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tf, final time
u, control variables
p, time independent parameters

t,  time
z, differential variables
y, algebraic variables

Dynamic Optimization Dynamic Optimization ProblemProblem
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DAE Models in Process Engineering

Differential Equations
•Conservation Laws (Mass, Energy, Momentum)

Algebraic Equations
•Constitutive Equations, Equilibrium (physical properties, 
hydraulics, rate laws)
•Semi-explicit form
•Assume to be index one (i.e., algebraic variables can be solved 
uniquely by algebraic equations)
•If not, DAE can be reformulated to index one (see Ascher and 
Petzold)

Characteristics
•Large-scale models – not easily scaled
•Sparse but no regular structure
•Direct linear solvers widely used
•Coarse-grained decomposition of linear algebra
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Catalytic Cracking of Gasoil (Tjoa, 1991)

number of states and ODEs: 2
number of parameters:3
no control profiles
constraints: pL ≤ p ≤ pU

Objective Function: Ordinary Least Squares

(p1, p2, p3)0 = (6, 4, 1)
(p1, p2, p3)* = (11.95, 7.99, 2.02)
(p1, p2, p3)true = (12, 8, 2)
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Batch Distillation Multi-product Operating Policies

•Run between distillation batches
•Treat as boundary value optimization problem

•When to switch from A to offcut to B?
•How much offcut to recycle?
•Reflux?
•Boilup Rate?
•Operating Time?

A B
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Nonlinear Model Predictive Control (NMPC)

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
variables

ysp : set points
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NMPC Estimation and Control
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Why NMPC?

n Track a profile

n Severe nonlinear dynamics (e.g, 
sign changes in gains)

n Operate process over wide range 
(e.g., startup and shutdown)

Model Updater
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Optimization of dynamic batch process operation resulting from reactor and 
distillation column 

DAE models:
z' = f(z, y, u, p)
g(z, y, u, p) = 0

number of states and DAEs: nz + ny
parameters for equipment design 
(reactor, column)
nu control profiles for optimal operation

Constraints: uL ≤ u(t) ≤ uU zL ≤ z(t) ≤ zU

yL ≤ y(t) ≤ yU pL ≤ p ≤ pU

Objective Function: amortized economic function at end of cycle time tf
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Reactor Design Example
Plug Flow Reactor Optimization

The cracking furnace is an important example in the olefin production industry, where various 
hydrocarbon feedstocks react. Consider a simplified model for ethane cracking (Chen et al., 
1996). The objective is to find an optimal profile for the heat flux along the reactor in order to 
maximize the production of ethylene. 

Max   
s.t. DAE

The reaction system includes six molecules, three free radicals, and seven reactions. The 
model also includes the heat balance and the pressure drop equation. This gives a total of 
eleven differential equations.

Concentration and Heat Addition Profile
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Dynamic Optimization Approaches

DAE Optimization Problem

Sequential Approach

Vassiliadis(1994)Discretize 
controls

Variational Approach

Pontryagin(1962)

Inefficient for constrained 
problems

Apply a NLP solver

Efficient for constrained problems
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Sequential Approaches - Parameter Optimization

Consider a simpler problem without control profiles: 

e.g., equipment design with DAE models - reactors, absorbers, heat exchangers

Min Φ (z(tf))

z' = f(z, p), z (0) = z0

g(z(tf)) ≤ 0, h(z(tf)) = 0

By treating the ODE model as a "black-box" a sequential algorithm can be constructed that can 
be treated as a nonlinear program.

Task:  How are gradients calculated for optimizer?

NLP
Solver

ODE
Model

Gradient
Calculation

P

φ,g,h

z (t)

12

Gradient Calculation

Perturbation

Sensitivity Equations

Adjoint Equations

Perturbation

Calculate approximate gradient by solving ODE model  (np + 1) times

Let ψ = Φ, g and h (at t = tf)

dψ/dpi = {ψ (pi + ∆pi) - ψ (pi)}/ ∆pi

Very simple to set up

Leads to poor performance of optimizer and poor detection of optimum unless 
roundoff error (O(1/∆pi) and truncation error (O(∆pi)) are small. 

Work is proportional to np (expensive)
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Direct Sensitivity

From ODE model:

(nz x np sensitivity equations)

• z and si , i = 1,…np, an be integrated forward simultaneously.

• for implicit ODE solvers, si(t) can be carried forward in time after converging on z

• linear sensitivity equations exploited in ODESSA, DASSAC, DASPK, DSL48s and a 
number of other DAE solvers

Sensitivity equations are efficient for problems with many more constraints than 
parameters (1 + ng + nh > np)
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Example:  Sensitivity Equations
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Adjoint Sensitivity 

Adjoint or Dual approach to sensitivity

Adjoin model to objective function orconstraint 

(ψ = Φ,g or h)

(λ(t)) serve as multipliers on ODE's)

Now, integrate by parts

Take variations and  find  dψ/dp subject to feasibility of ODE's

Now, set all terms notin dp to zero.
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Adjoint System

Integrate model equations forward

Integrate adjoint equations backward and evaluate integral and sensitivities.  

Notes:

nz (ng + nh + 1) adjoint equations must be solved backward (one for each 
objective and constraint function)

for implicit ODE solvers, profiles (and even matrices) can be stored and 
carried backward after solving forward for z as in DASPK/Adjoint (Li and 
Petzold) and CVODES (Serban and Hindmarsh)

more efficient on problems where: np > 1 + ng + nh
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Example:  Adjoint Equations
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A + 3B --> C + 3D

L

Ts

TR

TP

3:1 B/A 
383 K

TP =  specified product temperature
TR =  reactor inlet, reference temperature
L    =  reactor length
Ts  =  steam sink temperature
q(t) =  reactor conversion profile
T(t) = normalized reactor temperature profile

Cases considered:
• Hot Spot - no state variable constraints
• Hot Spot with T(t) ≤ 1.45

Example:  Hot Spot Reactor
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Method: SQP (perturbation derivatives)

L(norm)  TR(K) TS(K) TP(K)
Initial: 1.0 462.23 425.26 250
Optimal: 1.25 500 470.1 188.4
13 SQP iterations / 2.67 CPU min. (µVax II)

Constrained Temperature Case (T ≤ 1.45): could not be solved with sequential method 

Hot Spot Reactor: Unconstrained Case
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Variable Final Time(Miele, 1980)

Define t = pn+1 τ,  0 ≤ τ ≤ 1, pn+1 = tf

Let  dz/dt = (1/ pn+1) dz/dτ = f(z, p) ⇒  dz/dτ = (pn+1) f(z, p)

Converting Path Constraints to Final Time

Define measure of infeasibility as a new variable, znz+1(t) (Sargent & Sullivan, 1977):

Tricks to generalize classes of problems
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Profile Optimization - (Optimal Control)

Optimal Feed Strategy (Schedule) in Batch Reactor 

Optimal Startup and Shutdown Policy

Optimal Control of Transients and Upsets

Sequential Approach: Approximate control profile as through parameters (piecewise 
constant, linear, polynomial, etc.)

Apply NLP to discretization as with parametric optimization

Obtain gradients through adjoints (Hasdorff; Sargentand Sullivan; Goh and Teo) or 
sensitivity equations (Vassiliadis, Pantelides and Sargent; Gill, Petzold et al.)

Variational (Indirect) approach: Apply optimality conditions and solve as boundary 
value problem

22

Optimality Conditions(Bound constraints on u(t))

Min φ(z(tf))
s.t. dz/dt= f(z, u), z (0) = z0

g (z(tf)) ≤ 0
h (z(tf)) = 0
a ≤ u(t) ≤ b

Form Lagrange function - adjoin objective function and constraints:

Derivation of Variational Conditions 
Indirect Approach

dt)b)t(u())t(ua()u,z(fz

)t(z)t()(z)(v))t(z(h))t(z(g)t(

dt)b)t(u())t(ua()z)u,z(f(

v))t(z(h))t(z(g)t(

T
b

t
T
a

TT

ff
TTT

f
T

ff

T
b

t
T
a

T

T
f

T
ff

f

f

 

00

:partsby  Integrate

 

0

0

−+−+++

−+++=

−+−+−+

++=

∫

∫

ααλλ

λλµφφ

ααλ

µφφ

&

&



12

23

λ ft( )=
∂φ
∂z

+
∂g

∂z
µ +

∂h

∂z
γ 

 
 

 
 
 

ft =t

∂f

∂u
λ =

∂H

∂u
= 0

∂ H

∂u
= α a − α b

α a
T (a − u(t))

αb
T (u(t) − b)

ua ≤ u(t) ≤ ub

α a ≥ 0,α b ≥ 0

∂H

∂u
= −α b ≤ 0

∂H

∂u
= αa ≥ 0

At optimum, δφ ≥ 0.  Since u is the control variable, let all other terms vanish.
⇒ δz(tf):

δz(0): λ(0) = 0  (if z(0) is not specified)
δz(t):

Define Hamiltonian, H = λTf(z,u)
For u notat bound:

For u atbounds:

Upper bound, u(t) = b, Lower bound, u(t) = a, 

Derivation of Variational Conditions
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Car Problem
Travel a fixed distance (rest-to-rest) in minimum time.
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Optimal 
Profile

From state equations:

x1(t) = 

x2 (t) = 

Apply boundary conditions at t = tf:
x1(tf) = 1/2 (b ts

2 - a (ts - tf)2) = L
x2(tf) = bts + a (tf - ts) = 0
⇒  ts = 

tf = 

•Problem is linear in u(t). Frequently 
these problems have "bang-bang" 
character.
•For nonlinear and larger problems, the 
variational conditions can be solved 
numerically as boundary value 
problems.

Car Problem
Analytic Variational Solution

26
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Example:  Batch reactor - temperature profile 

Maximize yield of B after one hour's operation by manipulating a transformed 
temperature, u(t).

⇒

Optimality conditions:

Cases Considered
1. NLP Approach- piecewise constant and linear profiles.
2. Indirect Approach
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Batch Reactor Optimal Temperature Program 
Piecewise Constant
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Results
Piecewise Constant Approximation with Variable Time Elements
Optimum B/A:  0.57105

28

O
pt

im
al

 P
ro

fil
e,

 u
(t

)

0. 0.2 0.4 0.6 0.8 1.0

2

4

6

Time, h

Results:
Piecewise Linear Approximation with Variable Time Elements
Optimum B/A:  0.5726
Equivalent # of ODE solutions:  32

Batch Reactor Optimal Temperature Program 
Piecewise Linear
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Results:
Control Vector Iteration with Conjugate Gradients
Optimum (B/A):  0.5732
Equivalent # of ODE solutions:  58

Batch Reactor Optimal Temperature Program 

Indirect Approach

30

Dynamic Optimization - Sequential Strategies

Small NLP problem, O(np+nu) (large-scale NLP solver not required) 
• Use NPSOL, NLPQL, etc. 
• Second derivatives difficult to get

Repeated solution of DAE model and sensitivity/adjoint equations, scales with 
nz and np

• Dominant computational cost
• May fail at intermediate points

Sequential optimization is not recommended for unstable systems. State 
variables blow up at intermediate iterations for control variables and 
parameters.

Discretize control profiles to parameters (at what level?)

Path constraints are difficult to handle exactly for NLP approach
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Instabilities in DAE Models
This example cannot be solved with sequential methods (Bock, 1983):

dy1/dt = y2

dy2/dt = τ2 y1 + (π2 − τ2) sin (π t)

The characteristic solution to these equations is given by:

y1(t) = sin (π t) + c1 exp(-τ t) + c2 exp(τ t)

y2 (t) = π cos (π t) - c1 τ exp(-τ t) + c2 τ exp(τ t) 

Both c1 and c2 can be set to zero by either of the following equivalent 
conditions:

IVP y1(0) = 0, y2 (0) = π

BVP y1(0) = 0, y1(1) = 0

32

IVP Solution
If we now add roundoff errors e1 and e2 to the IVP and BVP conditions, we 
see significant differences in the sensitivities of the solutions. 

For the IVP case, the sensitivity to the analytic solution profile is seen by 
large changes in the profiles y1(t) and y2(t) given by:

y1(t) = sin (π t) + (e1 - e2/τ) exp(-τ t)/2  

+(e1 + e2/τ) exp(τ t)/2

y2 (t) = π cos (π t) - (τ e1 - e2) exp(-τ t)/2 

+ (τ e1 + e2) exp(τ t)/2

Therefore, even if e1 and e2 are at the level of machine precision (< 10-13), a 
large value of τ and t will lead to unbounded solution profiles. 
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BVP Solution

On the other hand, for the boundary value problem, the errors 
affect the analyticsolution profiles in the following way: 

y1(t) = sin (π t) + [e1 exp(τ)- e2] exp(-τ t)/[exp(τ) - exp(-τ)] 

+ [e1 exp(-τ) - e2] exp(τ t)/[exp(τ) - exp(-τ)] 

y2(t) = π cos (π t) – τ [e1 exp(τ)- e2] exp(-τ t)/[exp(τ) - exp(-τ)] 

+ τ [e1 exp(-τ) - e2] exp(τ t)/[exp(τ) - exp(-τ)] 

Errors in these profiles never exceed τ (e1 + e2), and as a result a 
solution to the BVP is readily obtained.

34

BVP and IVP Profiles

e1, e2 = 10-9

Linear BVP solves easily

IVP blows up before midpoint
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Dynamic Optimization Dynamic Optimization ApproachesApproaches

DAE Optimization Problem

Multiple Shooting

Sequential Approach

Vassiliadis(1994)

Can not handle instabilities properly
Small NLP

Handles instabilities Larger NLP

Discretize some 
state variables

Discretize 
controls

Variational Approach

Pontryagin(1962)

Inefficient for constrained 
problems

Apply a NLP solver

Efficient for constrained problems

36

Multiple Shooting for Dynamic Optimization

Divide time domain into separate regions

Integrate DAEs state equations over each region 

Evaluate sensitivities in each region as in sequential approach wrt uij, p and zj

Impose matching constraints in NLP for state variables over each region

Variables in NLP are due to control profiles as well as initial conditions in each region
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Multiple Shooting
Nonlinear Programming Problem
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BVP Problem Decomposition

Consider: Jacobian of Constraint Matrix for NLP

• bound unstable modes with boundary conditions (dichotomy)

• can be done implicitly by determining stable pivot sequences in multiple shooting constraints 
approach

• well-conditioned problem implies dichotomy in BVP problem (deHoog and Mattheij)

Bock Problem (with τ = 50)

• Sequential approach blows up (starting within 10-9 of optimum)

• Multiple Shooting optimization requires 4 SQP iterations

B1 A1

A2

A3

A4

AN

B2

B3

B4

BN

IC

FC
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Dynamic Optimization – Multiple Shooting Strategies

Larger NLP problem O(np+NE (nu+nz)) 
• Use SNOPT, MINOS, etc.
• Second derivatives difficult to get

Repeated solution of DAE model and sensitivity/adjoint equations, scales with nz
and np

• Dominant computational cost
• May fail at intermediate points

Multiple shooting can deal with unstable systems with sufficient time elements. 

Discretize control profiles to parameters (at what level?)

Path constraints are difficult to handle exactly for NLP approach

Block elements for each element are dense!

Extensive developments and applications by Bock and coworkers using MUSCOD 
code

40

Dynamic Optimization Dynamic Optimization ApproachesApproaches

DAE Optimization Problem

Simultaneous Approach

Sequential Approach

Vassiliadis(1994)

Can not handle instabilities properly
Small NLP

Handles instabilities Large NLP

Discretize all 
state variables

Discretize 
controls

Variational Approach

Pontryagin(1962)

Inefficient for constrained 
problems

Apply a NLP solver

Efficient for constrained problems



21

41

Nonlinear Dynamic
Optimization Problem 

Collocation on
finite Elements

Continuous variablesContinuous variables

Nonlinear Programming
Problem (NLP)Discretized variablesDiscretized variables

Nonlinear Programming Formulation
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Discretization of Differential Equations 
Orthogonal Collocation

Given:dz/dt = f(z, u, p), z(0)=given

Approximate zand u by Lagrange interpolation polynomials (order 
K+1 and K, respectively) with interpolation points, tk
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Collocation Example
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z(t)

zN+1 (t)
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t 1 t 2 t 3

Min φ(z(tf))
s.t. z' = f(z, u, p), z(0)=z0

g(z(t), u(t), p) ≤ 0
h(z(t), u(t), p) = 0

to Nonlinear Program

How accurate is approximation

Converted Optimal Control Problem

Using Collocation
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Results of Optimal Temperature Program 
Batch Reactor (Revisited)

Results- NLP with Orthogonal Collocation
Optimum B/A - 0.5728
# of ODE Solutions - 0.7(Equivalent)
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to tf
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Nonlinear Programming ProblemNonlinear Programming Problem
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Finite elements,hi, can also be variable to 
determine break points for u(t).

Add  hu ≥ hi ≥ 0, Σ hi=t f

Can add constraints g(h, z, u) ≤ ε for 
approximation error
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A + 3B --> C + 3D

L

Ts

TR

TP

3:1 B/A 
383 K

TP =  specified product temperature
TR =  reactor inlet, reference temperature
L    =  reactor length
Ts  =  steam sink temperature
q(t) =  reactor conversion profile
T(t) = normalized reactor temperature profile

Cases considered:
• Hot Spot - no state variable constraints
• Hot Spot with T(t) ≤ 1.45

Hot Spot Reactor Revisited
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Base Case Simulation
Method: OCFE at initial point with 6 equally spaced elements

L(norm)  TR(K) TS(K) TP(K)
Base Case: 1.0 462.23 425.26 250
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Unconstrained Case
Method: OCFE combined formulation with rSQP

identical to integrated profiles at optimum 
L(norm)  TR(K) TS(K) TP(K)

Initial: 1.0 462.23 425.26 250
Optimal: 1.25 500 470.1 188.4

123 CPU s. (µVax II)
φ∗ = -171.5
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Temperature Constrained Case
T(t)  ≤ 1.45

Method: OCFE combined formulation with rSQP, 
identical to integrated profiles at optimum

L(norm)     TR(K) TS(K) TP(K)
Initial: 1.0 462.23       425.26 250
Optimal: 1.25 500 450.5 232.1

57 CPU s. (µVax II), φ∗ = -148.5
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Theoretical Properties of Simultaneous Method

A.  Stability and Accuracy of Orthogonal Collocation

• Equivalent to performing a fully implicit Runge-Kutta integration of 
the DAE models at Gaussian (Radau) points

• 2K order (2K-1) method which uses K collocation points
• Algebraically stable (i.e., possesses A, B, AN and BN stability)

B.  Analysis of the Optimality Conditions

• An equivalence has been established between the Kuhn-Tucker 
conditions of NLP and the variational necessary conditions

• Rates of convergence have been established for the NLP method
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Dynamic Optimization Engines

Evolution of NLP Solvers:

� for dynamic optimization, control and estimation

E.g., NPSOL and Sequential Dynamic 
Optimization - over 100 variables and constraints  
E.g, SNOPT and Multiple Shooting - over 100 
d.f.s but over 105 variables and constraints
E.g., IPOPT - Simultaneous dynamic optimization
over 1 000 000 variables and constraints

SQP rSQP Full-space
Barrier

Object Oriented Codes tailored to structure, sparse linear
algebra and computer architecture (e.g., IPOPT 3.2)

54

Hierarchy of Nonlinear Programming for 
Dynamic Optimization Formulations 

Variables/Constraints
102 104 106

Black Box

Direct Sensitivities

Single Shooting

Multiple Shooting

Adjoint Sensitivity

Simultaneous 
Full Space Formulation

100

SQPSQP

rSQPrSQP

Interior PointInterior Point

DFODFO

C
om

putational E
fficiency
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Comparison of Computational Complexity
(α ∈ [2, 3], β ∈ [1, 2], nw, nu - assume Nm = O(N))

((nu + nw)N)------Backsolve

((nu + nw)N)β(nu N)α(nu N)αStep Determination

---nw
3 N---NLP Decomposition

N (nu + nw)(nw N) (nu + nw)2(nw N) (nu N)2Exact Hessian

N (nu + nw)(nw N) (nu + nw)(nw N) (nu N)Sensitivity

---nw
β Nnw

β NDAE Integration

SimultaneousMultiple 
Shooting 

Single 
Shooting

O((nuN)α + N2nwnu

+ N3nwnu
2)

O((nuN)α + N nw
3

+ N nw (nw +nu)2)

O((nu + nw)N)β

56

Case Studies
• Reactor - Based Flowsheets
• Fed-Batch Penicillin Fermenter
• Temperature Profiles for Batch Reactors
• Parameter Estimation of Batch Data
• Synthesis of Reactor Networks
• Batch Crystallization Temperature Profiles
• Grade Transition for LDPE Process
• Ramping for Continuous Columns
• Reflux Profiles for Batch Distillation and Column Design
• Source Detection for Municipal Water Networks
• Air Traffic Conflict Resolution
• Satellite Trajectories in Astronautics
• Batch Process Integration
• Optimization of Simulated Moving Beds

Simultaneous DAE Optimization
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Production of High Impact Polystyrene (HIPS)
Startup and Transition Policies (Flores et al., 2005a)

Catalyst 

Monomer, 
Transfer/Term. 
agents

Coolant

Polymer
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Upper Steady−State

Bifurcation Parameter

System State

Lower Steady−State

Medium Steady−State

Phase Diagram of Steady States

Transitions considered among all steady state pairs
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• 926 variables
• 476 constraints
• 36 iters. / 0.95 CPU s (P4)

Startup to Unstable Steady State

60

HIPS Process Plant (Flores et al., 2005b)

•Many grade transitions considered with stable/unstable pairs

•1-6 CPU min (P4) with IPOPT

•Study shows benefit for sequence of grade changes to 
achieve wide range of grade transitions. 
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Cyclic Steady State
Step

Liquid Flow

FeedDesorbent

Extract Raffinate

1

Liquid Flow

FeedDesorbent

Extract Raffinate

2

Liquid Flow

FeedDesorbent

Extract Raffinate

3

Liquid Flow

FeedDesorbent

Extract Raffinate

4

Liquid Flow

FeedDesorbent

Extract Raffinate

5

Liquid Flow

FeedDesorbent

Extract Raffinate
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Liquid Flow

FeedDesorbent

ExtractRaffinate
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Liquid Flow

FeedDesorbent

ExtractRaffinate
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Liquid Flow

FeedDesorbent

ExtractRaffinate
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Liquid Flow

FeedDesorbent

ExtractRaffinate
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Liquid Flow

Feed Desorbent

ExtractRaffinate
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Liquid Flow

Feed Desorbent

ExtractRaffinate
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Liquid Flow

Feed Desorbent

ExtractRaffinate

13

Liquid Flow

Feed Desorbent

ExtractRaffinate

14

Liquid Flow

Feed Desorbent

Extract Raffinate

15

Liquid Flow

Feed Desorbent

Extract Raffinate

16

Liquid Flow

FeedDesorbent

Extract Raffinate

17

SMB Applications

• Petrochemical (Xylene isomers)

• Sugars (Fructose/glucose separation) � High fructose corn syrup

• Pharmaceuticals (Enantiomeric separation)
Separate ‘good’ from ‘bad’ compounds based on chirality
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Simulated Moving Bed

Direction of liquid flow
and valve switching

Feed

Raffinate

Desorbent

Extract
Repeats exactly

the same operation

(Symmetric)

Feed Raffinate

DesorbentExtract

Operating parameters:

4 Zone velocities

+

Step time

Zone 4 Zone 2

Zone 3

Zone 1

Feed

RaffinateDesorbent

Extract
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Formulation of Optimization Problem

Zone velocities Step time

(Maximize average feed velocity)

Bounds on liquid velocities

Product requirements

CSS constraintSMB model

64

Treatment of PDEs: Single Discretization

t

x

1. PDE is discretized only in x ( turn a PDE into ODEs)

2. Set of ODEs are Integrated

ODE (Handled by integrator)PDE

C(xi,t)

t

Step size determined 
as integration proceeds



33

65

Treatment of PDEs: Simultaneous Approach

t

x

(Orthogonal Collocation on Finite Elements)

k=1

k=2
k=3

Algebraic equations PDE

Step size is 
determined a priori

t
Huge number of variables 
(handled by optimizer)

C(xi,t)
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Comparison of two approaches

CPU Time*

Shooting Approach 111.8 min

1.53 min
Simultaneous Approach

# of iteration

49
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Comp.2 Full discretization Shooting and Simultaneous 

methods find the same optimal 
solution

# of variables

33999

644
Implemented on gPROMS, solved using SRQPD

Implemented on AMPL, solved using IPOPT

*On Pentium IV 2.8GHz

(89% spent by integrator)

(Linear isotherm, fructose/glucose separation)

Initial feed velocity: 0.01 m/h

Optimal feed velocity: 0.52 m/h

Optimization
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Superstructure for Zone Configuration 

u
D1

u
F1

u
E1

u
E2

u
R1

u
F2

u
E3

u
R2

u
F3

u
E4

u
R3

u
F4

u
E5

u
R4

u
F5

u
E6

u
R5

u
R6

All velocities are constant

8 columns, multiple streams

Repeat exactly same stream policies for each step 

Constraints:
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Allows straightforward zone configuration optimizatio n

2-2-2-2

5 6

2 1

Feed Raffinate

DesorbentExtract

3

4 7

8

Superstructure configuration AVOIDS enumerating all configurations

CPU Time*: 1.73 min

Optimal feed velocity: 1.158 m/h
*On Xeon 3.2GHz

Optimal :
1-3-3-1

3

4

8

2

5 6 7

1

Feed Raffinate

DesorbentExtract

Optimal feed velocity: 0.906 m/h

4

5

8

3

6 7

1

Feed Raffinate

Extract

2

Desorbent

1-4-2-1

1.052 m/h

8

4

6 7

3

Feed Raffinate

Extract Desorbent
2 1

5

0.957 m/h

3-2-2-1

# of columns 8 10 12 14

# of zone configurations 35 84 165 286

Too many configurations to enumerate!
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� Standard SMB

Nonstandard SMB: Addressed by  
Extended Superstructure NLP

� Three Zone

(Circulation loop is cut open)

� VARICOL

(Asynchronous switching)

70
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Optimal Operating Scheme:
Result of Superstructure Optimization
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CPU Time for optimization: 9.03 min*

34098 variables, 34013 equations 
*on Xeon 3.2 GHz
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Nonlinear Model Predictive Control (NMPC)

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
variables

ysp : set points
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NMPC Estimation and Control
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NMPC Subproblem

Why NMPC?

n Track a profile

n Severe nonlinear dynamics (e.g, 
sign changes in gains)

n Operate process over wide range 
(e.g., startup and shutdown)

Model Updater
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( )dpuyzG

dpuyzFz
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=
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Dynamic optimization in a 
MATLAB Framework

Dynamic Optimization 
Problem

Process Model

Inequality Constraints

Initial Conditions

Constraints at Final Time

Objective Function

( ) 0puyxxf =′ t,,,,,
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NLP Optimization 
Problem

Process Model

Inequality Constraints

Constraints at Final Time

Objective Function
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Full 
Discretization 
of State and 

Control 
Variables

Discretization 
Method

No. of Time 
Elements

Collocation 
Order

 Saturator-System

copy ofDesign

Wärmeschaltplan
Nr. -F Ref T - 
Erlangen, 13.Oc t.1999

SIEM ENS AG
F Ref T  In Bearbeitung

P..Druck ..bar

M..Massens trom..kg/s

PHI..Luft-Feuchte..%

H..Enthalpie..kJ /kg

T..Temperatur..°C

bar kJ /kg
kg/s °C  (X)

JOBKENNUNG : C:\Krawal-modular\IGCC\IGCC_Puertollano_komplett.gek

Alle Drücke s ind absolut

Dynamic Process
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Tennessee Eastman Process

Unstable Reactor

11 Controls; Product, Purge streams

Model extended with energy balances

74

Tennessee Eastman Challenge Process

Method of Full Discretization of State and Control Variables

Large-scale Sparse block-diagonal NLP

11Difference (control variables)

141Number of algebraic equations

152Number of algebraic variables

30Number of differential equations

DAE Model

14700Number of nonzeros in Hessian

49230Number of nonzeros in Jacobian

540Number of upper bounds

780Number of lower bounds

10260Number of constraints

10920
0

Number of variables
of which are fixed

NLP Optimization problem
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Setpoint change studies

Setpoint changes for the base case [Downs & Vogel]

+2%
Make a step change so that the composition of 
component B in the gas purge changes from 
13.82 to 15.82%

Step
Purge gas composition of 
component B change

-60 kPa
Make a step change so that the reactor operating 
pressure changes from 2805 to 2745 kPa

Step
Reactor operating pressure 
change

-15%
Make a step change to the variable(s) used to set 
the process production rate so that the product 
flow leaving the stripper column base changes 
from 14,228 to 12,094 kg h-1

StepProduction rate change

MagnitudeTypeProcess variable

76

Case Study:
Change Reactor pressure by 60 kPa

Control profiles 

All profiles return to their 
base case values

Same production rate

Same product quality

Same control profile

Lower pressure – leads to 
larger gas phase (reactor) 
volume

Less compressor load
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TE Case Study – Results I

Shift in TE process 

Same production rate

More volume for reaction

Same reactor temperature

Initially less cooling water flow 
(more evaporation)

78

Case Study- Results II

Shift in TE process 

Shift in reactor effluent to more 
condensables

Increase cooling water flow

Increase stripper steam to 
ensure same purity

Less compressor work
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Case Study: 
Change Reactor Pressure by 60 kPa

Optimization with IPOPT

1000 Optimization Cycles

5-7 CPU seconds

11-14 Iterations

Optimization with SNOPT

Often failed due to poor 
conditioning

Could not be solved within 
sampling times

> 100 Iterations

80

Parameter/State Estimation

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
variables

ysp : set points
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NMPC Estimation and Control
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Parameter Estimation Subproblem

Moving Horizon Estimation?

n Estimate a finite number of 
states and model parameters 
(unmeasured disturbances, rate 
constants, transport parameters)

n Compensate for process drifts 
and slowly changing conditions

n Allow better controller 
performance

Model Updater
( )

( )dpuyzG

dpuyzFz

,,,,0

,,,,

=
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Early Warning Detection System 
Municipal Water Networks

•Installed sensors provide an early warning of contamination

•System provides only a coarse measure of contamination time 
and location

•Desired: Accurate and fast time & location information

82

Optimization Problem
Node Concentrations & 

Injection Terms Only

Pipe Boundary 
Concentrations

Injection Terms Only

Only Constraints 
with Spatial 
Dependence
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Collapsed Node Models

Plug Flow

Complete Mixing

No Reaction

Known Sources Contaminant Free

Time Dependent Mass Injections at All Nodes 
(Negligible Flow rates)

Decoupled Hydraulics and Water Quality 
Calculations 

Water Quality Model

Pipes, Valves, Pumps

Storage Tanks, Junctions

84

Modeling Water Distribution Systems
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Existing Simulation Techniques

Eulerian

Discretize in time and space

Track concentration at fixed points or volumes

Local process for simulation, but global 
treatment needed for simultaneous 
optimization

Lagrangian

Discretize in time alone

Track concentration of elements as they move 

Algorithmic in nature

Review of these methods by Rossman and Boulos, 1996. 

Same as our Discretization

Too Many Constraints

No Straightforward Representation

Derivative Calculations? 

86

Origin Tracking Algorithm

Known Hydraulics – Function of Time

Pipe Network PDEs Linear in Concentration

Pipe by Pipe PDEs

• Efficient for Large Networks

• Convert PDEs to DAEs with variable time 
delays

Removes Need to Discretize in Space
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Water network demands known.

Linear PDEs for concentration

Convert to delay-differential equations

Apply implicit R-K formulation

Source Inversion Formulation

Hydraulic
Simulator
(EPANET)

Formulation
ToolFlow 

demands

88

Municipal Source Detection Example

Algorithm successful on over 1000 numerical tests with real municipal water 
networks

Solution time < 2 CPU minutes for ~ 250,000 variables, ~45,000 degrees of 
freedom

• Effective in a real time setting

Formulation tool links to existing water network software

Can impose unique solutions through an extended MIQP formulation (post-
processing phase)
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Goal: Bridge between planning, logistics (linear, discrete 
problems) and detailed process models (nonlinear, spatial, 
dynamic)

Planning and Scheduling
• Many Discrete Decisions
• Few Nonlinearities

Planning

Scheduling

Site-wide Optimization

Real-time Optimization

Model Predictive Control

Regulatory Control 

F
ea

si
bi

lit
y

P
er

fo
rm

an
ce

Decision Pyramid for Process 
Operations 
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Real-time Optimization and Advanced Process Control
• Fewer discrete decisions
• Many nonlinearities
• Frequent, “on-line” time-critical solutions
• Higher level decisions must be feasible
• Performance communicated for higher level decisions

Planning

Scheduling

Site-wide Optimization

Real-time Optimization

Model Predictive Control

Regulatory Control 

F
ea

si
bi

lit
y

P
er

fo
rm

an
ce

Decision Pyramid for Process 
Operations 

APCMPC ⊂

Off-line (open loop)

On-line (closed loop)
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Steady-state On-line Optimization: 
Components

Plant

DR-PE
c(x, u, p) = 0

RTO
c(x, u, p) = 0

APC

y

p

u

w

•Data reconciliation – identify gross errors and inconsistency in data
•Periodic update of process model identification 
•Usually requires APC loops (MPC, DMC, etc.)
•RTO/APC interactions: Assume decomposition of time scales

•APC to handle disturbances and fast dynamics
•RTO to handle static operations

•Typical cycle: 1-2 hours, closed loop

•What if steady state and dynamic models are inconsistent? 6

92

Dynamic Real-time Optimization 
Integrate On-line Optimization/Control with Off-line Planning
• Consistent, first-principle models
• Consistent, long-range, multi-stage planning
• Increase in computational complexity 
• Time-critical calculations 

Applications
• Batch processes
• Grade transitions
• Cyclic reactors (coking, regeneration…)
• Cyclic processes (PSA, SMB…)

Continuous processes are never in steady state:

• Feed changes
• Nonstandard operations

• Optimal disturbance rejections

Simulation environments (e.g., ACM, gPROMS) and first principle dynamic 
models are widely used for off-line studies

8
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Some DRTO Case Studies
• Integrated grade transitions

– MINLP of scheduling with dynamics (Flores & 
Grossmann, 2006, Prata et al., 2007)

– Significant reduction in transition times 

• Dynamic Predictive Scheduling
– Processes and supply chains need to optimally 

respond to disturbances through dynamic models 
– Reduction in energy cost by factor of two

• Cyclic Process Optimization
– Decoking scheduling
– SMB optimization
– PSA optimization
– Productivity increases by factor of 2-3

9
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•What are the Interactions between Design 
and Dynamics and Planning?

•What are the differences between Sequential and 
Simultaneous Strategies?

•Especially Important in Batch Systems

Batch Integration Case Study 

Production Planning
Stage 1

Stage 2

A

A B

B C

C

Plant Design

T
R

Time Time

Dynamic Processing  
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• discretize (DAEs), state and control profiles• large-scale optimization problem• handles profile constraints directly• incorporates equipment variables directly • DAE model solved only once• converges for unstable systems

Simultaneous Dynamic OptimizationSimultaneous Dynamic OptimizationSimultaneous Dynamic OptimizationSimultaneous Dynamic Optimization

Best transient Best constant

Higher conversion 
in same time

T

Time

C
on

v.

Time

Fewer 
product batches

TSame conversion 
in reduced time

Time

C
on

v.

Time

Shorter 
processing times

Dynamic Processing  

Production Planning
Stage 1

Stage 2

A

A B

B C

C

Shorter Planning 
Horizon
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Scheduling Formulation• sequencing of tasks, products equipment• expensive discrete combinatorial optimization• consider ideal transfer policies (UIS and ZW)• closed form relations (Birewar and Grossmann, 1989)
A B N

stage I

stage 2

stage I

stage 2

A B N

Zero Wait (ZW) Immediate transfer requiredSlack times dependent on pairLonger production cycle required
Unlimited Int. Storage(UIS)Short production cycleCycle time independent of sequence
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Case Study ExampleCase Study Example

zi ,I
0 zi ,II

0
zi ,III

0 zi ,IV
0

zi ,IV
f

zi ,I
f zi ,II

f zi ,III
f

Bi

A + B → C

C + B → P + E

P + C → G

4 stages, 3 products of different purity 
Dynamic reactor - temperature profile
Dynamic column - reflux profile

Process Optimization Cases

SQ - Sequential Design - Scheduling - Dynamics
SM - Simultaneous Design and Scheduling

Dynamics with endpoints fixed . 
SM* - Simultaneous Design, Scheduling and Dynamics
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Dyn a mic

C o nsta nt

Comparison of Dynamic vs. Best Constant Profiles

R0 - best constant temperature profile
R1 - optimal temperature policy

C0 - best constant reflux ratio
C1 - optimal reflux ratio

Scenarios in Case Study
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Results for Simultaneous Cases

R0/R1 
best constant /    
optimal temperature

C0/C1
best constant /   
optimal reflux ratio

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

P
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$
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R 0 C 0 R 1 C 0 R 0 C 1 R 1 C 1

C a s e s

S Im u lt a n e o u s   
w it h   F R E E  s t a t e s

S im u lt a n e o u s   
w it h  F I X E D  s t a t e sS e q u e n t ia l

I

I I
I I I

I V

I

I I
I I I

I V

I
I I
I I I

I V

- ZW schedule becomes tighter

- less dependent on product  sequences

SQ

SM*

SM
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Summary
Sequential Approaches
- Parameter Optimization

• Gradients by: Direct and Adjoint Sensitivity Equations
- Optimal Control (Profile Optimization)

• Variational Methods
• NLP-Based Methods

- Require Repeated Solution of Model
- State Constraints are Difficult to Handle

Simultaneous Approach
- Discretize ODE's using orthogonal collocation on finite elements (solve larger optimization problem)
- Accurate approximation of states, location of control discontinuities through element placement.
- Straightforward addition of state constraints.
- Deals with unstable systems

Simultaneous Strategies are Effective
- Directly enforce constraints
- Solve model only once
- Avoid difficulties at intermediate points

Large-Scale Extensions
- Exploit structure of DAE discretization through decomposition
- Large problems solved efficiently with IPOPT
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Interface of DynoPC

Output/Graphics & TextsModel in FORTRAN

F2c/C++

ADOL_C

Preprocessor

DDASSL

COLDAE

Data/Config.

Simulator/Discretizer

F/DF

Starting Point Linearization

Optimal Solution

FILTER

Reduced 
Space IPOPT

F/DF
Line Search

Calc. of independent 
variable move

Interior Point
Newton Step

Decomposition

DynoPC – Windows Implementation
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A B C
1 2

da

at
k

E

RT
a= − − ⋅1

1exp( )
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2exp( ) exp( )
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Example: Batch Reactor Temperature
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Example: Car Problem

Min tf
s.t. z1' = z2

z2' = u
z2 ≤ zmax

-2 ≤ u ≤ 1

subroutine model(nz,ny,nu,np,t,z,dmz,y,u,p,f)
double precision t, z(nz),dmz(nz), y(ny),u(nu),p(np)

double precision f(nz+ny)

f(1) = p(1)*z(2) - dmz(1)
f(2) = p(1)*u(1) - dmz(2)

return
end403020100
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Example: Crystallizer Temperature

Steam

Cooling 
water

TT TC

Control variable = Tjacket = f(t)?

Maximize crystal size
at final time
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SUBROUTINE model(nz,ny,nu,np,x,z,dmz,y,u,p,f)
implicit double precision (a-h,o-z)
double precision f(nz+ny),z(nz),dmz(nz),Y(ny),yp(4),u(1)
double precision kgr, ln0, ls0, kc, ke, kex, lau, deltT, alpha
dimension a(0:3), b(0:3)
data alpha/1.d-4/,a/-66.4309d0, 2.8604d0, -.022579d0, 6.7117d-5/,
+  b/16.08852d0, -2.708263d0, .0670694d0, -3.5685d-4/, kgr/ 4.18d-3/,
+  en / 1.1d0/, ln0/ 5.d-5/, Bn / 3.85d2/, em / 5.72/, ws0/ 2.d0/,
+  Ls0/ 5.d-4     /, Kc / 35.d0 /, Kex/ 65.d0/, are/ 5.8d0 /,
+  amt/ 60.d0  /, V0 / 1500.d0/, cw0/ 80.d0/,cw1/ 45.d0/,v1 /200.d0/,
+ tm1/ 55.d0/,x6r/0.d0/, tem/ 0.15d0/,clau/ 1580.d0/,lau/1.35d0/,
+   cp/ 0.4d0    /,cbata/ 1.2d0/, calfa/ .2d0   /, cwt/ 10.d0/

ke = kex*area  
x7i = cw0*lau/(100.d0-cw0)
v = (1.d0 - cw0/100.d0)*v0 
w = lau*v0  
yp(1) = (deltT + dsqrt(deltT**2 + alpha**2))*0.5d0
yp(2) = (a(0) + a(1)*yp(4) + a(2)*yp(4)**2 + a(3)*yp(4)**3)
yp(3) = (b(0) + b(1)*yp(4) + b(2)*yp(4)**2 + b(3)*yp(4)**3)
deltT = yp(2) - z(8)  
yp(4) = 100.d0*z(7)/(lau+z(7))

f(1) = Kgr*z(1)**0.5*yp(1)**en - dmz(1)
f(2) = Bn*yp(1)**em*1.d-6 - dmz(2)
f(3) = ((z(2)*dmz(1) + dmz(2) * Ln0)*1.d+6*1.d-4) -dmz(3)
f(4) = (2.d0*cbata*z(3)*1.d+4*dmz(1)+dmz(2)*Ln0**2*1.d+6)-dmz(4)
f(5) = (3.d0*calfa*z(4)*dmz(1)+dmz(2)*Ln0**3*1.d+6) - dmz(5)
f(6) = (3.d0*Ws0/(Ls0**3)*z(1)**2*dmz(1)+clau*V*dmz(5))-dmz(6)
f(7) = -dmz(6)/V - dmz(7)
f(8) = (Kc*dmz(6) - Ke*(z(8) - u(1)))/(w*cp) - dmz(8)
f(9) = y(1)+YP(3)- u(1) 
return
end


