategy as long as the state variables remain bounded.

The multiple shooting initialization is required if the state variables do not remain bounded
while executing the sequence of NLPs in the single shooting strategy. Here we select a suitable
bounded region (often problem dependent) for the states z(t) ⇧ Z . We then apply the single
shooting strategy and terminate the sequence of NLPs (11) when zî+1,0 /⇧Z for î > 1. We then
define Np = ⌃t f /(�î�1

i=1 hi⌥ time periods and replicate the state profiles for the first î�1 elements
over the elements i = j(î�1)+k with j = 1, . . .Np, k = 1, . . . î�1. The profiles, replicated over
Np periods may be truncated at t f . These profiles, with N ⇥ Np(î�1) elements are feasible and
bounded in each period.

3.2 The Inner Problem
For the inner level of our optimization strategy we rewrite (6) as the following NLP with hi
fixed to h̄i and the approximation error constraints (10h) introduced with placeholder variables.

7
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Inner Problem (fixed elements) 

•  “Classical” direct 
transcription 
formulation 

•  Embed state error 
definition with Ti  as 
placeholder sensitivity  
variables 

•  Nonsmoothness of 
KKT conditions for 
Sensitivity Analysis 

•  Solve with IPOPT  
•  Smooth sensitivities 

from related barrier 
problem, with µ > 0. 

min �(z f ) (12a)

s.t.
K

⇥
j=0

⇤̇ j(⌥k)zi j� h̄i f (zik,yik,uik) = 0 (12b)

g(zik,yik,uik) = 0 (12c)
uik = ⌃(⌥k,vi), uL ⇥ uik ⇥ uU (12d)
k ⌅ {1, . . . ,K}, i ⌅ {1, . . . ,N}

zi+1,0 =
K

⇥
j=0

⇤ j(1)zi j, i = 1, . . . ,N�1 (12e)

z f =
K

⇥
j=0

⇤ j(1)zN j, z1,0 = z(t0) (12f)

�(z f )⇥ 0 (12g)

Ti =

�
dzK(t)

d⌥ �hi f (zK(ti,nc),yK(z(ti,nc)),uK(ti,nc))
g(zK(ti,nc),yK(z(ti,nc)),uK(ti,nc))

⇥
(12h)

i = 1, . . . ,N

This problem is well-suited with the above initialization strategy. Also the constraints (12h)
are easy to satisfy because the placeholder variables Ti are not bounded, and are merely used
to facilitate the error constraints used later in the outer problem. The optimality conditions
of this problem are given by the constraints (12a)-(12h) as well as the following stationarity
conditions.

z f :
⌦�
⌦ z f

+
⌦�
⌦ z f

⇥ f +⇧ f = 0 (13a)

0⇤ �(z f )⇧ ⇥ f ⇤ 0 (13b)

zi0 : �
K

⇥
k=1

⇤̇0(⌥k)⌅̄ik +(⇧i� ⇤0(1)⇧i+1) = 0, i = 1, . . . ,N�1 (13c)

zN0 : �
K

⇥
k=1

⇤̇0(⌥k)⌅̄Nk +(⇧N� ⇤0(1)⇧ f ) = 0 (13d)

zi j : �
K

⇥
k=1

⇤̇k(⌥ j)⌅̄i j +hi
⌦ f
⌦ zi j

⌅̄i j +
⌦g
⌦ zi j

⇤̄i j� ⇤ j(1)⇧i = 0 (13e)

yi j : hi
⌦ f
⌦yi j

⌅̄i j +
⌦g
⌦yi j

⇤̄i j = 0 (13f)

ui j : hi
⌦ f
⌦ui j

⌅̄i j +
⌦g
⌦ui j

⇤̄i j��L
i j +�U

i j + i j = 0 (13g)

0⇥ ui j�uL ⇧ �L
i j ⇤ 0, 0⇥ uU �ui j ⇧ �U

i j ⇤ 0 (13h)

vi :
K

⇥
j=1

⌦⌃(⌥ j,vi)
⌦vi

 i j = 0. (13i)

(13j)

Alternately,  i j can be eliminated and (13g) and (13g) can be combined to form:

K

⇥
k=1

⌦⌃(⌥k,vi)
⌦vi

(hi
⌦ f
⌦ui j

⌅̄i j +
⌦g
⌦ui j

⇤̄i j��L
ik +�U

ik ) = 0. (14)

8
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Barrier Methods for Large-Scale  
Nonlinear Programming 
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Solution of the Barrier Problem 

⇒ Newton Directions (KKT System) 
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NLP Sensitivity wrt elements (h = p) 
Parametric Programming  

•  NLP Sensitivity: Rely upon Existence and Differentiability of  s*(p)  
•  Main Idea: Obtain ds*/dp and approximate s*(p1) by Taylor Series Expansion             

Optimality Conditions  

Solution Triplet 
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NLP Sensitivity (sIPOPT) 
(Pirnay, Lopez Negrete, B., 2012) 

Optimality Conditions of  

•  Nonsingular if LICQ and SSOSC hold at s*(p0) 

•  Already Factored at Solution 

•  Sensitivity Calculation from Single Backsolve 

•  sIPOPT Code embedded within IPOPT 

KKT Matrix from IPOPT   

   Apply Implicit Function Theorem to                                  around  
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Outer Problem (Mesh Adjustment) 

of the adjoint variables. Using these multipliers as well as constraint values from (12) we
approximate the Hamiltonian profile at the collocation points as follows:

H(i�1)K+k = ⇤ik f (zik,yik,uik, p)+⇥ikg(zik,yik,uik, p) =
⇤̄ik

⌥khi

K

⇥
j=0

⇧̇ j(⌃k)zi j (21)

where ⇤ik = ⇤̄ik/⌥k, where ⇤̄ik is the corresponding KKT multiplier from the Inner Problem
(12) and ⌥k is the quadrature weight. To ensure that enough elements are chosen for the optimal
control solution, we enforce the condition that the Hamiltonian profile, represented by (21), is
constant over time. In this study we use this criterion as a sufficient condition for optimality of
problem (1) [6].

We could also use this information at the solution of (10) to ensure that the adjoint equations
are satisfied to a suitable error tolerance. On the other hand, since the approximation errors
have the same order for the adjoint equations as for the state equations [13], we have found that
adjoint error constraints constraints were not necessary in our formulation.

We now consider the following Outer Problem, where only the variables hi remain to locate
the breakpoints and satisfy the error constraints. This problem is given as follows:

min
H̄,hi,w j

�(z f (h))+⇧
NK

⇥
j=1

w j (22a)

�� ⇥ C̄ Ti(h)⇥ � (22b)

H(i�1)K+k(h) =
⇤̄ik(h)
⌥khi

K

⇥
j=

⇧̇ j(⌃k)zi j(h) (22c)

�(�h +w j)⇥ Hj� H̄ ⇥ (�h +w j), w j ⇤ 0, j = 1, . . .NK (22d)

0⇥ hi ⇥ hmax,
N

⇥
i=1

hi = t f , (22e)

where the variables zi j(h), ⇤̄i j(h),Ti(h) arise from fully converged solutions of (12) with a fixed
mesh h̄. Hence, solution of problem (12) must be nested within the solution of (22). In solving
(22) gradients with respect to z f (h),zi j(h), ⇤̄i j(h) and Ti(h) are determined from the sensitivity
terms ds(µ;h̄)

dh , which are well-defined for µ > 0. Second order sensitivities are not calculated
here since Problem (22) is relatively small, and an NLP solver with quasi-Newton Hessian
update is sufficiently fast to find a solution to (22).

A key objective in (22) is to enforce a constant Hamiltonian profile (22d) using the variable
H̄. However, this constraint requires a sufficient number of finite elements. As a result artifi-
cial variables w j and an ⇧1 penalty, with parameter ⇧ > 0 sufficiently large, are introduced to
enforce a solution to the outer problem with an error tolerance �h for the Hamiltonian profile.
Morever, since the adjoint profiles are determined independently from the multipliers of the in-
ner problem, constraints on hi, approximation error or additional regularization do not interfere
with the Hamiltonian criterion. This has a clear advantage over the approach in [7] based on
the solution of (10).

Lastly, we analyze the quality of the solution of (22). In addition to the constraints in (22)

11

•  Few decision variables (2N+1) 
•  Manipulates element mesh to satisfy state error constraints 
•  Allows for optimal placement of break points in controls 
•  Enforces constant Hamiltonian over time 
•  User-specified tolerances: ε, εh	

•  Generic formulation – fully independent of DAEs 
•  Sensitivities for z(h), λ(h), T(h) obtained from Inner Problem 
•  Solved with L-BFGS version of IPOPT 
•  Remove zero elements; bisect and augment maximum elements 

Demonstration of Two-Level 
Optimization Strategy 

•  Strategy implemented in AMPL 
•  Exact gradient/Hessians for IP, L-BFGS for OP 
•  Radau Collocation (K=3), Piecewise linear controls 
•  Solved with IPOPT/sIPOPT; ε = εh = 10-4 

 
•  11 test problems solved (2 – 64 DAEs)  

•  Reactor Temperature Profiles 
•  Modified Singular Problems 



67 

Parallel Batch Reactor 
AàB, AàC 

T 

4. If the � 0
i > 0, delete element i and renumber the elements.

5. If the ⇧1 penalty term in (22), �NK
j=1 w j = 0, stop. Otherwise, examine the multipliers in

(23a) and bisect element i that corresponds to active constraints and large values (⇥ ⇧)
for |⌅ j| and |⇥ j|. Reinitialize the variables for problem (12) with the inserted new element
and return to Step 3.

This two-level optimization strategy was implemented in AMPL and IPOPT [?] was used
as the NLP solver for the both problems (12) and (22). For the inner problem exact second
derivatives were supplied by AMPL. For (22) gradients were supplied from the NLP sensitivity
code sIPOPT from the solution to (12). The limited memory BFGS option in IPOPT was used
to solve the outer problem. In problem (12) three collocation points (K = 3) were used for the
state variables and piecewise linear control profiles were applied. Also, the error constraints
(12h) were applied at two noncollocation points within each element with ⇤ = 10�4. The inner
problem was converged to a KKT tolerance of 10�12 to ensure accurate sensitivities. For the
outer problem (22) ⇤h = 10�4|H̄|, ⇧ = 104 and the KKT tolerance was set to 10�5. All numerical
experiments are carried out on Intel(R) Core(TM) 2 Duo CPU P8800 processors (2.66 GHz and
4.0 G RAM) running Windows 7.

4 Optimal Control of Batch Reactors
In this section we apply the two-level optimization strategy to five case study examples drawn
from optimal temperature control in batch reactors. These nonsingular problems have well-
defined solutions. The first three problems have well-conditioned profiles are can be solved
with the two-level approach. The fourth and fifth problems exhibit steep control profiles and
demonstrate how the two-level strategy adds finite elements to obtain accurate optimal control
profiles. In all cases the single shooting initialization based on Problem (11) is used to obtain
the initial mesh. Then the two-level strategy is converged to optimal solutions within the stated
tolerance.

Temperature profiles for Batch Reactor with Parallel Kinetics

We consider the nonisothermal batch reactor with first order parallel reactions A⇤B,A⇤C
where the goal is to find a (transformed) temperature profile that maximizes the final amount of
product B after one hour (t f = 1). The optimal control problem can be stated as:

min �b(1) (26a)

s.t.
da
dt

= �a(t)(u(t)+u(t)2/2) (26b)

db
dt

= a(t)u(t) (26c)

a(0) = 1, b(0) = 0, u(t) ⌅ [0,5] (26d)

The initial number of finite elements for Step 1 (using Problem (11)) was set to 20. The two-
step algorithm is executed and terminates with the ⇧1 penalty term at zero. The number of
finite elements increases to 28. This requires 4 iterations to solve the outer problem and a total
of 115 IPOPT iterations for (12). The total time for solving the outer problems is 43.2 CPU
seconds. The value of H̄ from (22) is 0.1585412 and the optimal objective has a value of -
0.5735449921555. The final element distribution along with the state, control and Hamiltonian
profiles are shown in Figure 1.
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Series	  Batch	  Reactor	  
AàBàC	  

T 

We consider the nonisothermal batch reactor with first order series reactions A ⇤ B ⇤ C.
For optimal reactor operation, we seek a temperature profile that maximizes the final amount
of product B after one hour of operation t f = 1.

The optimal control problem can be stated as

min �b(1) (29a)

s.t.
da
dt

= �a(t)u(t) (29b)

db
dt

= a(t) u(t)�2 b(t) u(t)2 (29c)

a(0) = 1, b(0) = 0 (29d)
0 ⇥ u(t)⇥ 5 (29e)

The initial number of finite elements for Step 1 (Problem (11) is 20. The step algorithm is exe-
cuted and terminates with the �1 penalty term at zero. The number of finite elements increases
to 47. This requires 9 iterations to solve the outer problem and a total of 479 iterations for the
inner problems. The value of H̄ from (22) is 0.1090224625156 and the optimal objective has
a value of -0.324143015236. The total time for solving the outer problems is 439.7 CPU sec-
onds. The final element distribution along with the state, control and Hamiltonian profiles are
shown in Figure 4. It is interesting to note the initial mesh was determined with a flat control
profile; therefore the resulting steep optimal control profile leads to considerable computation
to determine the final mesh. These difficulties can be appreciated by considering two additional
cases:

• In Step 1 we initialize the problem with 30 elements, and therefore start with a smaller
approximation error. The solution procedure is terminated with penalty term at zero
and the number of finite elements increases to 31. The total time for solving the outer
problems is now 22.5 CPU seconds and the solution profiles remain the same as in Fig-
ure 4 with H̄ from Problem (22) equal to 0.1090232175342 and the objective equal to
-0.3241429813715.

• We impose a upper bound of u(t) ⇥ 3.5 and set the initial number of finite elements for
Step 1 to 20. The solution procedure terminated with the �1 penalty term equal to zero
and the number of finite elements becomes 21. The total time for solving the outer prob-
lems is only 11.9 CPU seconds and the solution profiles remain virtually the same as in
Figure 4 with H̄ from Problem (22) equal to 0.1091037694239 and the objective equal to
-0.32410050151.

Temperature profiles for Batch Reactor with Williams-Otto Kinetics

We now consider a nonisothermal batch reactor with more complex reactions A + B ⇤
C,B+C ⇤ P+E,C +P ⇤ G as originally posed in [21]. Here the goal is again to find a
(transformed) temperature profile that maximizes the final amount of product P after one hour
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Williams-‐OKo	  Batch	  Reactor	  (u(t)	  ≤	  0.6)	  
A+BàC,	  B+CàP+E,	  C+PàG	  
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Figure 4: Control and Hamiltonian Profiles for Batch Reactor for Series Reactions

(t f = 1). The optimal control problem can be stated as:

min �p(1) (30a)

s.t.
da
dt

= �r1 (30b)

db
dt

= �(r1 + r2) (30c)

dc
dt

= 2r1 �2r2 � r3 (30d)

d p
dt

= r2 � r3 (30e)

a(0) = 1, b(0) = 1, c(0) = 0, p(0) = 0, u(t) ⇤ [0,100] (30f)
(30g)

where r1 = k1a(t)b(t), r2 = k2b(t)c(t), r3 = k3c(t)p(t), and ki = �iu⇥i , i = 1, . . . ,3 and � =
[1,1.21394,0.733], ⇥ = [1,1.25,5/3]. The initial number of finite elements for Step 1 was
set to 20. Here the algorithm is executed but the outer problem fails to meet the Hamiltonian
criterion and the number of elements increases to only 23. Nevertheless, it is instructive to
view one of converged inner problem solutions with the state and control profiles, and element
distribution shown as Figure 5. From this figure, we see that the control profile has a very steep
slope, the length of first finite element is 0.000395414, and the control value at t = 0 is near a
large upper bound. We believe that this essentially unbounded solution contributes to failure of
the method.

To investigate this behavior, we reduce the upper bound on the control profile to u(t)⇥ 0.6
and, again, initialize with 20 elements. The two-stage algorithm terminates with the �1 penalty
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(t f = 1). The optimal control problem can be stated as:

min �p(1) (30a)

s.t.
da
dt

= �r1 (30b)

db
dt

= �(r1 + r2) (30c)

dc
dt

= 2r1 �2r2 � r3 (30d)

d p
dt

= r2 � r3 (30e)

a(0) = 1, b(0) = 1, c(0) = 0, p(0) = 0, u(t) ⇤ [0,100] (30f)
(30g)

where r1 = k1a(t)b(t), r2 = k2b(t)c(t), r3 = k3c(t)p(t), and ki = �iu⇥i , i = 1, . . . ,3 and � =
[1,1.21394,0.733], ⇥ = [1,1.25,5/3]. The initial number of finite elements for Step 1 was
set to 20. Here the algorithm is executed but the outer problem fails to meet the Hamiltonian
criterion and the number of elements increases to only 23. Nevertheless, it is instructive to
view one of converged inner problem solutions with the state and control profiles, and element
distribution shown as Figure 5. From this figure, we see that the control profile has a very steep
slope, the length of first finite element is 0.000395414, and the control value at t = 0 is near a
large upper bound. We believe that this essentially unbounded solution contributes to failure of
the method.

To investigate this behavior, we reduce the upper bound on the control profile to u(t)⇥ 0.6
and, again, initialize with 20 elements. The two-stage algorithm terminates with the �1 penalty
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Williams-‐OKo	  Batch	  Reactor	  (u(t)	  ≤	  0.6)	  
A+BàC,	  B+CàP+E,	  C+PàG	  
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T

Dynamic	  Op?miza?on	  of	  Dis?lla?on	  
Column	  	  

Maintain Product Purity with Feed Disturbance 
s.t. Equilibrium stage model, Binary 
      Equimolar Overflow (no heat balance) 
      Constant Mass Holdup, adjust distillate rate 
      32 trays, 64 DAEs 

described in [12] and is paraphrased below:

min
� t f =240

0
(x1 �0.995)2 +0.1u2dt

s.t.
dx1

dt
=

1
Mcond

V (y2 � x1), x1(0) = x1,0

dx j

dt
=

1
Mtray

L(x j�1 � x j)�V (y j � y j+1), x j(0) = x j,0 j = 2, . . .16

dx17

dt
=

1
Mtray

(Fx f +Lx16 � (F +L)x17 �V (y17 � y18), x17(0) = x17,0

dx j

dt
=

1
Mtray

(F +L)(x j�1 � x j)�V (y j � y j+1), x j(0) = x j,0 j = 18, . . .31

dx32

dt
=

1
Mreb

(F +L)x31 � (F �u1(t))x32 �V y32, x32(0) = x32,0

P = x j�A, jPsat
A, j +(1� x j)�B, jPsat

B, j

y jP = x j�A, jPsat
A, j

Psat
A, j = Psat

A (Tj), Psat
B,i = Psat

B (Tj)

�A, j = �A(x j,Tj), �B, j = �B(x j,Tj)

where (for tray j) M is molar holdup, V and L are vapor and liquid flowrates, respectively, y and
x are vapor and liquid mole fractions, respectively, F is the feed flowrate, � refers to activity
coefficients defined by the Wilson equation, Psat is the vapor pressure, and P and T are pressure
and temperature, respectively. Additional problem data and expressions for �A, �B, Psat

A and Psat
B

can be found in http://www.hedengren.net/research/models.htm.
The initial number of finite elements for Step 1 was set to 20. The two-step algorithm

is executed and terminates with the ⇤1 penalty term at zero. The number of finite elements
increases to 56. This requires 2 iterations to solve the outer problem and a total of 64 IPOPT
iterations for (12). The total time for solving the outer problems is 887.5 CPU seconds. The
value of H̄ from (22) is -0.1123137 and the optimal objective has a value of 24.82098. The final
element distribution along with the state, control and Hamiltonian profiles are shown in Figure
12.

6 Conclusions and Future Directions
We develop a mesh refinement strategy for a class of nonsingular dynamic optimization prob-
lems based on direct transcription. This approach is based on moving finite elements embedded
within a nonlinear programming formulation. Novel features of the algorithm include the direct
location of breakpoints for control profiles, use of accurate sensitivity criteria from the inner,
fixed mesh problem and a termination criterion based on a constant Hamiltonian profile, which
can be embedded directly into the outer problem.

The above solution strategy has significant advantages over the full-space approach in [7]
because it creates two manageable problems from a larger, ill-conditioned one. In the inner
problem, a large-scale, but well-defined fixed-mesh problem is solved. In the outer problem, a
much smaller problem adjusts the mesh to improve the solution. The two-level approach links
these two problems through a large-scale NLP solver and NLP sensitivity algorithm. Applied
to 11 optimal control problems ranging from two to 64 state equations, this direct transcription
approach converges to tight error tolerances and constant Hamiltonian solutions with only a

28
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Dynamic	  Op?miza?on	  of	  Dis?lla?on	  
Column	  	  
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Implications of KKT Results 

•  Direct Transcription using Gauss and Radau Collocation - we obtain 
correct solution for certain classes of problems 

•  Can use NLP Lagrange multipliers for Adjoint estimation 

•  Influence of controllability on the convergence analysis – interesting link 
between control and optimization 

•  Apply to large-scale, real-world applications if Regular OCPs 

  What if Regular OCP assumptions are violated? 
•  High index path constraints 
•  Singular control problems High-index DAE system 
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Differential Equations 

Algebraic Equation 
(does not contain u(t)) 

High-index DAE Models 

144 

High-index DAE Models 

Algebraic Equation 

HIGH INDEX 

High-index Equations  
are hard to solve - numerically 

Differential Equations 
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x = 0 x = π 

Optimal Control of Heat-Conduction Equation 
John Betts (Boeing), Stephen Campbell (NCSU) 

 Transient Heat Conduction Equation   Initial Condition 

 We are free to choose the temperature at the boundaries 

 Minimize the following objective function 

 Path constraint 

146 

x = 0 x = π 

0 1 2 3 n-1 n 

Spatial Discretization 

PDE Optimization 
Problem 

DAE Optimization 
Problem 

Spatial  
 

Discretization 

  Control – T0(t) and Tn(t) 



74 

147 

 Computational experience – Impose constraint only at the center of the rod 

Path Constraints 

 Optimal solution – temperature rides (“active”) on the constraint (center) 

 Control – boundary temperature 
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Symmetry in DAE Optimization Problem 

  n – even number  

  Time scaling; t = δ2 τ 

•   High-Index Problem – Index = n/2 + 1 

•   Very hard to solve numerically 
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PDE Optimization 
Problem 

DAE Optimization 
Problem 

Spatial  
 

Discretization 

Temporal  
 

Discretization 
NLP 

 Betts and Campbell (2003) – “Direct Method Works! But it shouldn’t” 

 Fraction of independent active 
constraints decreases with an 
increase in number of temporal 
meshes. 

 Active set SQP discards a large 
fraction of active constraints. 

  Linear independence of constraint 
gradients fails to hold (to a given 
tolerance level) 

Direct Simultaneous Approach 
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Solution Profiles – Betts-Campbell Problem 
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Inequality Multiplier Profiles  
Betts-Campbell Problem 

152 

 Mangasarian-Fromowitz Constraint Qualification (MFCQ) is satisfied 
     (bounded but nonunique multipliers) 

 Adjoint Estimation – MFCQ means that NLP multipliers are bounded but 
not unique (IPOPT Convergence - Analytic Center of the set of multipliers) 

 Barrier methods retain all constraints and have convergence results with 
MFCQ 

 For even index ≥ 4, a path constraint cannot be active over nonzero interval, 
only “touch and goes” are possible (Jacobsen et.al. 1971) 

 
 Variational (Indirect) approach based on IV-solvers may not work – 

stability and error accumulation 

 NLP based methods – flexibility w.r.t CQs – can be used to obtain 
meaningful solutions for state profiles (but not adjoint profiles) 

NLP Based Methods Could Help ! 
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Singular Optimal Control Problems 

 Control variable appears linearly in the governing equations and the objective 
function 

 Applications 
- Optimal trajectories for space maneuvers – Thrust – control variable 
- Process Engineering – Flow rate – control variable 

 
 Scalar control variable – can be extended to vector controls 

  

Singular optimal control problem 

154 

Singular Optimal Control Problems 

Singular optimal control problem 

 Necessary condition of optimality – Pontryagin’s principle 

 Strictly between bounds, necessary conditions alone fail to determine u(t) 

 Repeated differentiation is required to determine control – High index (≥ 3) 
constraint for indirect approach – CUMBERSOME for large problems 

Not a function of u 
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Example: Catalyst Mixing Problem 
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NE = 100 

time 

u 

NE = 500 

time 

u 

Results of Direct Simultaneous approach on a test problem 

Direct Simultaneous Approach - Singular OCPs 

 While proving convergence results -  

 Singular Problems - Ill-conditioning -  

 Similar problems occur with all other approaches 
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Direct Simultaneous Approach - Singular OCPs 

 
 Based on Indirect Approach - discretize optimality conditions  

 Calculating higher derivatives of Hu –cumbersome for large problems 

  Ill-conditioning (not enough info) – no differentiation ) “REGULARIZATION” 

 Regularization - providing more information to the ill-conditioned problem 
  - Use Radau collocation – well suited for this problem 
  - Ensure that the Hu profile is smooth 
  - Monitor error in the ODE residuals 

Proposed Approach 

 While proving convergence results -  

 Singular Problems - Ill-conditioning -  

 Similar problems occur with all other approaches 
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How Continuous is Hu ? 

q  Totally singular problems – necessary conditions solved using Radau collocation 

q  Radau – well suited for DAEs (and high-index), highest precision after Gauss, good 
stability properties – also clear from reduced Hessian results 

(1,0) (2,0) (2,1) (2,2) (1,1) (1,2) 

Continuity of states and adjoints across elements 
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How Continuous is Hu ? 

q  Totally singular problems – necessary conditions solved using Radau collocation 

q  Radau – well suited for DAEs (and high-index), highest precision after Gauss, good 
stability properties – also clear from reduced Hessian results 

Advantage of  
using  

Radau 
collocation 

Additional 
Information 

Hu at the start of the singular segment has to be forced to zero 
- need higher time derivatives of Hu to be zero.  

162 

Practical Considerations at this Point 

q  Ill-conditioned system – Absolutely essential to set tight solver tolerances 

q  May not want to drive step-size very small 
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Practical Considerations at this Point 

q  Ill-conditioned system – Essential to set tight solver tolerances 

q  May not want to drive step-size very small 

q  Consistent initial conditions ? 

q  Use of h as a regularization parameter - a posteriori determination of regularization 
parameter can be employed 

164 

Is this Sufficient ? 
q  ODE Residual – responsible for spikes 

q  Minimizing residual error - KEY 
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Basis for Minimizing the Residuals 

q  Numerical Observations 

q  Oscillations due to build up of error. By 
minimizing residual – error is reduced 

TSP-1 

166 

Basis for Minimizing the Residuals 

q  Numerical Observations 

q  Oscillations due to build up of error. By 
minimizing residual – error is reduced 

TSP-1 
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Basis for Minimizing the Residuals 

q  Numerical Observations 

q  Oscillations due to build up of error. By 
minimizing residual – error is reduced 

Polynomial of degree K-1 

By minimizing the residual at the start of an 
elements, we try to make a polynomial 
of degree K-1 behave like a polynomial of 
degree K 

q  Adds extra smoothness to the states and 
the adjoints 

TSP-1 
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Basis for Minimizing the Residuals 

q  Numerical Observations 

q  Oscillations due to build up of error. By 
minimizing residual – error is reduced 

q  Adds extra smoothness to the states and 
the adjoints 

q  Attempt a consistent initial condition 

q  Error at non-collocation point  
     – strategy for elemental placement  
     – ensure accurate differential variable    
        profiles  
     – also used in the partially singular  
        case 
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Totally Singular Problem - Regularization 

•  Indirect approach without index 
reformulation – ill-conditioned 
problem 

170 

Optimal Control of a Bioreactor 
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Partially Singular Problems (e.g., Bang-bang and singular) 
What should the formulation consider ? 

q  Switching 

q  Prevent switching within an element – controls at all collocation points within an 
element should all be at a bound or strictly between bounds 

q  “bang-singular” or “singular-bang” – the multiplier on the constrained side has a 
non-strict complementary relation with the control variable – formulation should 
not prevent this 

(1,0) (2,0) (2,1) (2,2) (1,1) (1,2) 

max max singular singular 

non-strict 

q  Objective function described in the previous section – valid only over singular 
segment 

COMPLEMENTARITY (EQUILIBRIUM CONSTRAINTS) BASED FORMULATION 

172 

q  Meshes well with interior point algorithms (IPOPT) 

q  Convergence results (Raghunathan, B., 2002). 

Complementarity Constraints 

q  Way of modeling certain discrete decisions – Switching 

q  Violates standard regularity assumptions (LICQ and MFCQ) associated 
with NLPs – lack of an interior 

q  Add constraints x,y ¸ 0, but add the term xTy to the objective function with a 
large weight – l1 penalty (Leyffer and Nocedal, 2003) 
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Complementarity Formulation 

q  Instead of forcing complementarity at each collocation point – force 
complementarity relations with maximum deviations from the bounds 

174 

Optimization Problem 

q  Complementarity formulation  
  - Make step-size hi also a variable 
  - Use capability of residual error term to place elements 

q  Objective for TSP can 
be used – valid only 
over singular arc – else 
affect multipliers too 
much 

q  Use multipliers to 
decide - singular or not 

q  Can also use 
complementarity – need 
to test 
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Example Problems – Partially Singular OCPs 

176 

Results – Test Example 4 
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Results – Test Example 5 

q  Predicts switching times and value over singular arc accurately – no 
switching within element – permits non-complementary multipliers 

q  Need to investigate formulations that converge faster 

Williams-‐OKo	  Batch	  Reactor	  (u(t)	  ≤	  100)	  
A+BàC,	  B+CàP+E,	  C+PàG	  

0	   0.2	   0.4	   0.6	   0.8	   1	  
!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time
 

 

a
b
c
d
u/100

T
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Williams-‐OKo	  Batch	  Reactor	  (u(t)	  ≤	  0.6)	  
A+BàC,	  B+CàP+E,	  C+PàG	  

!
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1265

0.127

0.1275

Time
 

 

Hamiltonian

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

 

 

a
b
c
d
u

a	  
b	  
c	  
p	  
u	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

T

20à	  20	  elements	  
One	  OP	  solu?on	  
11	  IPOPT	  Inner	  Itera?ons	  
2.5	  CPUs	  
H	  =	  0.02382238	  	  
Φ	  =	  -‐0.06573002542291	  

180	  

Catalyst	  Mixing	  Singular	  Problem	  

q  Predicts	  switching	  <mes	  and	  value	  over	  singular	  arc	  accurately	  –	  no	  switching	  
within	  element	  –	  permits	  non-‐complementary	  mul<pliers	  

q  Need	  to	  inves<gate	  formula<ons	  that	  converge	  faster	  
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Rayleigh	  Problem	  
	  

0 0.5 1 1.5 2 2.5
−6

−4

−2

0

2

4

6

 

 

x1
x2
u

0 0.5 1 1.5 2 2.5
.04

.02

−2

Time
 

 

Hamiltonian

0	   0.5	   1	   1.5	   2	   2.5	  

•  20à	  208	  elements	  
•  4	  OP	  Solu?ons	  
•  428	  IP	  Itera?ons	  
•  1788.4	  CPUs	  
•  H	  =	  -‐2.019174	  	  	  
•  Φ	  =	  29.37608	  

Lee-‐Ramirez	  
	  Bioreactor	  

0 1 2 3 4 5 6 7 8 9 10
0.5
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x1
x2/4
x3/10
x4
x5
x6
x7

0 1 2 3 4 5 6 7 8 9 10
.05

0

.05

0.1

.15

0.2

.25

0.3

.35

 

 

u1
u2

0 1 2 3 4 5 6 7 8 9 10
.52

.54

.56

Time
 

 

Hamiltonian

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

•  20à	  44	  elements	  
•  2	  OP	  Solu?ons	  
•  39	  IPOPT	  Inner	  Itera?ons	  
•  1241.38	  CPUs	  
•  H	  =	  3.54156591	  	  
•  Φ	  =	  -‐6.0995216123	  
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Kirk	  S?rred	  Tank	  Reactor	  
Op?mal	  Feeding	  Profile	  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
.05

0

.05

0.1

.15

0.2

 

 

x1
x2
u/10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
9.6

9.7

x 10−3

Time
 

 

Hamiltonian

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	  

•  20à	  40	  elements	  
•  2	  OP	  Solu?ons	  
•  39	  IPOPT	  Inner	  Itera?ons	  
•  16.1	  CPUs	  
•  H	  =	  0.009716093	  
•  Φ	  =	  0.0167028	  

Van	  de	  Vusse	  Batch	  Reactor	  
AàBàC,	  2AàD	  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
.063

.064

.065

Time
 

 

Hamiltonian

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

 

 

a
b
u

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

T

•  20à	  21	  elements	  
•  2	  OP	  Solu?ons	  
•  42	  IP	  Itera?ons	  
•  11.7	  CPUs	  
•  H	  =	  0.06390922	  	  	  
•  Φ	  =	  -‐0.1585018546365	  
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���
 

I II

A <==> B --> C 
     I      II

Modified	  Catalyst	  Mixing	  Problem	  

without difficulty with solution profiles essentially the same as those presented above and
(very) slight improvements in the objective function.

5 Optimal Control of Modified Singular Problems
We now consider six test examples modified from singular control problems. Since conver-
gence properties for the direct transcription method and our sensitivity approach require coer-
civity conditions on the control problem [13, 11], our two-level method is not guaranteed for
singular control problems. Instead, we add a regularization term,

⇤ t f
0 u2dt, to modify these ex-

amples to be coercive. The first four problems stem from small, singular problems modified
from the literature, while the last two are larger problems related to dynamic process optimiza-
tion.

Aly-Chan Singular Problem

The modified singular optimal control problem [1] is given by:

min
u

z3

��
2

⇥
(31a)

s.t.
dz1

dt
= z2; z1(0) = 0 (31b)

dz2

dt
= u; z2(0) = 1 (31c)

dz3

dt
=

1
2

z2
2 �

1
2

z2
1 +0.1u2; z3(0) = 0 (31d)

�1 ⇥ u ⇥ 1 (31e)

The initial number of finite elements for Step 1 (Problem (11) is 20. The two-step algorithm is
executed and terminates with the �1 penalty term at zero. The number of finite elements is still
20. This requires only 1 iteration to solve the outer problem and a total of 5 IPOPT iterations
for (12). The total time cost for solving the outer problems is 1.6 CPU seconds. The value of H̄
from (22) is 0.4802907 and the optimal objective has a value of 0.03836184. The final element
distribution along with the state, control and Hamiltonian profiles are shown in Figure 7.

Modified Catalyst Mixing Problem

In this problem the reactions A ⌅⇧ B ⇤ C take place in a tubular reactor at constant
temperature. The first reaction is reversible and is catalyzed by Catalyst I while the second
irreversible reaction is catalyzed by Catalyst II. The goal of this problem is to determine the
optimal mixture of catalysts along the length t of the reactor in order to maximize the amount
of product C. The modified optimal catalyst mixing problem, can be stated as:

min a(t f )+b(t f )�a0 +0.1
⌅ t f

0
u2dt (32a)

s.t.
da(t)

dt
= �u(k1a(t)� k2b(t)) (32b)

db(t)
dt

= u(k1a(t)� k2b(t))� (1�u)k3b(t) (32c)

a(0) = 1, b(0) = 0, u(t) ⌃ [0,1]. (32d)

21

	  	  	  A	  çè	  B	  è	  C	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  I	  	  	  	  	  	  	  	  	  II	  

Solved	  with	  earlier	  MFE	  strategy	  
(Chen,	  Shao,	  Wang,	  B.,	  2012)	  
	  
Need	  to	  sa?sfy	  Coercivity	  
Condi?ons	  to	  guarantee	  SSOSC	  
and	  unique	  sensi?vity.	  	  

Modified	  Aly-‐Chan	  Singular	  Problem	  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.5

0

0.5

1

1.5

 

 

z1
z2
z3
u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
4798

4802

4806

Time
 

 

Hamiltonian

0	   0.2	   0.4	   0.6	   0.8	   1	   1.2	   1.4	   1.6	  

•  20à	  21	  elements	  
•  One	  OP	  Solu?on	  
•  26	  IP	  Itera?ons	  
•  2.5	  CPUs	  
•  H	  =	  0.04052572	  	  	  
•  Φ	  =	  -‐0.01501906	  
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Interface of DynoPC               

Output/Graphics & Texts Model in FORTRAN 

F2c/C++ 

ADOL_C 

Preprocessor 

DDASSL 

COLDAE 

Data/Config. 

Simulator/Discretizer 

F/DF 

Starting Point Linearization 

Optimal Solution 

FILTER 

Reduced 
Space IPOPT 

F/DF 
Line Search 

Calc. of independent  
variable move 

Interior Point 
Newton Step 

Decomposition 

DynoPC – Windows Implementation 
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A B C
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Example: Batch Reactor Temperature 
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Example: Car Problem 

  Min  tf 
  s.t.  z1' = z2 
                  z2' = u 

    z2 ≤ zmax 

   -2 ≤ u ≤ 1 

	

���
 

      subroutine model(nz,ny,nu,np,t,z,dmz,y,u,p,f) 
      double precision t, z(nz),dmz(nz), y(ny),u(nu),p(np) 
 
      double precision f(nz+ny) 
       
      f(1) = p(1)*z(2) - dmz(1) 
      f(2) = p(1)*u(1) - dmz(2) 
 
      return 
      end 40 30 20 10 0 -3 
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Example: Crystallizer Temperature 

Steam 

Cooling 
water 

TT TC 

Control variable = Tjacket = f(t)? 

Maximize crystal size 
at final time 
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Crystal Size T jacket

      SUBROUTINE model(nz,ny,nu,np,x,z,dmz,y,u,p,f) 
      implicit double precision (a-h,o-z) 
      double precision f(nz+ny),z(nz),dmz(nz),Y(ny),yp(4),u(1) 
      double precision kgr, ln0, ls0, kc, ke, kex, lau, deltT, alpha 
      dimension a(0:3), b(0:3) 
      data alpha/1.d-4/,a/-66.4309d0, 2.8604d0, -.022579d0, 6.7117d-5/, 
     +  b/16.08852d0, -2.708263d0, .0670694d0, -3.5685d-4/, kgr/ 4.18d-3/, 
     +  en / 1.1d0/, ln0/ 5.d-5/, Bn / 3.85d2/, em / 5.72/, ws0/ 2.d0/, 
     +  Ls0/ 5.d-4     /, Kc / 35.d0 /, Kex/ 65.d0/, are/ 5.8d0 /, 
     +  amt/ 60.d0  /, V0 / 1500.d0/, cw0/ 80.d0/,cw1/ 45.d0/,v1 /200.d0/, 
     +  tm1/ 55.d0/,x6r/0.d0/, tem/ 0.15d0/,clau/ 1580.d0/,lau/1.35d0/, 
     +   cp/ 0.4d0    /,cbata/ 1.2d0/, calfa/ .2d0   /, cwt/ 10.d0/ 
 
      ke = kex*area   
      x7i = cw0*lau/(100.d0-cw0) 
      v = (1.d0 - cw0/100.d0)*v0  
      w = lau*v0   
      yp(1) = (deltT + dsqrt(deltT**2 + alpha**2))*0.5d0 
      yp(2) = (a(0) + a(1)*yp(4) + a(2)*yp(4)**2 + a(3)*yp(4)**3) 
      yp(3) = (b(0) + b(1)*yp(4) + b(2)*yp(4)**2 + b(3)*yp(4)**3) 
      deltT = yp(2) - z(8)   
      yp(4) = 100.d0*z(7)/(lau+z(7)) 
 
      f(1) = Kgr*z(1)**0.5*yp(1)**en - dmz(1) 
      f(2) = Bn*yp(1)**em*1.d-6 - dmz(2) 
      f(3) = ((z(2)*dmz(1) + dmz(2) * Ln0)*1.d+6*1.d-4) - dmz(3) 
      f(4) = (2.d0*cbata*z(3)*1.d+4*dmz(1)+dmz(2)*Ln0**2*1.d+6)-dmz(4) 
      f(5) = (3.d0*calfa*z(4)*dmz(1)+dmz(2)*Ln0**3*1.d+6) - dmz(5) 
      f(6) = (3.d0*Ws0/(Ls0**3)*z(1)**2*dmz(1)+clau*V*dmz(5))-dmz(6) 
      f(7) = -dmz(6)/V - dmz(7) 
      f(8) = (Kc*dmz(6) - Ke*(z(8) - u(1)))/(w*cp) - dmz(8) 
      f(9) = y(1)+YP(3)- u(1)  
      return 
      end 


