1. Consider the minimization problem: $\min |x|+|y| s . t . x^{2}+y^{2}=1$. By introducing binary decision variables to handle the absolute value terms, reformulate this problem as a mixed integer programming problem of the form.
2. Examine whether the following functions are convex or not.

$$
\begin{aligned}
& x^{2}+a x+b ; x \in R \\
& x^{3} ; x \in R \\
& x^{4} ; x \in R \\
& \log (x) ; x \in(0 ; 1]
\end{aligned}
$$

3. Consider the quadratic function:

$$
f(x)=3 x_{1}+x_{2}+2 x_{3}+4 x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}+(M-2) x_{1} x_{2}+2 x_{2} x_{3}
$$

For $\mathrm{M}=0$ find the eigenvalues and eigenvectors and any stationary points. Are the stationary points local optima? global optima? Find the path of optimal solutions as M increases.
4. Prove that a Hessian matrix which is positive definite has positive eigenvalues.
5. Show that if B^{k} is positive definite, then $\cos \theta^{k}>1 / \kappa\left(B^{k}\right)$ where $\kappa\left(B^{k}\right)$ is the condition number of B^{k}, based on the 2-norm.
6. Derive a stepsize rule for the Armijo linesearch that minimizes the quadratic interpolant from the Armijo inequality.

