Advanced Process Systems Engineering Homework 2

Spring 2011 Due: 1/26/11

1. Consider the convex problem:

min
$$x_1$$

s.t. $x_2 \le 0$;
 $x_1^2 - x_2 \le 0$

Show that this problem does not satisfy LICQ and does not satisfy the KKT conditions at the optimum.

2. Quasi-Newton Methods

In the derivation of the Broyden update, the following convex equality constrained problem is solved:

$$\min ||J^+ - J||_F^2$$
s.t. $J^+ s = y$

Using the definition of the Frobenius norm from Section 2.2.1, apply the optimality conditions to the elements of J^+ and derive the Broyden update: $J^+ = J + \frac{(y-Js)s^T}{s^Ts}$.

3. NLP Reformulation

A widely used trick is to convert (4.1) to an equality constrained problem by adding new variables z_j to each inequality constraint to form: $g_j(x) - (z_j)^2 = 0$. Compare the KKT conditions for the converted problem with (4.1). Discuss any differences between these conditions as well as the implications of using the converted form within an NLP solver.

- 4. Find the solution to: Min x_1 s.t. $x_2 \le x_1^3$, $-x_1^3 \le x_2$ and show that it does not satisfy KKT conditions. Explain why.
- 5. Consider the NLP problem:

- a) Write the first order KKT conditions and find the solution and multipliers for this problem.
- b) At the solution of a) are the sufficient second order KKT conditions satisfied?