1. Consider the penalty function given by $\phi(x ; \rho)=f(x)+\rho \sum_{j=1}^{m} \varphi\left(h_{j}(x)\right)$, where $\varphi(\xi)$ is a smooth function of ξ where $\varphi(\xi)=0$ if $\xi=0$ and $\varphi(\xi)>0$ if $\xi \neq 0$, with a finite value of ρ, and compare the KKT conditions of min $f(x)$ s.t. $h(x)=0$ with a stationary point of the penalty function. Argue why these conditions cannot yield the same solution.
2. Given a nonzero Newton step of the optimality conditions, where the KKT matrix has the correct inertia, show when this step is a descent direction for the ℓ_{1} merit function $\phi_{1}(x ; \rho)=f(x)+\rho\|h(x)\|_{1}$.
3. Show that the tangential step $d_{t}=Z^{k} p_{Z}$ and normal step $d_{n}=Y^{k} p_{Y}$, respectively, can be found from

$$
\left[\begin{array}{cc}
W^{k} & A^{k} \\
\left(A^{k}\right)^{T} & 0
\end{array}\right]\left[\begin{array}{c}
d_{t} \\
v
\end{array}\right]=-\left[\begin{array}{c}
\nabla f\left(x^{k}\right) \\
0
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
\tilde{W} & A^{k} \\
\left(A^{k}\right)^{T} & 0
\end{array}\right]\left[\begin{array}{c}
d_{n} \\
v
\end{array}\right]=-\left[\begin{array}{c}
0 \\
h\left(x^{k}\right)
\end{array}\right]
$$

where both KKT matrices have the correct inertia and $\left(Z^{k}\right)^{T} \tilde{W} Y^{k}=0$.
4. Select solvers from the SQP, interior point and reduced gradient categories, and apply these to

$$
\begin{aligned}
& \min x_{1}+x_{2} \\
& \text { s.t. } \quad 1+x_{1}-\left(x_{2}\right)^{2}+x_{3}=0 \\
& 1-x_{1}-\left(x_{2}\right)^{2}+x_{4}=0 \\
& 0 \leq x_{2} \leq 2, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Use $x^{0}=[0,0.1]^{T}$ and $x^{0}=[0,0]^{T}$ as starting points.
5. Select solvers from the SQP, interior point and reduced gradient categories, and apply these to

$$
\begin{aligned}
\min x_{1} & \\
\text { s.t. } \quad\left(x_{1}\right)^{2}-x_{2}-1 & =0 \\
x_{1}-x_{3}-0.5 & =0 \\
x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Use $x^{0}=[-2,3,1]^{T}$ as the starting point.

