

| Chernical<br>ENGINEERING | D   | AE Optimization Outline                               |
|--------------------------|-----|-------------------------------------------------------|
| ]                        | I   | Introduction                                          |
|                          | п   | Process Examples<br>Parametric Optimization           |
|                          |     | - Gradient Methods                                    |
|                          |     | • Perturbation                                        |
|                          |     | <ul> <li>Direct - Sensitivity Equations</li> </ul>    |
|                          |     | Adjoint Equations                                     |
| ]                        | III | Optimal Control Problems                              |
|                          |     | - Optimality Conditions                               |
|                          |     | - Model Algorithms                                    |
|                          |     | • Sequential Methods                                  |
|                          |     | Multiple Shooting                                     |
|                          | IV/ | Indirect Methods     Simultaneous Solution Strategies |
|                          | 1 V | - Formulation and Properties                          |
|                          |     | - Process Case Studies                                |
|                          |     | - Software Demonstration                              |
|                          |     |                                                       |
|                          |     | 2                                                     |





















#### **Direct Sensitivity**

From ODE model:

define 
$$s_i(t) = \frac{\partial z(t)}{\partial p_i} i = 1, \dots$$
np  
 $s'_i = \frac{d}{dt}(s_i) = \frac{\partial f}{\partial p_i} + \frac{\partial f}{\partial z}^T s_i, \ s_i(0) = \frac{\partial z(0)}{\partial p_i}$ 

 $\frac{\partial}{\partial r} \left\{ z' = f(z, p, t), z(0) = z_0(p) \right\}$ 

(nz x np sensitivity equations)

13

- z and  $s_i$ , i = 1, ... np, an be integrated forward simultaneously.
- for implicit ODE solvers, s<sub>i</sub>(t) can be carried forward in time after converging on z
- linear sensitivity equations exploited in ODESSA, DASSAC, DASPK, DSL48s and a number of other DAE solvers

Sensitivity equations are efficient for problems with many more constraints than parameters  $\left(1+ng+nh>np\right)$ 

Example: Sensitivity Equations  $z'_{1} = z_{1}^{2} + z_{2}^{2}$   $z'_{2} = z_{1} z_{2} + z_{1} p_{b}$   $z_{1} = 5, z_{2}(0) = p_{a}$   $s(t)_{a,j} = \partial z(t)_{j} / \partial p_{a}, s(t)_{b,j} = \partial z(t)_{j} / \partial p_{b}, j = 1,2$   $s'_{a,1} = 2z_{1} s_{a,1} + 2z_{2} s_{a,2}$   $s'_{a,2} = z_{1} s_{a,2} + z_{2} s_{a,1} + s_{a,1} p_{b}$   $s_{a,1} = 0, s_{a,2}(0) = 1$   $s'_{b,1} = 2z_{1} s_{b,1} + 2z_{2} s_{b,2}$   $s'_{b,2} = z_{1} + z_{1} s_{b,2} + z_{2} s_{b,1} + s_{b,1} p_{b}$   $s_{b,1} = 0, s_{b,2}(0) = 0$ 









#### Tricks to generalize classes of problems

Variable Final Time (Miele, 1980)

Define  $t = p_{n+1} \tau, \ 0 \le \tau \le 1, p_{n+1} = t_f$ Let  $dz/dt = (1/p_{n+1}) dz/d\tau = f(z, p) \Longrightarrow dz/d\tau = (p_{n+1}) f(z, p)$ 

Converting Path Constraints to Final Time

Define measure of infeasibility as a new variable,  $z_{nz+1}(t)$  (Sargent & Sullivan, 1977):

$$z_{nz+1}(t_f) = \sum_j \int_0^{t_f} \max(0, g_j(z(t), u(t))^2 dt)$$
  
or  $\dot{z}_{nz+1}(t) = \sum_j \max(0, g_j(z(t), u(t))^2, z_{nz+1}(0) = 0)$   
Enforce  $z_{nz+1}(t_f) \le \varepsilon$  (however, constraint is degenerate)





**Derivation of Variational Conditions**   $\begin{aligned} & \delta \phi = \left[ \frac{\partial \phi}{\partial z} + \frac{\partial g}{\partial z} \mu + \frac{\partial h}{\partial z} v - \lambda \right]^T \delta_z(t_f) + \lambda^T(0) \delta_z(0) \\ & + \int_0^{t_f} \left[ \dot{\lambda} + \frac{\partial f(z, u)}{\partial z} \lambda \right]^T \delta_z(t) + \left[ \frac{\partial f(z, u)}{\partial u} \lambda + \alpha_b - \alpha_a \right]^T \delta_u(t) dt \ge 0 \end{aligned}$ At optimum,  $\delta \phi \ge 0$ . Since u is the control variable, let all other terms vanish.  $\Rightarrow \ \delta_z(tr): \qquad \lambda(t_f) = \left\{ \frac{\partial \phi}{\partial z} + \frac{\partial g}{\partial z} \mu + \frac{\partial h}{\partial z} \gamma \right\}_{t=t_f}$   $\delta_z(0): \ \lambda(0) = 0 \ (if z(0) is not specified) \\ \delta_z(t): \qquad \dot{\lambda} = -\frac{\partial H}{\partial z} = -\frac{\partial f}{\partial z} \lambda \end{aligned}$ Define Hamiltonian,  $H = \lambda^T f(z, u)$ For u <u>not</u> at bound:  $\frac{\partial f}{\partial u} = 0 \qquad \alpha_a^T (a - u(t)) \\ u_a \le u(t) \le u_b \\ M = 0 \qquad u_a \le 0, \alpha_b \ge 0 \end{aligned}$ Description of the terms terms

Car Problem Travel a fixed distance (rest-to-rest) in minimum time. Min  $x_3(t_f)$ Min  $t_f$ s.t.  $x_1' = x_2$ *s.t.* x'' = u $x_2' = u$  $a \le u(t) \le b$  $x_3' = 1$  $x(0) = 0, x(t_f) = L$  $a \le u(t) \le b$  $x'(0) = 0, x'(t_f) = 0$  $x_1(0) = 0, x_1(t_f) = L$  $x_2(0) = 0, x_2(t_f) = 0$ Hamiltonian :  $H = \lambda_1 x_2 + \lambda_2 u + \lambda_3$ Adjoints:  $\dot{\lambda}_1 = 0 \Longrightarrow \lambda_1(t) = c_1$  $\dot{\lambda}_2 = -\lambda_1 = \lambda_2(t) = c_2 + c_1(t_f - t)$  $\dot{\lambda}_3 = 0 \implies \lambda_3(t_f) = 1, \ \lambda_3(t) = 1$  $\frac{\partial H}{\partial u} = \lambda_2 = c_2 + c_1(t_f - t) \begin{cases} t = 0, c_1t_f + c_2 < 0, u = b \\ t = t_f, c_2 > 0, u = a \end{cases}$ Crossover ( $\lambda_2 = 0$ ) occurs at  $t = t_s$ 24













#### Chernics

# Instabilities in DAE Models

This example cannot be solved with sequential methods (Bock, 1983):

 $dy_1/dt = y_2$ 

 $dy_2/dt = \tau^2 y_1 + (\pi^2 - \tau^2) \sin(\pi t)$ 

The characteristic solution to these equations is given by:

 $y_1(t) = \sin(\pi t) + c_1 \exp(-\tau t) + c_2 \exp(\tau t)$ 

 $y_2(t) = \pi \cos{(\pi t)} - c_1 \tau \exp(-\tau t) + c_2 \tau \exp(\tau t)$ 

Both  $c_1$  and  $c_2$  can be set to zero by either of the following equivalent conditions:

IVP  $y_1(0) = 0, y_2(0) = \pi$ BVP  $y_1(0) = 0, y_1(1) = 0$ 

31

### **IVP Solution**

If we now add roundoff errors  $e_1$  and  $e_2$  to the IVP and BVP conditions, we see significant differences in the sensitivities of the solutions.

For the IVP case, the sensitivity to the *analytic* solution profile is seen by large changes in the profiles  $y_1(t)$  and  $y_2(t)$  given by:

$$\begin{split} y_1(t) &= \sin{(\pi~t)} + (e_1 - e_2/\tau)~exp(-\tau~t)/2 \\ &+ (e_1 + e_2/\tau)~exp(\tau~t)/2 \end{split}$$

$$y_2(t) = \pi \cos{(\pi t)} - (\tau e_1 - e_2) \exp(-\tau t)/2$$
  
+  $(\tau e_1 + e_2) \exp(\tau t)/2$ 

Therefore, even if  $e_1$  and  $e_2$  are at the level of machine precision (< 10<sup>-13</sup>), a large value of  $\tau$  and t will lead to unbounded solution profiles.



















# **EXAMPLE** Substitute $z_{N+I}$ and $u_N$ into ODE and apply equations at $t_k$ . $f(t_k) = \sum_{j=0}^{K} z_j \dot{\ell}_j(t_k) - f(z_k, u_k) = 0, \quad k = 1,...K$

collocation Example  $z_{K+1}(t) = \sum_{k=0}^{K} z_k \ell_k(t), \ell_k(t) = \prod_{\substack{j=0 \ j\neq k}}^{K} \frac{(t-t_j)}{(t_k-t_j)} \Longrightarrow z_{N+1}(t_k) = z_k$   $t_0 = 0, t_1 = 0.21132, t_2 = 0.78868$   $\ell_0(t) = 6t^2 - 6t + 1, \quad \ell_0(t) = 12t - 6$   $\ell_1(t) = -8.195t^2 + 6.4483t, \quad \ell_1(t) = 6.4483 - 16.39t$   $\ell_2(t) = 2.19625t^2 - 0.4641t, \quad \ell_2(t) = 4.392t - 0.4641$   $solve \quad z' = z^2 - 3z + 2, z(0) = 0$   $\Longrightarrow z_0 = 0$   $z_0 \ell_0(t_1) + z_1 \ell_1(t_1) + z_2 \ell_2(t_1) = z_1^2 - 3z_1 + 2$   $(2.9857t_1 + 0.46412t_2 = z_1^2 - 3z_1 + 2)$   $z_0 \ell_0(t_2) + z_1 \ell_1(t_2) + z_2 \ell_2(t_2) = z_2^2 - 3z_2 + 2$   $(-6.478t_1 + 3t_2 = z_2^2 - 3t_2 + 2)$   $z_0 = 0, z_1 = 0.291t(0.319t_2), z_2 = 0.7384t(0.706t_1)$   $z(t) = 1.5337t_1 - 0.76303t_2$ 























|                    | Single<br>Shooting                                                               | Multiple<br>Shooting            | Simultaneous                |  |
|--------------------|----------------------------------------------------------------------------------|---------------------------------|-----------------------------|--|
| DAE Integration    | n <sub>w</sub> <sup>β</sup> N                                                    | n <sub>w</sub> <sup>β</sup> N   |                             |  |
| Sensitivity        | (n <sub>w</sub> N) (n <sub>u</sub> N)                                            | $(n_{w} N) (n_{u} + n_{w})$     | N ( $n_u + n_w$ )           |  |
| Exact Hessian      | (n <sub>w</sub> N) (n <sub>u</sub> N) <sup>2</sup>                               | $(n_{w} N) (n_{u} + n_{w})^{2}$ | N ( $n_u + n_w$ )           |  |
| NLP Decomposition  |                                                                                  | n <sub>w</sub> ³ N              |                             |  |
| Step Determination | (n <sub>u</sub> N)α                                                              | (n <sub>u</sub> N)α             | $((n_u + n_w)N)^{\beta}$    |  |
| Backsolve          |                                                                                  |                                 | $((n_u + n_w)N)$            |  |
|                    | O((n <sub>u</sub> N) <sup>α</sup> + N <sup>2</sup> n <sub>w</sub> n <sub>u</sub> | $O((n_u N)^{\alpha} + N n_w^3)$ | $O((n_{11} + n_{22})N)^{1}$ |  |
|                    | + $N^3 n_w n_u^2$ )                                                              | $+ N n_w (n_w + n_u)^2)$        |                             |  |







## **Phase Diagram of Steady States**

#### Transitions considered among all steady state pairs









![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_0.jpeg)

| Number of variables<br>of which are fixed | 10920                                                                                                                        |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| or which are fixed                        | (                                                                                                                            |
| Number of constraints                     | 10260                                                                                                                        |
| Number of lower bounds                    | 780                                                                                                                          |
| Number of upper bounds                    | 54(                                                                                                                          |
| Number of nonzeros in Jacobian            | 49230                                                                                                                        |
| Number of nonzeros in Hessian             | 14700                                                                                                                        |
|                                           | Number of lower bounds       Number of upper bounds       Number of nonzeros in Jacobian       Number of nonzeros in Hessian |

# Setpoint change studies

| Process variable                               | Туре | Magnitude                                                                                                                                                                                                 |  |
|------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Production rate change                         | Step | -15%<br>Make a step change to the variable(s) used to set<br>the process production rate so that the product<br>flow leaving the stripper column base changes<br>from 14,228 to 12,094 kg h <sup>-1</sup> |  |
| Reactor operating pressure change              | Step | -60 kPa<br>Make a step change so that the reactor operating<br>pressure changes from 2805 to 2745 kPa                                                                                                     |  |
| Purge gas composition of<br>component B change | Step | +2%<br>Make a step change so that the composition of<br>component B in the gas purge changes from<br>13.82 to 15.82%                                                                                      |  |

![](_page_37_Figure_2.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_45_Picture_1.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_49_Figure_1.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_50_Picture_1.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_0.jpeg)