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Abstract

There has been significant progress in the area of short-term scheduling of batch processes, including the solution of industrial-sized problems, in
the last 20 years. The main goal of this paper is to provide an up-to-date review of the state-of-the-art in this challenging area. Main features, strengths
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nd limitations of existing modeling and optimization techniques as well as other available major solution methods are examined through this paper.
e first present a general classification for scheduling problems of batch processes as well as for the corresponding optimization models. Subse-

uently, the modeling of representative optimization approaches for the different problem types are introduced in detail, focusing on both discrete
nd continuous time models. A comparison of effectiveness and efficiency of these models is given for two benchmarking examples from the litera-
ure. We also discuss two real-world applications of scheduling problems that cannot be readily accommodated using existing methods. For the sake
f completeness, other alternative solution methods applied in the field of scheduling are also reviewed, followed by a discussion related to solving
arge-scale problems through rigorous optimization approaches. Finally, we list available academic and commercial software, and briefly address the
ssue of rescheduling capabilities of the various optimization approaches as well as important extensions that go beyond short-term batch scheduling.
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Introduction

Scheduling is a critical issue in process operations and is cru-
cial for improving production performance. For batch processes,
short-term scheduling deals with the allocation of a set of limited
resources over time to manufacture one or more products follow-
ing a batch recipe. There have been significant research efforts
over the last decade in this area in the development of optimiza-
tion approaches, and several excellent reviews can be found in
Floudas and Lin (2004), Kallrath (2002), Pekny and Reklaitis
(1998), Pinto and Grossmann (1998), Reklaitis (1992), Shah
(1998). Despite significant advances there are still a number
of major challenges and questions that remain unresolved. For
instance, it is not clear the extent to which general methods aimed
at complex network structures (see Fig. 1), can also be effectively
applied to commonly encountered structures such as the multi-
stage structure shown in Fig. 2. There are also many detailed
questions related on the specific capabilities of the methods for
handling a large number of operational issues (e.g. variable or
fixed batch size, storage and transfer policies, changeovers), as
well as different objectives (e.g. makespan, earliness, or cost
minimization). Finally, there are also questions on the limitations

Nomenclature

Indices
f, f′ product family
i, i′ batch task
iST storage task
j, j′ batch processing unit
k time slot (continuous time)
l stage
n, n′ time or event point (continuous time)
r, r′ resource type
s stage
t, t′ time intervals (discrete time)
z, z′ resource item

Sets
I batch tasks
Ij tasks that can be processed in unit j
Ir tasks that require resource r
I
f
j tasks belonging to family f that can be processed

in unit j
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IST storage tasks
IZW tasks that produce at least one zero wait state
IST

s storage tasks for state s
Izw
r tasks that produce the resource r which requires

zero wait policy
Ic
s tasks that consume state s

I
p
s tasks that produce state s

J processing units
Ji processing units that can perform task i
Jii

′ processing units that can perform both task i and
task i′

JT storage units
JT

s storage units that can store state s
Kj time slots for processing unit j
Li stages of batch i
N time or event points (continuous time)
R resources
Ril resources required in stage l of task i
RJ resources corresponding to processing equipment
RJ

i resources corresponding to processing equipment
that can be allocated to task i

RS
i resources corresponding to storage equipment

that can be allocated to task i
S states
Sj states that can be stored in a shared storage tank j
ST states that can be stored in tanks
SZW states that require a zero wait policy
T time intervals (discrete time)
Z resource items
Zr resource items of type r

Parameters
αi fixed processing time of task i
βi variable processing time of task i
µirt coefficient for the fixed production/consumption

of resource r at time t relative to the start of the
task i

µc
ir coefficient for the fixed consumption of resource

r at the beginning of task i
µ

p
ir coefficient for the fixed production of resource r

at the end of task i
νirt coefficient for the variable production/

consumption of resource r at time t relative to the
start of the task i

νc
ir coefficient for the variable consumption of

resource r at the beginning of task i
ν

p
ir coefficient for the variable production of resource

r at the end of task i
νilrj amount of resource r required when task (i, l) is

allocated to unit j
ρc

is proportion of state s consumed by task i

ρ
p
is proportion of state s produced by task i∏

st amount of state s received at time t
clff ′ changeover time required between a task belong-

ing family f and a task belonging to family f′

clii′ changeover time required between task i and a
task i′

clil,i′l′ changeover time required between stage l of task
i and stage l′ of task i′

clii′j changeover time required between task i and a
task i′ in unit j

Cj maximum capacity of storage tank j
Cmin

s minimum storage capacity for state s
Cmax

s maximum storage capacity for state s
Dst amount of state s delivered at time t
H time horizon of interest
ptij processing time of task i in unit j
qrz amount of resource r available at the resource item

z of type r
Rmin

r minimum availability of resource r
Rmax

r maximum availability of resource r
Rmax

rt maximum availability of resource r at the begin-
ning of time interval t

V min
i minimum batch size of task i

V max
i maximum batch size of task i

V min
ij minimum capacity of unit j for task i

V max
ij maximum capacity of unit j for task i

V min
ir minimum capacity of resource r for task i

V max
ir maximum capacity of resource r for task i

Suij setup time for processing task i in unit j
Tpij processing time of batch i in unit j
Tpilj processing time of batch task (i, l) in unit j

Binary variables
Vjsn define if state s is being stored in tank j at time

point n
Wit define if task i starts at the beginning of time inter-

val t
Win define if task i is being performed at event point

n
Winn′ define if task i starts at time point n and ends at

time point n′
Wijt define if task i starts in unit j at the beginning of

time interval t
Wijkl define if the stage l of task i is allocated to the

time slot k of unit j
Wij define if task i is allocated to unit j
Wsin define if task i starts at time or event point n
Wfin define if task i finishes at time or event point n
WFij define if task i starts the processing sequence of

unit j
Xii′j define if task i is processed right before task i′ in

unit j (immediate precedence)
Xii′ define if task i is processed right before task i′ in

some unit (immediate precedence)
X′

il,i′l′ define if stage l of task i is processed before/
after stage l′ of task i′ in some unit (general
precedence)

Yilz define if resource item z is allocated to stage l of
task i
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Continuous variables
Bijt batch size of the task i started at the beginning of

time interval t in unit j
Bit batch size of the task i started at the beginning of

time interval t
Bin batch size of the task i activated at time or event

point n
Binn′ batch size of the task i started at time n and ended

at time n′
Bsin batch size of the task i started at time or event

point n
Bfin batch size of the task i finished at or before time

or event point n
Bpin batch size of the task i that is being processed at

time point n
PTin processing time of task i that starts at time

point n
Rrn amount of resource r that is being consumed at

time point n
Rirn amount of resource r that is being consumed by

task i at time point n
Rrt amount of state r that is being consumed at the

beginning of time interval t
Ssn amount of state s at time point n
Ssjn amount of state s stored in shared tank j at time

point n
Sst amount of state s at the beginning of time

interval t
Tn time that corresponds to time point n
Tsin start time of task i that starts at time point n
Tsrn start time of usage of resource r at event

point n
Tsjk start time of slot k in unit j
Tsi start time of task i
Tsil start time of stage l of task i
Tfi finish time of task i
Tfin finish time of task i that starts at time point n
Tfjk finish time of slot k in unit j
Tfil finish time of stage l of task i

Fig. 1. Batch process with com

Fig. 2. Batch process with sequential structure.

and strengths of the various optimization models that have been
reported in the literature and the size of problems that one can
realistically solve with these models.

It is the objective of this paper to provide a comprehensive
review of the state-of-the art of short-term batch scheduling.
Our aim is to try to provide answers to the questions posed
in the above paragraph. The paper is organized as follows. We
first present a classification for scheduling problems of batch
processes, as well as of the features that characterize the opti-
mization models for scheduling. We then present the major
equations for representative optimization approaches for gen-
eral network and sequential batch plants, focusing on the discrete
and continuous time models. Computational results on two spe-
cific case studies (general network and sequential plants) are
presented in order to compare the performance of several of
the methods, particularly discrete and continuous models. We
also discuss two examples of real world industrial scheduling
problems to demonstrate difficulties that are faced by exist-
ing methods in accommodating complex process requirements.
Other alternative solution approaches are briefly discussed, fol-
lowed by a discussion on the solution of large-scale problems
with exact methods. We briefly describe academic and commer-
cial software available in the batch scheduling area, and address
the issue of rescheduling capabilities of the various optimiza-
tion approaches as well as various important extensions that go
beyond short-term batch scheduling.
plex network structure.
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1. Classification of batch scheduling problems

There are a great variety of aspects that need to be consid-
ered when developing scheduling models for batch processes. In
order to provide a systematic characterization we present first a
general roadmap for classifying most relevant problem features.
This roadmap is summarized in Fig. 3 and considers not only
equipment and material issues, but also time and demand-related
constraints. As can be seen, the main features involve 13 major

categories, each of which are linked to central problem charac-
teristics. These significantly complicate the task of providing a
unified treatment that can address all the cases covered in Fig. 3.

First, the process layout and its topological implications have
a significant influence on problem complexity. In practice many
batch processes are sequential, single or multiple stage pro-
cesses, where one or several units may be working in parallel
in each stage. Each batch needs to be processed following a
sequence of stages defined through the product/batch recipe.
Fig. 3. Roadmap for scheduling
 problems of batch plants.
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However, increasingly as applications become more complex,
networks with arbitrary topology must be handled. Complex
product recipes involving mixing and splitting operations and
material recycles need to be considered in these cases. Closely
related to topology considerations are requirements/constraints
on equipment in terms of its assignment and connectivity, rang-
ing from fixed to flexible arrangements. Limited interconnec-
tions between equipment impose hard constraints on unit allo-
cation decisions.

Another important aspect of process flow requirements is
reflected in inventory policies. These often involve finite and
dedicated storage, although frequent cases include shared tanks
as well as zero-wait, non-intermediate and unlimited storage
policies. Material transfer is often assumed instantaneous, but
in some cases like in pipe-less plants it is significant and must be
accounted for in corresponding modeling approaches. Another
major factor is the handling of batch size requirements. For
instance, pharmaceutical plants usually handle fixed sizes for
which integrity must be maintained (no mixing/splitting of
batches), while solvent or polymer plants handle variable sizes
that can be split and mixed. Similarly, different requirements on
processing times can be found in different industries depending
on process characteristics. For example pharmaceutical applica-
tions might involve fixed times due to FDA regulations, while
solvents or polymers have times that can be adjusted and opti-
mized with process models.
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be accounted for, which is particularly critical for demands as
longer time horizons are used.

The classification in Fig. 3 shows that there is a tremendous
diversity of factors that must be accounted for in short-term batch
scheduling, which makes the task of developing unified general
methods quite difficult. At the same time, there might be the
trade-off of having a number of specialized methods that can
address specific cases of this classification in a more efficient
way.

2. Classification of optimization models for batch
scheduling

Having presented the general features of typical batch
scheduling problems we introduce a roadmap that describes the
main features of current optimization approaches. This section
is of particular importance because alternative ways of address-
ing/formulating the same problem are described. These usually
have a direct impact on the computational performance, capabil-
ities and limitations of the resulting optimization model. Each
modeling option that is presented is able to cope with a subset
of the features described in Fig. 3.

The roadmap for optimization model classification (Fig. 4)
focuses on four main aspects that are described in more detail
in the remainder of this section.

•

ls for
Demand patterns also can vary significantly ranging from
ases where due dates must be obeyed to cases where produc-
ion targets must be met over a time horizon (fixed or minimum
mounts). Changeovers are also a very important factor that
s particularly critical in cases of transitions that are sequence
ependent on the products, as opposed to simple set-ups that are
nly unit dependent.

Resource constraints, aside from equipment, e.g. labor, utili-
ies, are also often of great importance and can range from pure
iscrete to continuous. Practical operating considerations often
ive rise to time constraints such as non-working periods on the
eekend or maintenance periods. Also, while scheduling is often

egarded as a feasibility problem, costs associated with the use
f equipment, inventories, changeovers and utilities can have a
ignificant impact in defining an optimal schedule. Finally, there
s the issue of the degree to which uncertainty in the data must

Fig. 4. Roadmap for optimization mode
Time representation: the first and most important issue is the
time representation. Depending on whether the events of the
schedule can only take place at some predefined time points,
or can occur at any moment during the time horizon of inter-
est, optimization approaches can be classified into discrete
and continuous time formulations. Discrete time models are
based on: (i) dividing the scheduling horizon into a finite
number of time intervals with predefined duration and, (ii)
allowing the events such as the beginning or ending of tasks
to happen only at the boundaries of these time periods. There-
fore, scheduling constraints have only to be monitored at
specific and known time points, which reduces the problem
complexity and makes the model structure simpler and easier
to solve, particularly when resource and inventory limitations
are taken into account. On the other hand, this type of prob-
lem simplification has two major disadvantages. First, the

short-term scheduling of batch plants.
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size of the mathematical model as well as its computational
efficiency strongly depend on the number of time intervals
postulated, which is defined as a function of the problem data
and the desired accuracy of the solution. Second, sub-optimal
or even infeasible schedules may be generated because of the
reduction of the domain of timing decisions. Despite being a
simplified version of the original scheduling problem, discrete
formulations have proven to be very efficient, adaptable and
convenient for a wide variety of industrial applications, espe-
cially in those cases where a reasonable number of intervals
is sufficient to obtain the desired problem representation.

In order to overcome the previous limitations and gener-
ate data-independent models, a wide variety of optimization
approaches employ a continuous time representation. In these
formulations, timing decisions are explicitly represented as a
set of continuous variables defining the exact times at which
the events take place. In the general case, a variable time
handling allows obtaining a significant reduction of the num-
ber of variables of the model and at the same time, more
flexible solutions in terms of time can be generated. How-
ever, because of the modeling of variable processing times,
resource and inventory limitations usually needs the defini-
tion of more complicated constraints involving many big-M
terms, which tends to increase the model complexity and the
integrality gap and may negatively impact on the capabilities
of the method.

•

The second category comprises models that assume that
the number of batches of each size is known in advance.
These solution algorithms can indeed be regarded as one of
the modules of a solution approach for detailed production
scheduling, widely used in industry, which decomposes the
whole problem into two stages, batching and batch schedul-
ing. The batching problem converts the primary requirements
of products into individual batches aiming at optimizing some
criterion like the plant workload. Afterwards, the available
manufacturing resources are allocated to the batches over
time. This approximate two stage approach can address much
larger practical problems than monolithic methods, especially
those involving a quite large number of batch tasks related
to different intermediates or final products. However, this
approach is still restricted to processes comprising sequen-
tial product recipes.

• Event representation: in addition to the time representation
and material balances, scheduling models are based on dif-
ferent concepts or basic ideas that arrange the events of the
schedule over time with the main purpose of guaranteeing
that the maximum capacity of the shared resources is never
exceeded. As can be seen in Figs. 4 and 5, we classified these
concepts into five different types of event representations,
which have been broadly utilized to develop a variety of math-
ematical formulations for batch scheduling problems. Partic-
ularly, Fig. 5 depicts a schematic representation of the same
Material balances: the handling of batches and batch sizes
gives rise to two types of optimization model categories. The
first category refers to monolithic approaches, which simulta-
neously deal with the optimal set of batches (number and size),
the allocation and sequencing of manufacturing resources
and the timing of processing tasks. These methods are able
to deal with arbitrary network processes involving complex
product recipes. Their generality usually implies large model
sizes and consequently their application is currently restricted
to processes involving a small number of processing tasks
and rather short scheduling horizons. These models employ
the state-task network (STN), or the resource-task network
(RTN) concept to represent the problem. As shown in Fig. 1a,
the STN-based models represent the problem assuming that
processing tasks produce and consume states (materials). A
special treatment is given to manufacturing resources aside
from equipment. The STN is a directed graph that consists of
three key elements: (i) state nodes representing feeds, inter-
mediates and final products; (ii) task nodes representing the
process operations which transform material from one or more
input states into one or more output states and; (iii) arcs that
link states and tasks indicating the flow of materials. State
and task nodes are denoted by circles and rectangles, respec-
tively. In contrast, the RTN-based formulations employ a
uniform treatment and representation framework for all avail-
able resources through the idea that processing and storage
tasks consume and release resources at their beginning and
ending times, respectively (see Fig. 1b). In this particular
case, circles represent not only states but also other resources
required in the batch process such as processing units and
vessels.
schedule obtained by using the alternative concepts. The small
example given involves five batches (a, b, c, d, e) allocated
to two units (J1, J2). To represent this solution, the different
alternatives require: (a) 10 fixed time intervals, (b) five vari-
able global time points, (c) three unit-specific time events,
(d) three asynchronous time slots for each unit, (e) three
immediate precedence relationships or four general prece-
dence relationships. Although some event representations are
more general than others, they are usually oriented towards
the solution of either arbitrary network processes requir-
ing network flow equations or sequential batch processes
assuming a batch-oriented approach. Table 1 summarizes the
most relevant modeling characteristics and problem features
related to the alternative event representations. Critical mod-
eling issues refer to those aspects that may seriously impact
the model size and hence the computational effort. In turn,
critical problem features indicate certain problem aspects
that may be awkward to consider through specific basic
concepts.

For discrete time formulations, the definition of global time
intervals is the only option for general network and sequen-
tial processes. In this case, a common and fixed time grid
valid for all shared resources is predefined and batch tasks
are enforced to begin and finish exactly at a point of the grid.
Consequently, the original scheduling problem is reduced to
an allocation problem where the main model decisions define
the assignment of the time interval at which every batch task
begins, which is modeled through the discrete variable Wijt as
shown in Table 1. A significant advantage of using a fixed time
grid is that time-dependent problem aspects can be modeled
in a relatively simple way without compromising the linear-
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Fig. 5. Different concepts for representing scheduling problems.

ity of the model. Some of these aspects comprise hard time
constraints, time-dependent utilities cost, inventory cost and
multiple product demands and/or raw material supplies taking
place during the scheduling horizon.

In contrast to the discrete time representation, continuous
time formulations involve extensive alternative event rep-
resentations, which are focused on different types of batch
processes. For instance, for general network processes global

time points and unit-specific time events can be used, whereas
in the case of sequential processes the alternatives involve
the use of time slots and different batch precedence-based
approaches. The global time point representation corresponds
to a generalization of global time intervals where the timing of
time intervals is treated as new model variable. In this case,
a common and variable time grid is defined for all shared
resources. The beginning and the finishing times of the set

Table 1
General characteristics of current optimization models
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of batch tasks are linked to specific time points through the
key discrete variables reported in Table 1. Both for continu-
ous STN as RTN based models, limited capacities of resources
need to be monitored at a small number of variable time points
in order to guarantee the feasibility of the solution. Models fol-
lowing this direction are relatively simple to implement even
for general scheduling problems. In contrast to global time
points, the idea of unit-specific time events defines a different
variable time grid for each shared resource, allowing different
tasks to start at different moments for the same event point.
These models make use of the STN representation. Because
of the heterogeneous locations of the event points, the num-
ber of events required is usually smaller than in the case of
global time points. However, the lack of reference points for
checking the limited availability of shared resources makes
the formulation much more complicated. Special constraints
and additional variables need to be defined for dealing with
resource-constrained problems.

The usefulness and computational efficiency of the for-
mulations based on global time points or unit-dependent time
events strongly depend on the number of time or events points
predefined. For instance, if the global optimal solution of the
problem requires the definition of at least n time or event
points, fewer points will lead to suboptimal or infeasible
schedules whereas a larger number will result in signifi-
cant and unnecessary computational effort. Since this number

timing decisions than its synchronous counterpart. This repre-
sentation is similar to the idea of unit-specific time events and
is more appropriate when for dealing with sequential batch
processes.

Other alternative approaches for sequential processes are
based on the concept of batch precedence. Model vari-
ables and constraints enforcing the sequential use of shared
resources are explicitly employed in these formulations. As a
result, sequence dependent changeover times can be treated
in a straightforward manner. In order to determine the optimal
processing sequence in each unit, the concept of batch prece-
dence can be applied to either the immediate or any batch
predecessor. The immediate predecessor of particular batch i
is the batch i′ that is processed right before in the same pro-
cessing unit whereas the general precedence notion extends
the immediate precedence concept to not only consider the
immediate predecessor but also all batches processed before
in the same processing sequence. Three different types of
precedence-based mathematical formulations are reported in
Table 1. When the immediate precedence concept is applied,
sequencing decisions in each processing unit can be easily
determined through a unique set of model variables Xii′j .
However, in order to reduce the model size and consequently,
the computational effort, allocation and sequencing decisions
are frequently decoupled in two different sets of model vari-
ables W and X ′ , as described in Table 1. In contrast to

•
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is unknown a priori, a practical criterion is to determine it
through an iterative procedure where the number of variable
points or events is increased by 1 until there is no improve-
ment in the objective function. This means that a significant
number of instances of the model need to be solved for each
scheduling problem, which may lead to a high total CPU time.
It is worth mentioning that this stopping criterion cannot guar-
antee the optimality of the solution and in some cases may
also stop with a poor feasible schedule.

The previous continuous-time representations are mostly
oriented towards arbitrary network processes. On the other
hand, different continuous-time formulations were initially
focused on a wide variety of sequential processes, although
some of them have been recently extended to also consider
general batch processes. One of the first developments follow-
ing this direction was based on the concept of time slots, which
stands for a set of predefined time intervals with unknown
durations. The main idea is to postulate an appropriate num-
ber of time slots for each processing unit in order to allocate
them to the batch tasks to be performed. The selection of
the number of time slots required is not a trivial decision
and represents an important trade-off between optimality and
computational performance. Slot-based representations can
be classified into two types: synchronous and asynchronous.
The synchronous representation, which is similar to the idea
of global time points, defines identical or common slots across
all units in such a way that the shared resources involved in
network batch processes are more natural and easier to han-
dle. Alternatively, the asynchronous representation allows the
postulated slots to differ from one unit to another, which for
a given number of slots provides more flexibility in terms of
ij ii

the immediate precedence-based models, the general prece-
dence concept needs the definition of a single sequencing
variable for each pair of batch tasks that can be allocated
to the same shared resource. In this way, the formulation is
simpler and smaller than those based on the immediate pre-
decessor. In addition, this approach can handle the use of
different types of renewable shared resources such as pro-
cessing units, storage tanks, utilities and manpower through
a single set of sequencing variables without compromis-
ing the optimality of the solution. A common weakness of
precedence-based formulations is that the number of sequenc-
ing variables scales in the number batches to be scheduled,
which may result in significant model sizes for real-world
applications.
Objective function: different measures of the quality of the
solution can be used for scheduling problems (Fig. 4). How-
ever, the criteria selected for the optimization usually has
a direct effect on the model computational performance. In
addition, some objective functions can be very hard to imple-
ment for some event representations, requiring additional
variables and complex constraints.

. Modeling aspects of alternative approaches

Having introduced a general road map for classifying prob-
ems and models for batch scheduling, we present in this section
he specific model equations and variables that are involved
n the most relevant work developed for the different types of
vent representations shown in Table 1. Some formulations were
lightly modified from their original version in order to use sim-
lar nomenclature and model structure.
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3.1. Global time intervals (discrete time)

The event representation based on the definition of global
time intervals employs a predefined time grid T that is valid for
all shared resources involved in the scheduling problem, such as
processing units J (see Fig. 5a). Relevant modeling features of
discrete models based on the STN and RTN process representa-
tion are described below.

3.1.1. STN-based discrete formulation
The most relevant contribution for discrete time models

is the state task network representation proposed by Kondili,
Pantelides, and Sargent (1993) and Shah, Pantelides, and Sargent
(1993) (see also Rodrigues, Latre, & Rodrigues, 2000). The STN
model covers all the features that are included at the column on
discrete time in Table 1. The general constraints and variables
included in these models are introduced below.

3.1.1.1. Allocation constraints. Constraint (1), which is
expressed in terms of the binary variables Wijt to denote the
start of task i in equipment j at time t, states that at most one
task i can be processed in unit j during time interval t. To do
that, this constraint makes use of a full backward aggregation
that takes into account the implications for previous allocations.
Fig. 6 illustrates the application of that constraints at t = 4, for
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that starts to be processed by task i in unit j at time t is bounded by
the minimum and maximum capacities of that unit. In addition,
constraint (2) forces the batch size variable Bijt to be zero if
Wijt = 0

V min
ij Wijt ≤ Bijt ≤ V max

ij Wijt ∀i, j ∈ Ji, t (2)

Constraint (3) denotes that the amount of state s at time t must
always satisfy minimum and maximum inventory requirements.
It should be noted that dedicated storage units are assumed to
be available for each state s

Cmin
s ≤ Sst ≤ Cmax

s ∀s, t (3)

3.1.1.3. Material balances. Constraint (4) computes the
amount of state s stored at time t by considering the amount
of state s (i) stored at time t − 1, (ii) produced at time t, (iii) con-
sumed at time t, (iv) received as raw material at time t and, (v)
delivered at time t. Parameters ρ

p
is and ρc

is define the proportion
of state s produced/consumed by task i

Sst = Ss(t−1) +
∑
i ∈ I

p
s

ρ
p
is

∑
j ∈ Ji

Bij(t−ptij)

−
∑
i ∈ Ic

s

ρc
is

∑
j ∈ Ji

Bijt +
∏

st
− Dst ∀s, t (4)
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he case of two tasks of duration 2 and 3 time units. The dots
epresent that not more than one of them can be started at those
xed time points. In comparison with the original STN MILP
ormulation by Kondili et al. (1993), constraint (1) requires much
ewer equations and reduces the integrality gap by eliminating
ny type of big-M constraint, which significantly enhances the
omputational performance of the solution procedure. Thus, a
onger scheduling horizon can be addressed. It should be noted
hat this constraint requires that fixed and known processing
imes are predefined for all tasks to be scheduled. In addition,
t is implicitly assumed that all tasks must release the allocated
rocessing equipment when they finish, i.e. processing units are
ot allowed to be used as temporary storage devices

∑
∈ Ij

t∑
t′=t−ptij+1

Wijt′ ≤ 1 ∀j, t (1)

.1.1.2. Capacity limitations. Constraints (2) and (3) account
or variable batch size Bijt for each task i at unit j and limited
torage capacities Sst for each state s. The amount of material

Fig. 6. Illustration of the inequality in (1) for two tasks at time t = 4.
.1.1.4. Resource balances. Limited availability of resources R
ther than processing units can be explicitly modeled by con-
traint (5) and (6). Constraint (5) computes the total requirement
f resource r at every time interval t. Taking advantage of the
redefined time grid as well as the fixed processing times, this
onstraint is able to deal with variable resource requirements
long the task execution. Whenever the binary variable Wij(t−t′)
akes the value one, it means that task i is being performed in
nit j at time t and has been started t′ time intervals earlier than
. Additionally, the value of continuous variable Bij(t−t′) define
he corresponding batch size of the task. Coefficients µirt′ and
irt′ are used to specify the fixed and variable requirement of
esource r of task i

rt =
∑
i ∈ Ir

∑
j ∈ Ji

ptij−1∑
t′=0

(µirt′Wij(t−t′) + νirt′Bij(t−t′)) ∀r, t (5)

esides, the maximum availability of resource r cannot be
xceeded at any time during the time horizon, as expressed by
onstraint (6)

≤ Rrt ≤ Rmax
rt ∀r, t (6)

.1.1.5. Sequence-dependent changeovers. Changeover re-
uirements can be modeled by ensuring that adequate time is
eft for a unit to be cleaned between uses. In this way, constraint
7) guarantees that if the unit j starts processing any task of fam-
ly f at time t, i.e. Wijt = 1, no task i′ of family f′ can start at least
lf ′f + pti′j units of time before time t

∑
∈ I

f

j

Wijt +
∑

i′ ∈ I
f ′
j

t∑
t′=t−clf ′f−pti′j+1

Wi′jt′ ≤ 1 ∀j, f, f ′, t (7)
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We should note however that implementing constraint (7) is
rather awkward because it requires a finer discretization of time
in order to accommodate smaller changeover times. Moreover,
the number of constraints (7) quickly becomes extremely large
when problems involving a significant number of changeovers
are solved.

It is interesting to note how the capability for solving MILPs,
such as the discrete time STN, has evolved over time. For
instance, consider the classic problem shown in Fig. 1a (Kondili
et al., 1993) with the STN MILP over a horizon of ten time
units. In 1987, Kondili solved this problem using a weaker form
of the constraints in (1) in 908 s and 1466 nodes on a VAX-8600
using her own LP-based branch and bound code with MINOS.
In 1992 Shah solved this problem in 119 s and 149 nodes on
a SUN-SPARC using the strong form of the inequality in (1)
and also with his own branch and bound method. In 2003, one
of the authors (Grossmann) solved the same model in his lap-
top IBM-T40 using CPLEX 7.5, which required only 0.45 s and
22 nodes! Thus it is clear that a combination of better models,
faster computers and faster MILP solvers is greatly increasing
the capability for solving optimization models for scheduling.

3.1.2. RTN-based discrete formulation
A simpler and general discrete time scheduling formulation

can also be derived by means of the resource task network con-
cept proposed by Pantelides (1994). The major advantage of the
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able proportion of production (positive value) or consumption
(negative value) of resource r for a task i at interval t′ relative to
start of processing of the task. For instance, if r corresponds to a
processing unit in which task i requires pti units of time, µir0 is
equal to −1 and µir(pti) is equal to 1, which means that the task
consumes the processing unit at its starting time and releases the
unit at the end of its processing. All other parameters for this task
and resource will be zero. Moreover, the maximum availability
of resource r has to be limited by constraint (6). In the case of
unary resources such as processing units the maximum capacity
is always equal to 1

Rrt = Rr(t−1) +
∑
i ∈ Ir

pti∑
t′=0

(µirt′Wi(t−t′) + νirt′Bi(t−t′))

+
∏

rt
∀r, t (8)

3.1.2.2. Operational constraints. Different types of constraints
can be imposed on the operation of a task. For instance, a typical
constraint is the minimum and maximum batch size with respect
to the capacity of the processing equipment r ∈ RJ

i , which can
simply be written as

V min
ir Wit ≤ Bit ≤ V max

ir Wit ∀i, r ∈ RJ
i , t (9)
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TN formulation over the STN counterpart arises in problems
nvolving identical equipment. Here, the RTN formulation intro-
uces a single binary variable instead of the multiple variables
sed by the STN model. The RTN-based model also covers all
he features at the column on discrete time in Table 1. In order
o deal with different types of resources in a uniform way, this
pproach requires only three different classes of constraints in
erms of three types of variables defining the task allocation Wit,
he batch size Bit, and the resource availability Rrt. In few words,
his model reduces the batch scheduling problem to a simple
esource balance problem carried out in each predefined time
eriod. It is worth mentioning that the elimination of the unit
ub-index from the allocation variable Wit relies on the assump-
ion that each task can be performed in a single processing unit.
ask duplication is always required to handle alternative equip-
ent and unit-dependent processing times.

.1.2.1. Resource balances. Constraint (8) expresses in terms
f the variables Rrt, the fact that the availability of resource r
hanges from one time interval to the next one due to the inter-
ctions of this resource both with active tasks i and with the
nvironment. The new binary variable Wi(t−t′) takes the value
if task i starts t units of time earlier than time t. In this way,

he model is able to easily deal with variable resource require-
ent during the task execution. The parameter

∏
rt defines the

mount of resource r provided (positive number) or removed
negative number) from external sources at time t. As expressed
y constraint (8), the amount of resource r consumed or released
y task i is defined as a combination of a constant and a vari-
ble term depending on the task activation and the batch size,
espectively. Parameters µirt′ and νirt′ indicate fixed and vari-
.1.2.3. Sequence-dependent changeovers. Although reso-
rce-task network formulations are able to deal with sequence-
ependent changeovers, they need to explicitly define additional
asks associated to each type of cleaning requirement as well
s different states of cleanliness for each processing unit.
ince changeover tasks must be performed in a specific
nit, the definition of many identical processing equipment
s the same resource can no longer be used. The available
rocessing resources must be defined individually. In this way,
ifferent equipment states allow the model to guarantee that the
orresponding cleaning task has been performed before starting
particular processing task. The definition of cleaning tasks

ignificantly increases the model size and the computational
equirements, making the problem intractable even if a modest
umber of changeovers need to be considered.

We can then conclude that while the discrete time STN
nd RTN models are quite general and effective in monitor-
ng the level of limited resources at the fixed times, their major
eakness is the handling of long time horizons and relatively

mall processing and changeover times. Regarding the objective
unction, these models can easily handle profit maximization
cost minimization) for a fixed time horizon. Other objectives
uch as makespan minimization are more complex to imple-
ent since the time horizon and, in consequence, the number of

ime intervals required, are unknown a priori (see Maravelias &
rossmann, 2003).

.2. Global time points (continuous time)

.2.1. STN-based continuous formulation
A wide variety of continuous-time formulations based both

n the STN-representation and the definition of global time
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points have been developed in the last years (see Fig. 5b).
Some of the work falling into this category is represented by
the approaches proposed by Giannelos and Georgiadis (2002),
Lee, Park, and Lee (2001), Maravelias and Grossmann (2003),
Mockus and Reklaitis (1999a,b), Schilling and Pantelides
(1996), Zhang and Sargent (1996).

In this section, we describe the formulation by Maravelias and
Grossmann (2003), which is able to handle most of the aspects
found in standard batch processes (see first column for continu-
ous models in Table 1). This approach is based on the definition
of a common time grid that is variable and valid for all shared
resources. This definition involves time points n occurring at
unknown time Tn, n = 1, 2, . . ., |N|, where N is the set of time
points. To guarantee the feasibility of the material balances at
any time during the time horizon of interest, the model imposes
that all tasks starting at a time point n must occur at the same
time Tn. However, in order to have more flexibility in terms of
timing decisions, the ending time of tasks does not necessarily
have to coincide with the occurrence of a time point n, except
for those tasks that need to transfer the material with a zero wait
policy (ZW). For other storage policies it is assumed that the
equipment can be used to store the material until the occurrence
of next time point. Given that the model assumes that each task
can be performed in just one processing unit, task duplication
is required to handle alternative equipment and unit-dependent
processing times. General constraints for this model are intro-
d
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straint (17) is also required

V min
i Wsin ≤ Bsin ≤ V max

i Wsin ∀i, n (14)

V min
i Wfin ≤ Bfin ≤ V max

i Wfin ∀i, n (15)

V min
i

⎛
⎝∑

n′<n

Wsin′ −
∑
n′≤n

Wfin′

⎞
⎠

≤ Bpin ≤ V max
i

⎛
⎝∑

n′<n

Wsin′ −
∑
n′≤n

Wfin′

⎞
⎠ ∀i, n (16)

Bsi(n−1) + Bpi(n−1) = Bpin + Bfin ∀i, n > 1 (17)

3.2.1.3. Material balances. For each state s and time point n,
the mass balance and the maximum storage capacity are con-
sidered by constraints (18) and (19). In this way, the amount of
state s stored at time n will depend on the amount of state s that
is (i) stored at time point n − 1; (ii) consumed at time n and; (iii)
produced at time n. The amount of state s consumed/produced at
the start/end of a task i at time point n depends on the batch size
and the mass balance coefficients ρ

p
is and ρc

is. It is worth noting
that constraint (19) assumes that a dedicated storage capacity
is available for each state. The issue of shared storage tanks is
a

S
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p
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uced below.

.2.1.1. Assignment constraints. Constraints (10) and (11)
efine that at most one task i can start (Wsin = 1) or finish
Wfin = 1) at the corresponding unit j at any time n whereas con-
traint (12) enforces the condition that all tasks that start must
nish. In addition, constraint (13) forces that at most one task
an be performed at unit j at any time n. This constraint makes
se of a full backward aggregation that takes into account the
umber of tasks that have been started and finished before or at
ime point n∑
∈ Ij

Wsin ≤ 1 ∀j, n (10)

∑
∈ Ij

Wfin ≤ 1 ∀j, n (11)

n

Wsin =
∑

n

Wfin ∀i (12)

∑
∈ Ij

∑
n′≤n

(Wsin′ − Wfin′ ) ≤ 1 ∀j, n (13)

.2.1.2. Batch size constraints. Minimum and maximum batch
izes are imposed at the beginning as well as at the end of each
ask through constraints (14) and (15). Additionally, the batch
ize of each task is also defined for each event where the task
s active, as expressed by constraint (16). To guarantee that the
atch size does not change during the processing of a task, con-
ddressed below

sn = Ss(n−1) −
∑
i ∈ Ic

s

ρc
isBsin +

∑
i ∈ I

p
s

ρ
p
isBfin ∀s, n > 1 (18)

sn ≤ Cmax
s ∀s, n (19)

.2.1.4. Utility constraints. By using this formulation, it is also
ossible to easily take into account limited resources other than
rocessing units. To do that, constraint (20) carries out a resource
alance in each time point n considering the amount of resource
available at time point n − 1 as well as the amount of resource r
onsumed/produced by those tasks starting/ending at time point
. Moreover, the model is able to deal with resource requirements
hat depend not only on the task activation but also on the batch
ize. The maximum availability of resource r is enforced by
onstraint (21)

rn = Rr(n−1) −
∑

i

µc
irWsin + νc

irBsin

+
∑

i

µ
p
irWfin + ν

p
irBfin ∀r, n (20)

rn ≤ Rmax
r ∀r, n (21)

.2.1.5. Timing and sequencing constraints. The first time
oint corresponds to the start T1 = 0 and the last to the end Tn = H
f the time horizon whereas the ascending ordering of times
oints is enforced by constraint (22). Also, the ending time of
task i started at time point n is calculated through constraints

23) and (24) by considering the task activation Wsin = 1, the
atch size Bsin and the starting time of the task Tn. Thus, the
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ending time is computed through big-M constraints which are
active only if task i starts at time point n. Since a common time
grid is used for all shared processing units, the continuous vari-
able Tn defines the time at which all tasks i starting at time point
n will begin

Tn+1 ≥ Tn ∀n (22)

Tfin ≤ Tn + αiWsin + βiBsin + H(1 − Wsin) ∀i, n (23)

Tfin ≥ Tn + αiWsin + βiBsin − H(1 − Wsin) ∀i, n (24)

Once the ending of a task i is defined at the time point n where
the task is started, constraint (25) defines that the ending time of
a task i remains unchanged from its starting time until the next
occurrence of the task (Wsin = 1). To guarantee that constraint
(25) works properly, we must enforce the condition that Tfin is
always greater or equal to Tfi(n − 1). In this way, it is possible to
know the ending time of a task i not only at the time point where
the task starts, but also at any time point n where the task is
activated. This information is used in constraint (26) to express
that the ending time of a task i finishing at time point n must be
lower or equal than the time at which time point n takes place,
i.e. Tn. On the other hand, if task i produces a material for which
a zero wait (ZW) storage policy applies, the finish time must
coincide with the time point n, which is forced by constraint
(27)

T

T

T

3
c
c
t
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t
t
t
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o

T

3
a
(
b
i
a
i

maximum capacity of the tank j. Finally, the total amount of
state s available at time n is computed through constraint (31).
It is worth mentioning that this set of constraints can only guar-
antee that (i) the maximum storage capacity is never exceeded
and (ii) different states are never simultaneously stored in the
same tank. However, the lack of explicit decisions to allocate
states to tanks in each time point makes it impossible to enforce
the condition that the material stored in a particular tank must
remain in the same device until being consumed. Consequently,
the schedule generated may be too flexible, allowing a specific
amount of material to be stored in different tanks for consec-
utive time points, which may result infeasible for real batch
plants∑
s ∈ Sj

Vjsn ≤ 1 ∀j ∈ JT, n (29)

Ssjn ≤ CjVjsn ∀j ∈ JT, s ∈ Sj, n (30)

Ssn =
∑

j ∈ JT
s

Ssjn ∀s ∈ ST, n (31)

3.2.2. RTN-based continuous formulation
In this section we focus our attention to the most recent

continuous-time formulations based on the RTN concept ini-
t
C
i
f
t
i
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m
i
t
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t

3
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t
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t
i
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i
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s
i
C
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g
t
A

fin − Tfi(n−1) ≤ HWsin ∀i, n > 1 (25)

fi(n−1) ≤ Tn + H(1 − Wfin) ∀i, n > 1 (26)

fi(n−1) ≥ Tn − H(1 − Wfin) ∀i ∈ IZW, n > 1 (27)

.2.1.6. Sequence-dependent changeover times. Assuming that
hangeover times are shorter than processing times, which is a
ommon but not general situation, constraint (28) can be added
o account for sequence-dependent changeovers between task i
nd task i′. Since this model assumes that tasks can only start at
ime points, the new continuous variable Tsl′n must be enforced
o be equal to Tn. Although this constraint does not require addi-
ional variables to handle changeover times, the use of a common
rid for all shared resources requires that a larger number of time
oints be defined in order to consider exact sequence-dependent
ransition times. Otherwise, most of the changeovers required

ay be overestimated. It should be noted that due to the defini-
ion of additional time points the model may become intractable
ven for small or medium size problems. In addition, the num-
er of constraints (28) will quickly grow when a large number
f tasks can be performed in the same unit j

si′n ≥ Tfi(n−1) + clii′ ∀j, i ∈ Ij, i
′ ∈ Ij, n > 1 (28)

.2.1.7. Shared storage tanks. In order to consider the fact that
storage tank can be shared among many states, constraints

29)–(31) have to be added to the model together with a new
inary variable Vjsn that is 1 if state s is stored in tank j dur-
ng period n. In this way, allocation constraint (29) allows that
t most one state s can be stored in tank j at time n, whereas
nequality (30) forces the amount of state s not to exceed the
ially proposed by Pantelides (1994). The work developed by
astro, Barbosa-Póvoa, and Matos (2001) which was then

mproved in Castro, Barbosa-Póvoa, Matos, and Novais (2004)
alls into this category and is described below. Major assump-
ions of this approach are: (i) processing units are considered
ndividually, i.e. one resource is defined for each available unit,
nd (ii) only one task can be performed in any given equip-
ent resource at any time (unary resource). These assumptions

ncrease the number of tasks and resources to be defined, but at
he same time allow reducing the model complexity. This model
lso covers all the features given at the column on continuous
ime and global time points in Table 1.

.2.2.1. Timing constraints. In the same way as in the previous
TN-based continuous-time formulation, a set of global time
oints N is predefined where the first time point takes place
t the beginning T1 = 0 whereas the last one at the end of the
ime horizon of interest Tn = H. However, the main difference
n comparison to the previous model arise in the definition of
he allocation variable Winn′ which is equal to 1 whenever task
starts at time point n and finishes at or before time point n′ > n.
n this way, the starting and finishing time points for a given task
are defined through only one set of binary variables. It should
e noted that this definition on the one hand makes the model
impler and more compact, but on the other hand it significantly
ncreases the number of constraints and variables to be defined.
onstraints (32) and (33) impose that the difference between the
bsolute times of any two time points (n and n′) must be either
reater than or equal to (for zero wait tasks) than the processing
ime of all tasks starting and finishing at those same time points.
s can be seen in the equations, the processing time of a task
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will depend on the task activation as well as on the batch size

Tn′ − Tn ≥
∑
i ∈ Ir

(αiWinn′ + βiBinn′ ) ∀r ∈ RJ, n, n′, (n < n′)

(32)

Tn′ − Tn ≤ H

⎛
⎝1 −

∑
i ∈ IZW

r

Winn′

⎞
⎠ +

∑
i ∈ IZW

r

(αiWinn′ + βiBinn′ )

∀r ∈ RJ, n, n′, (n < n′) (33)

3.2.2.2. Batch size constraints. Assuming that each task can
only be performed in a single processing unit, limited capacity
of equipment is taken into account through constraint (34)

V min
i Winn′ ≤ Binn′ ≤ V max

i Winn′ ∀i, n, n′, (n < n′) (34)

3.2.2.3. Resource balances. The resource availability is a typ-
ical multiperiod balance expression, in which the excess of a
resource at time point n is equal to the excess amount at the pre-
vious event point (n − 1) adjusted by the amount of resource
consumed/produced by all the tasks starting/ending at time
point n, as expressed by constraint (35). A special term taking
into account the consumption/releasing of storage resources is

V min
i Wi(n−1)n ≤

∑
r ∈ RST

i

Rrn ≤ V max
i Wi(n−1)n

∀i ∈ IST, n, (n �= 1) (38)

We can conclude that the continuous time STN and RTN models
based on the definition of global time points are quite general.
They are capable of easily accommodating a variety of objective
functions such as profit maximization or makespan minimiza-
tion. However, events taking place during the time horizon such
as multiple due dates and raw material receptions are more com-
plex to implement given that the exact position of the time points
is unknown. Also, the continuous time domain representation
makes that inventory cost cannot be estimated without compro-
mising the linearity of the model.

3.3. Unit-specific time event

In order to gain more flexibility in timing decisions without
increasing the number of time points to be defined, an origi-
nal concept of event points was introduced by Ierapetritou and
Floudas (1998), which relaxes the global time point represen-
tation by allowing different tasks to start at different moments
in different units for the same event point (see Fig. 5c). Sub-
sequently, the original idea was implemented in the work pre-
included for any storage task IST. Here, negative values are used
to represent consumption whereas a positive number defines the
production of a resource. Also, the amount of resource available
is bounded by constraint (36)

Rrn = Rr(n−1) +
∑
i ∈ Ir

[∑
n′<n

(µp
irWin′n + ν

p
irBin′n)

+
∑
n′>n

(µc
irWinn′ + νc

irBinn′ )

]

+
∑

i ∈ IST

(µp
irWi(n−1)n + µc

irWin(n+1)) ∀r, n > 1 (35)

Rmin
r ≤ Rrn ≤ Rmax

r ∀r, n (36)

3.2.2.4. Storage constraints. Assuming a single storage task i
per material resource r, the definition of constraint (36) in com-
bination with Eqs. (37) and (38) guarantee that if there is an
excess amount of the resource r at time point n, then the corre-
sponding storage task i will be activated for both intervals n − 1
and n. As can be observed in these constraints, dedicated stor-
age tanks with constant minimum and maximum capacities can
only be defined for states that are amenable to storage. The use of
shared storage tanks is not considered in this MILP formulation

V min
i Win(n+1) ≤

∑
r ∈ RST

i

Rrn ≤ V max
i Win(n+1)

∀i ∈ IST, n, (n �= |N|) (37)
sented by Lin, Floudas, Modi, and Juhasz (2002) and Vin and
Ierapetritou (2000) and recently extended by Janak, Lin, and
Floudas (2004). In this section we describe the work presented
in Janak et al. (2004), which represents the most general STN-
based formulation that makes use of this type of event represen-
tation and covers all the features reported at the corresponding
column in Table 1. Due to the fact that the entire formulation
involves a very significant number of constraints, only central
ones will be reported in this review whereas the remainder can
be found in the original work.

3.3.1. Assignment constraints
In order to determine at which event points each task i starts

(Wsin), is active (Win) and finishes (Wfin), constraints (39)–(43)
enforce the following conditions over the model allocation vari-
ables: (i) at most one task i can be being performed in unit j
at event time n, (ii) task i will be active at event time n when-
ever this task has been started before or at event n and has not
been finished before that event, (iii) all tasks that start must fin-
ish, (iv) one task i can only be started at event point n if all
tasks i beginning earlier have finished before event point n and,
(v) one task i can only finish at event point n if it has been
started at a previous event point n′ and has not ended before
event point n. It should be noted that equipment index is not
used in model variables because this formulation assumes that
each task can only be performed in one unit. Task duplication is
required to deal with multiple pieces of equipment working in
parallel∑
i ∈ Ij

Win ≤ 1 ∀j, n (39)
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n′≤n

Wsin′ −
∑
n′<n

Wfin′ = Win ∀i, n (40)

∑
n

Wsin =
∑

n

Wfin ∀i (41)

Wsin ≤ 1 −
∑
n′<n

Wsin′ +
∑
n′<n

Wfin′ ∀i, n (42)

Wfin ≤
∑
n′<n

Wsin′ −
∑
n′<n

Wfin′ ∀i, n (43)

3.3.2. Batch size constraints
Minimum and maximum batch sizes on all active tasks are

imposed through constraint (44). Also, since the formulation
allows tasks to extend over several event points, constraints (45)
and (46) force batch sizes at these consecutive event points to be
consistent. In this way, if a task is active and does not finish at
event n − 1, then the same amount of material will be processed
at both event points

V min
i Win ≤ Bin ≤ V max

i Win ∀i, n (44)

Bin ≤ Bi(n−1) − V max
i (1 − Wi(n−1) + Wfi(n−1)) ∀i, n > 1

(45)

or stored at event n

Ssn = Ss(n−1) +
∑
i ∈ I

p
s

ρ
p
isBfi(n−1) +

∑
ist ∈ IST

s

BiST(n−1)

−
∑
i ∈ Ic

s

ρc
isBsin −

∑
ist ∈ IST

s

BiSTn ∀s, n (54)

3.3.4. Timing and sequencing constraints (processing tasks)
These constraints represent the relationship between the start-

ing and finishing times of task i at event point n. Then, if task i is
not active at event point n, constraint (55) along with (56) makes
the processing time equal to zero by setting the finishing time
equal to the starting time. In addition, if task i is active and must
extend to the following event n, i.e. it does not finish at event
n − 1, constraint (57) along with the sequencing constraint (60)
forces the ending time at n − 1 to be equal to the starting time
at n. Otherwise, these constraints are relaxed

Tfin ≥ Tsin ∀i, n (55)

Tfin ≤ Tsin + HWin ∀i, n (56)

Tsin ≤ Tfi(n−1) + H (1 − Wi(n−1) + Wfi(n−1)) ∀i, n > 1

(57)

C
s
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t
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s
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T

T

T

Bin ≥ Bi(n−1) − V max
i (1 − Wi(n−1) + Wfi(n−1)) ∀i, n > 1

(46)

Constraints (47)–(49) determine the batch size at the beginning
of a task Bsin, which will be equal to the batch size Bin whenever
task i starts at event point n. Otherwise, these constraints become
redundant. In a similar way, the batch size at the end of task Bfin

is defined through constraints (50)–(52)

Bsin ≤ Bin ∀i, n (47)

Bsin ≤ Bin + V max
i Wsin ∀i, n (48)

Bsin ≥ Bin − V max
i (1 − Wsin) ∀i, n (49)

Bfin ≤ Bin ∀i, n (50)

Bfin ≤ Bin + V max
i Wfin ∀i, n (51)

Bfin ≥ Bin − V max
i (1 − Wfin) ∀i, n (52)

To deal with scheduling problems involving finite intermediate
storage capacity, constraint (53) simply represents the maximum
amount of material s that can be stored through storage task iST

at any event point n.

BiSTn ≤ Cmax
s ∀s, iST ∈ IST

s , n (53)

3.3.3. Material balances
The amount of material of state s available at event n is equal

to that at event n − 1 increased by any amounts produced or
stored at event n − 1 and decreased by any amounts consumed
onstraints (58) and (59) define the processing time of a task i
tarting at event n (Wsin = 1) and ending at a later event point
′(Wfin′ = 1). In this way, the two constraints force the ending
ime at n′ to be equal to the starting time at n plus the batch-size
ependent processing time. This hard condition is only imposed
or those tasks requiring a zero wait storage policy, as expressed
n constraint (59). To account for other storage policies, con-
traint (58) relaxes the processing time in order to consider not
nly the processing time itself but also the storage time of the
aterial in the processing unit. Constraint (60) defines that the

tarting time of a task i at event n must be greater than the fin-
shing time of a task i ending at the previous event point

fin′ − Tsin ≥ αiWsin + βiBin + H (1 − Wsin)

+ H (1 − Wfin′ ) + H

⎛
⎝ ∑

n≤n′′≤n′
Wfin′′

⎞
⎠

∀i, n, n′, (n ≤ n′) (58)

fin′ − Tsin ≤ αiWsin + βiBin + H (1 − Wsin)

+ H (1 − Wfin′ ) + H

⎛
⎝ ∑

n≤n′′≤n′
Wfin′′

⎞
⎠

∀i ∈ IZW, n, n′, (n ≤ n′) (59)

sin ≥ Tfi(n−1) ∀i, n > 1 (60)
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Different types of sequencing constraints are proposed for tasks
that are performed in the same unit j or in different units j and j′.
Then, constraint (61) defines that if task i′ ends at event n − 1 and
task i starts at event n in the same unit j, i.e. they are consecutive,
task i must start after both task i′ and the required cleaning
operation have finished. On the other hand, constraints (62) and
(63) impose certain sequencing conditions on those tasks that
are performed in different units but take place consecutively
according to the process recipe. In this way, if a task i′ producing
a state s finishes at event n − 1, then any task i consuming that
state at event n must start after the ending of task i′ at the previous
event point. This condition is enforced as equality for those tasks
involving a material s that requires a zero wait storage policy, as
expressed by constraint (63)

Tsin ≥ Tfi′(n−1) + cli′i + H(1 − Wfi′(n−1) − Wsin)

∀i, i′, i �= i′, j ∈ Jii′ , n > 1 (61)

Tsin ≥ Tfi′(n−1) + H(1 − Wfi′(n−1))

∀s, i ∈ Ic
s , i

′ ∈ Ip
s , j ∈ Ji, j

′ ∈ Ji′ , j �= j′, n > 1 (62)

Tsin ≤ Tfi′(n−1) + H(2 − Wfi′(n−1) − Wsin)

∀s ∈ SZW, i ∈ Ic
s , i

′ ∈ Ip
s , j ∈ Ji, j

′ ∈ Ji′ , j �= j′, n > 1
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events may result less attractive because much more complex
models are required. Also, a larger number of event points, sim-
ilar to the idea of global time points, are usually needed for
generating feasible schedules. In this way, the main advantage
of this particular idea is lost and larger computational effort may
be needed because of the complex structure of the model. As in
the case of global time points, events taking place during the time
horizon such as multiple due dates and raw material receptions
are awkward to consider. Because of the variable event points,
inventory cost can only be estimated if additional bilinear con-
straints are included in the model.

3.4. Time slots

One of the first contributions focused on batch-oriented pro-
cesses is based on the concept of time slots, which stands for a
set of predefined time intervals with unknown durations (Pinto
& Grossmann, 1995). A set of time slots is postulated for each
processing unit in order to allocate them to the batches to be
processed. Relevant work on this area is represented by the for-
mulations developed by Chen, Liu, Feng, and Shao (2002), Lim
and Karimi (2003), Pinto and Grossmann (1995, 1996). More
recently, a new STN-based formulation that relies on the def-
inition of synchronous time slots and a novel idea of several
balances was developed to also deal with network batch pro-
cesses (Sundaramoorthy & Karimi, 2005). In order to describe
t
i
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t
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(63)

.3.5. Storage constraints
In contrast to global time interval based models, the unit spe-

ific time event representation needs to explicitly define a set
f storage tasks iST for dealing with those materials that can be
tored in a tank, i.e. where a FIS policy is required. Therefore,
new set of constraints is included into the model to manage

elated processing and storage tasks. The corresponding starting
nd ending times of storage tasks at consecutive event points are
odeled through additional model variables.

.3.6. Resource constraints
In order to account for resource limitations other than pro-

essing units, the unit-specific-time-event based formulation
equires a new set of constraints and variables which monitor
he level of resources at every time event. Due to the fact that
he same time event can take place at different times for differ-
nt units, these constraints are significantly more complex and
umerous than in the case of global time points. A larger num-
er of event points as well as additional continuous variables for
iming of resources are also needed.

We can conclude that continuous time STN formulations
ased on the definition of unit-specific time events are quite gen-
ral. They are capable of modeling different scheduling aspects
nd objective functions. This particular idea proves to be very
owerful for those scheduling problems where a few or no shared
esources are taken into account, i.e. those cases where refer-
nce points for checking resource limitations are barely used.
or problems where resources are strongly shared and limited
r hard inventory constraints must be satisfied, the use of time
he main model constraints and variables, let us consider the orig-
nal slot-based model proposed in Pinto and Grossmann (1995),
ssuming a multistage sequential scheduling problem with mul-
iple equipment working in parallel in each stage.

.4.1. Allocation constraints
Constraint (64) defines that every processing stage l of batch

must be allocated to exactly one time slot k of a unit j belonging
o the set of units that can perform the batch task, i.e. Jil. In turn,
ach time slot k of unit j can at most be assigned to one batch
rocessing task corresponding to the stage l of batch i, which is
efined through constraint (65)∑
∈ Jil

∑
k ∈ Kj

Wijkl = 1 ∀i, l ∈ Li (64)

i

∑
l ∈ Li

Wijkl ≤ 1 ∀j, k ∈ Kj (65)

.4.2. Time matching constraints
Slot-based formulations employ two different time coordi-

ates for processing units and batch tasks. The binary variable
ijkl which defines the assignment of stage l of batch i to time

lot k of unit j is used to enforce both coordinates to coincide. In
his way, when a batch i is allocated to unit j (Wijkl = 1), the big-

constraints (66) and (67) become active and the starting times
f the unit and the batch are forced to be the same. Otherwise,
hese constraints are relaxed

M(1 − Wijkl) ≤ Tsil − Tsjk ∀i, j, k ∈ Kj, l ∈ Li (66)

(1 − Wijkl) ≥ Tsil − Tsjk ∀i, j, k ∈ Kj, l ∈ Li (67)



C.A. Méndez et al. / Computers and Chemical Engineering 30 (2006) 913–946 929

It should be noted that (66) and (67) can be replaced by a set
of fewer constraints that involve disaggregated variables and
that are tighter as discussed in Pinto and Grossmann (1995).
Constraints (68) and (69) force the ending times of the unit and
the batch to coincide whenever the allocation variable Wijkl is
equal to one. To do that, the starting time, the batch processing
time pij and the setup time Suij associated to the batch task are
taken into consideration in both constraints

Tfjk = Tsjk +
∑

i

∑
l ∈ Li

Wijkl(pij + Suij) ∀j, k ∈ Kj (68)

Tfil = Tsil +
∑

j

∑
k ∈ Kj

Wijkl(pij + Suij) ∀j, k ∈ Kj (69)

Since the postulated time slots are sequentially arranged over
time, the starting time of slot k + 1 at every unit j requires that
the processing of slot k be finished, which is expressed through
constraint (70). In this way, no overlap of time slots is allowed.
Additionally, a time relation for every pair of successive process-
ing stages is considered in constraint (71). For instance, in the
case of an unlimited intermediate storage policy, the stage l + 1
of batch i can be performed any time after the completion time
of stage l. For a zero wait intermediate storage policy, constraint
(71) must be transformed into equality

Tfjk ≤ Tsj(k+1) ∀j, k ∈ Kj (70)
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to guarantee that the immediate predecessor and successor of
a given batch i are always assigned to the same processing
unit j∑
i ∈ Ij

WFij ≤ 1 ∀j (72)

∑
j ∈ Ji

WFij +
∑
j ∈ Ji

∑
i′ ∈ Ij

Xi′ij = 1 ∀i (73)

∑
i′ ∈ Ij

Xii′j ≤ 1 ∀i (74)

WFij +
∑
i′ ∈ Ij

Xi′ij +
∑
j′ ∈ Ji
j �=j′

∑
i′ ∈ (Ij∪Ij′ )

Xii′j′ ≤ 1 ∀i, j ∈ Ji

(75)

It is worth mentioning that constraints (72)–(75) are not suffi-
cient to prevent the generation of subcycles and, in principle, a
large number of subtour elimination constraints should be also
included in the model. However, the temporal aspect considered
in constraints (76) and (77) contributes to eliminate any possible
subcycle from the feasible region and in consequence, subtour
elimination constraints are no longer required.

3.5.2. Timing constraints
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fil ≤ Tsi(l+1) ∀j, k ∈ Kj (71)

.5. Unit-specific immediate precedence

The concept of batch precedence can be applied to the imme-
iate or the general batch predecessor, which generates three
ifferent types of basic mathematical formulations. In this sec-
ion we present the general constraints and variables for the
oncept of immediate precedence in each unit. For this particu-
ar case, the binary variable Xii′j becomes equal to 1 whenever
atch i is processed immediately before batch i′ in the process-
ng sequence of unit j. It should be noted that allocation and
equencing decisions are modeled through this variable. To illus-
rate the use of this concept, let us consider the formulation
f Cerdá, Henning, and Grossmann (1997) where a single-
tage batch plant with multiple equipment working in parallel is
ssumed.

.5.1. Allocation and sequencing constraints
The set of constraints (72)–(75) aims at generating a feasible

rocessing sequence of batches in each available unit. Constraint
72) enforces the condition that at most one batch i can start
he processing sequence of unit j. Subsequently, constraint (73)
efines that a batch i can be processed either in the first place
WFij = 1) or right after another batch i′ (Xi′ij = 1), here called
ts immediate predecessor. This implies that every batch i must
e processed in some unit j and have a single predecessor i′ at
ost. Moreover, every batch i can be either allocated to the last

osition of the processing sequence, or right before another batch
′, here called its immediate successor. This condition is enforced
hrough constraint (74). Finally, constraint (75) is employed
The timing decisions of batches are modeled through con-
traints (76) and (77). The first one derives the ending time Tfi

f a batch i from its starting time Tsi and its processing time Tpij

n the allocated unit j. Then, whenever batch i′ is the immediate
redecessor of batch i in unit j, i.e. Xi′ij = 1, constraint (77)
mposes that the starting time of batch i must be greater than the
nding time of batch i′ plus the changeover time cli′ij in unit j.
n this way, it is possible to guarantee that no overlap will occur
ver time

fi = Tsi +
∑
j ∈ Ji

Tpij

⎛
⎝WFij +

∑
i′ ∈ Ij

Xi′ij

⎞
⎠ ∀i (76)

si ≥ Tfi′ +
∑

j ∈ Jii′
cli′ijXi′ij − M

⎛
⎝1 −

∑
j ∈ Jii′

Xi′ij

⎞
⎠ ∀i, i′

(77)

.6. Immediate precedence

In this section we introduce the general constraints and vari-
bles of an alternative formulation based on the concept of
mmediate batch precedence. In contrast to the previous model,
llocation and sequencing decisions are divided into two dif-
erent sets of binary variables. To illustrate the use of this idea
et us consider the work presented by Méndez, Henning, and
erdá (2000), where a single-stage batch plant with multiple
quipment in parallel is assumed. Relevant work following this
irection can also be found in Gupta and Karimi (2003). Key
ariables are defined as follows: WFij denotes that batch i is the
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first processed in unit j; Wij denotes that batch i is allocated to
unit j but not in the first place and; Xii′ denotes that batch i is
processed right before batch i′.

3.6.1. Allocation constraints
Constraint (78) defines that at most one batch i can be the first

processed in unit j whereas constraint (79) enforces every batch
i to be allocated to the processing sequencing of an available
unit j∑
i ∈ Ij

WFij ≤ 1 ∀j (78)

∑
j ∈ Ji

WFij +
∑
j ∈ Ji

Wij = 1 ∀i (79)

3.6.2. Sequencing-allocation matching constraints
Whenever a pair of batches i, i′ are related through the imme-

diate precedence relationship, i.e. Xii′ = 1, both batches must be
allocated to the same unit j. This condition is imposed through
inequalities (80) and (81) that relate allocation and sequencing
decisions among themselves. The former imposes the condition
upon the set the units that can perform both batches whereas the
latter is applied to those units that can only process the batch i

WFij + Wij ≤ Wi′j − Xii′ + 1 ∀i, i′, j ∈ Jii′ (80)
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3.7. General precedence

The generalized precedence notion extends the immediate
precedence concept to not only consider the immediate pre-
decessor, but also all batches processed before in the same
processing sequence. In this way, the precedence concept is
completely generalized which simplifies the model and reduces
by half the number of sequencing variables when compared to
the immediate precedence model. This reduction is obtained by
defining just one sequencing variable for each pair of batch tasks
that can be allocated to the same resource. Additionally, a major
strength of this approach is that sequencing decisions can be eas-
ily extrapolated to different types of renewable shared resources.
In this way, the use of processing units, storage tanks, utilities
and manpower can be efficiently handled through the same set
of sequencing variables without compromising the optimality of
the solution. Part of the work falling into this category is repre-
sented by the approaches developed by Méndez, Henning, and
Cerdá (2001) and Méndez and Cerdá (2003a, 2004a,b). Here we
assume a multistage sequential scheduling problem with multi-
ple equipment working in parallel in each stage.

3.7.1. Allocation constraints
A single processing unit j must be assigned to every required

stage l for manufacturing batch i, here called the task (i, l)∑
j
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Fij + Wij ≤ 1 − Xii′ ∀i, i′, j ∈ (Ji\Jii′ ) (81)

.6.3. Sequencing constraints
Every batch i should either be the first processed or directly

receded by another batch i′, as expressed in constraint (82). In
ddition, constraint (83) defines that every batch i can at most be
irectly succeeded by another batch i′, here called its immediate
uccessor. In this way, a feasible processing sequence for every
nit is always generated∑
∈ Ji

WFij +
∑
i′

Xii′ = 1 ∀i (82)

i′
Xii′ ≤ 1 ∀i (83)

.6.4. Timing constraints
Constraint (84) computes the ending time Tfi of batch i from

ts starting time Tsi and its processing time Tpij in the allocated
nit j. To prevent batch overlapping, constraint (85) states that
atch i directly succeeding batch i (Xii′ = 1) in the jth-unit pro-
essing sequence must start after both the ending time of batch i
nd the corresponding unit and sequence-dependent changeover
asks have taken place

fi = Tsi +
∑
j ∈ Ji

Tpij(WFij + Wij) ∀i (84)

si′ ≥ Tfi +
∑

j ∈ Jii′
(clii′ + Sui′j)Wi′j − M(1 − Xii′ ) ∀i, i′

(85)
∈ Jil

Wilj = 1 ∀i, l ∈ Li (86)

.7.2. Timing constraints
In order to define the exact timing for every batch task (i, l),

onstraint (87) determines the ending time of the task from the
tarting and processing time in the assigned unit j. Precedence
onstraints between consecutive stages l − 1 and l of batch i are
mposed through constraint (88)

fil = Tsil +
∑
j ∈ Jil

TpiljWilj ∀i, l ∈ Li (87)

sil ≥ Tfi(l−1) ∀i, l ∈ Li, l > 1 (88)

.7.3. Sequencing constraints
Sequencing constraints (89) and (90), which are expressed in

erms of big-M constraints, are defined for every pair of tasks
i, l) and (i′, l′) that can be allocated to the same unit j. If both
re allocated to unit j, i.e. Wilj = Wi′l′j = 1, either constraint
90) or (91) will be active. If task (i, l) is processed earlier than
i′, l′), then X′

il,i′l′ is equal to one and constraint (90) is enforced
o guarantee that task (i′, l′) will begin after completing both
he task (i, l) and the subsequent changeover operation at unit j.

oreover, constraint (90) becomes redundant. In case that task
i′, l′) is run earlier in the same unit, constraint (90) is applied and
onstraint (89) is relaxed. Otherwise, such a pair of tasks is not
arried out at the same unit and, consequently, constraints (89)
nd (90) become both redundant and the value of the sequencing
ariable is meaningless for unit j. It should be noted that the
recedence concept used in the sequence variable involves not
nly the immediate predecessor but also all batches processed
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before in the X′
il,i′l′same shared equipment. However, only the

immediate predecessor will enforce the minimum starting time
on its immediate successor

Tsi′l′ ≥ Tfil + clil,i′l′ + Sui′l′

− M(1 − X′
il,i′l′ ) − M(2 − Wilj − Wi′l′j)

∀i, i′, l ∈ Li, l
′ ∈ Li′ , j ∈ Jil,i′l′ : (i, l) < (i′, l′) (89)

Tsil ≥ Tfi′l′ + cli′l′,il + Suil − MX′
il,i′l′ − M(2 − Wilj − Wi′l′j)

∀i, i′, l ∈ Li, l
′ ∈ Li′ , j ∈ Jil,i′l′ : (i, l) < (i′, l′) (90)

3.7.4. Resource limitations
Taking advantage of the concept of general precedence, this

formulation is able to deal with resource limitations aside from
processing units without predefining reference points for check-
ing resource availabilities. The general idea is to utilize a uniform
treatment of resource limitations, where the use of processing
units and other resources such as manpower, tools and services is
handled through common allocation and sequencing decisions.
To do that, the different types of resources r (manpower, tools,
steam, energy, etc.) involved in the scheduling problem as well
as the individual items or pieces of resources z available for each
type r need to be defined. For instance, three operator crews z1, z2
a
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one hand, slot-based models are highly efficient if the workload
of processing units is well-balanced, i.e. a minimum number
of slots needs to be postulated for each processing unit. On the
other hand, precedence-based models are usually more effective
when problem aspects such as sequence-dependent changeovers
or forbidden processing sequences need to be considered. The
performance of these models can be significantly improved if a
partial or total preordering of batches can be performed a priori
by using certain problem data, for instance due dates, colors, fla-
vors, etc. So far, the major limitation of these approaches relies
on the treatment of inventory constraints.

4. Comparison of optimization approaches

In the following, the MILP models that have been introduced
in the previous sections will be used to solve benchmarking
examples taken from literature.

Two case studies for batch scheduling problems arising in
process industries are presented. Based on the roadmap intro-
duced in Section 2 (see Fig. 3), a summary of the problem
characteristics is given in Table 2. The computational results for
the case studies allow comparing the efficiency and limitations
of specific modeling approaches.

4.1. Case study I
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nd z3 can be defined for the resource type manpower, here called
1. Therefore, constraint (91) ensures that sufficient resource r
ill be allocated to meet the requirement of batch i, where qrz is

he amount of resource r available at the resource item z of type
and νilrj defines the amount of resource r required when task (i,

) is allocated to unit j, i.e. unit-dependent resource demands can
e easily accounted for. In addition, the pair of constraints (91)
nd (92) enforces the sequential usage of each resource item by
sing the same idea introduced above for sequencing process-
ng units. It should be noted that the same sequencing variable
′
il,i′l′ is utilized for processing units and other resources, con-

traints (89)–(93), which allows generating a simple problem
ormulation comprising a smaller number of binary variables.
ew allocation variables Yiz are defined for every item z of each

ype of resource r.∑
∈ Rir

qrzYiz =
∑
j ∈ Jil

νilrjWilj ∀r ∈ Ri, i, l ∈ Li (91)

si′l′ ≥ Tfil − M(1 − X′
il,i′l′ ) − M(2 − Yilz − Yi′l′z)

∀i, i′, l ∈ Li, l
′ ∈ Li′ , r ∈ Ril,i′l′ , z ∈ Zr : (i, l) < (i′, l′)

(92)

sil ≥ Tfi′l′ − MX′
il,i′l′ − M(2 − Yilz − Yi′l′z)

∀i, i′, l ∈ Li, l
′ ∈ Li′ , r ∈ Ril,i′l′ , z ∈ Zr : (i, l) < (i′, l′)

(93)

e can conclude that existing slot and precedence-based for-
ulations are able to efficiently deal with a broad variety of

ntrinsic characteristics of batch sequential processes. On the
In order to test the effectiveness and current limitations of
iscrete and continuous time representations, we performed a
omputational comparison using MILP models that rely on the
efinition of global time intervals (Shah et al., 1993) or global
ime points (Maravelias & Grossmann, 2003). The generality,
fficiency and easy implementation of these formulations were
he main reasons to choose them within a variety of alternatives.
he case study selected is based on the benchmark problem pro-
osed by Westenberger and Kallrath (1995) and later published
n Kallrath (2002). This case covers most of the features that
ontribute to the high complexity of batch scheduling (network
tructure, variable batch size, storage constraints and, different
ransfer policies). It has, however, the important simplification
hat neither changeover times nor non-zero transfer times are

able 2
ase study features

eature Case I Case II

rocess topology Network Sequential, single stage
quipment assignment Variable Variable
quipment connectivity Full –

nventory storage policies FIS (dedicated), ZW
and UIS

UIS

aterial transfer Instantaneous –
atch size Variable Fixed
atch processing time Fixed, unit dependent Fixed, unit dependent
emand patterns Scheduling horizon Due dates
hangeovers None Unit dependent
esource constraints None Discrete (manpower)
ime constraints None None
osts None None
egree of certainty Deterministic Deterministic



932 C.A. Méndez et al. / Computers and Chemical Engineering 30 (2006) 913–946

Fig. 7. STN representation for the batch process of case study I.

considered. Fig. 7 provides a graphical representation of this
chemical batch process that relies on the state task network
(STN) concept introduced by Kondili et al. (1993). Problem
data related to states and processing tasks are also described.
The STN consists of: state nodes representing the feeds (state
1), intermediates (states 2–14) and final products (states 15–19);
task nodes representing the process operations (tasks 1–17) and;
arcs that link states and tasks indicating the flow of materials.
The available units for performing each batch task are shown
within the corresponding rectangle. As shown in Fig. 7, this
process comprises 17 processing tasks, 19 states and 9 produc-
tion units. Fractions of input and output goods are marked on the
arcs indicating the particular flow of material. In general, these
proportions are fixed. However, the output fractions of task 2 are
variable, which means that 100x% of the total output is allotted
to state 2 and the remaining quantity to state 3, where the fraction
x is allowed to vary between 0.2 and 0.7. Moreover, it is assumed
that there is sufficient initial stock of raw material (state 1) and
unlimited capacity to store the required raw material (state 1) and
the final products (states 15–19). Different intermediate storage
polices are taken into account for different states. For instance,
a zero-wait transfer policy (ZW) is assumed for states 6, 10, 11
and 13 whereas a finite dedicated intermediate storage capacity
(FIS) is considered for the remaining intermediate states.

It is worthwhile to mention that the problem data involves
only discrete processing times, which represents a fortunate
situation for discrete time models since no special provisions
for rounding are needed. In order to evaluate the influence of
the objective function on the computational performance, we
solved two different instances: minimizing makespan (case 1.a)
and maximizing profit (case 1.b). For the makespan, product
demands of 20 tons for states 15, 16 and 17 have to be satis-
fied. Instances comprising a larger number of demands were
not possible to be solved in a reasonable time by using the
selected pure optimization approaches, which suggests limita-
tions that may be faced when addressing real-world problems.
When the profit was maximized, minimum product demands
of 10, 10, 10, 5 and 10 tons for states 15, 16, 17, 18 and 19
were considered. Also, original discrete processing times were
slightly modified in order to use more realistic data that enforces
a finer discretization. Therefore, processing times of 2, 4, 5
and 6 h were changed to 1.3, 3.7, 4.2 and 5.6 h, respectively.
Raw material cost, inventory cost, unit operating cost and prod-
uct values were considered to estimate the total profit of the
schedule.

Gantt charts for the optimal solutions for the two instances
are shown in Figs. 8 and 9. Model sizes, computational times and
objective values are summarized in Table 3. The number of time

e 1.a
Fig. 8. Gantt charts for cas
 (makespan minimization).
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Fig. 9. Gantt charts for case 1.b (profit maximization).

intervals or points that was required in each case is also reported
in brackets. For case 1.a, it can be observed that both formula-
tions are able to reach the same objective value of 28 h. Thirty
time intervals of 1 h duration were defined for the discrete time,
whereas eight variable time points were required for the contin-
uous representation. Only 1.34 s were required by the discrete
time model, while 108 s were needed by the continuous model.
An iterative procedure that gradually increases the time horizon
until a feasible solution is generated was implemented for the
discrete time model. In turn, the iterative procedure described in
Section 3 was utilized to define the minimum number of variable
time points required. The computational effort corresponding to
the last iteration for each case is reported in Table 3. However,
we would like to remark that the total computational cost for
both cases is significantly higher and depends not only on the
starting point of the iterative procedure but also on the stopping
criterion selected in each iteration.

For the case of profit maximization, a fixed time period of 24 h
was assumed. The scheduling horizon was represented through
240 fixed time intervals and 14 variable time points in the dis-
crete and continuous time models, respectively. Longer periods
were not possible to be solved in a reasonable time for both time
representations. In this case, the solution found through the dis-
crete time model was slightly better than the continuous one,
probably because the number of variable time points required
for generating a better solution exceeds the current continuous
m
m
s
u
m

Although the usefulness and performance of continuous and
discrete time models strongly depends on the particular problem
and solution characteristics, our experience in the area and the
results obtained from the case study performed allow us to draw
the following interesting conclusions for general scheduling
problems: (i) despite the fact that discrete time models are usu-
ally larger than its continuous counterpart, their simpler model
structure tends to significantly reduce the CPU time require-
ments when a reasonable number of time intervals is postulated
(around 400 intervals usually appears as a tractable number); (ii)
the complex structure of continuous time models makes them
useful only for problems that can be solved with reduced number
of time points (15 points may be a current upper bound); (iii)
discrete time models may generate better and faster solutions
than continuous ones whenever the time discretization is a good
approximation to the real data; (iv) the model objective function
selected may have a notable influence on the computational cost
and the model efficiency. Computational costs ranging from 1
to 7202 s were obtained for this case study and; (v) some dif-
ficulties for generating near-optimal or even feasible schedules
were encountered when solving large-scale problem instances
requiring a large number of fixed time intervals or variable time
points.

4.2. Case study II

a
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1

odel capabilities. In fact, continuous time models comprising
ore than 14 time points only generated poor solutions with

ignificant computational effort. With 14 time points the contin-
ous time model was considerably faster than the discrete time
odel (258 s versus 7202 s).

able 3
omputational results for discrete and continuous STN models

ase study Event representation (time
intervals or points)

Binary vars, cont. vars,
constraints

.a Global time intervals (30) 720, 3542, 6713
Global time points (8) 384, 2258, 4962

.b Global time intervals (240) 5760, 28322, 47851
Global time points (14) 672, 3950, 8476

a Seconds on Pentium IV PC with CPLEX 8.1 in GAMS 21.
The second case study to be presented here was initially
ddressed by Pinto and Grossmann (1997) and later studied by
éndez and Cerdá (2002) and Janak et al. (2004). The problem

omprises a single stage process with four parallel extruders
U1–U4) with different capacities where a total of 12 batch

LP relaxation Objective function CPU timea Relative gap

9.9 28 1.34 0.0
24.2 28 108.39 0.0

1769.9 1425.8 7202 0.122
1647 1407.4 258.54 0.042
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Table 4
Comparison of model sizes and computational requirements

Case study Event representation Binary vars, cont. vars, constraints Objective function CPU time Nodes

2.a Time slots and preordering 100, 220, 478 1.581 67.74a (113.35)b 456
General precedence 82, 12, 202 1.026 0.11c 64
Unit-based time events (4) 150, 513, 1389 1.026 0.07d 7

2.b Time slots and preordering 289, 329, 1156 2.424 2224a (210.7)b 1941
General precedence 127, 12, 610 1.895 7.91c 3071
Unit-based time events (12) 458, 2137, 10382 1.895 6.53d 1374

2.c Time slots and preordering 289, 329, 1156 8.323 76390a (927.16)b 99148
General precedence 115, 12, 478 7.334 35.87b 19853
Unit-based time events (12) 446, 2137, 10381 7.909 178.85d 42193

a Seconds on IBM 6000-530 with GAMS/OSL.
b Seconds for disjunctive branch and bound.
c Seconds on Pentium III PC with ILOG/CPLEX.
d Seconds on 3.0 GHz Linux workstation with GAMS 2.5/CPLEX 8.1.

orders need to be accomplished by minimizing earliness given
specific due dates over a 30-day time horizon. The corresponding
unit-dependent processing rates and setups as well as the specific
due dates are reported in Pinto and Grossmann (1997). In con-
trast to the previous case study, this problem involves continuous
temporal data, which makes the use of pure discrete time models
very complex and inefficient. Because of that, our comparison
is based on three different optimization approaches that rely on
alternative continuous time representations such as time slots,
general precedence and unit-specific time events. This compar-
ison attempts to show alternative ways of addressing the same
problem through a variety of optimization approaches, high-
lighting main differences, advantages and limitations in each
case. The problem objective is to minimize the total earliness,
assuming that due dates are imposed as hard constraints on the
completion times. General problem features are again summa-
rized in Table 2.

The scheduling problem is solved considering that only lim-
ited manpower (operator crews) is available to operate simul-
taneously (a) all extruders; (b) three extruders at most; (c) two
extruders at most. Model sizes and computational requirements
for the alternative approaches to the corresponding cases 2.a,
2.b, 2.c are shown in Table 4. Therefore, Gantt charts describ-
ing the optimal solutions obtained for the cases are shown in
Fig. 10. Allocation, sequencing and timing decisions related to
processing units (U1–U4) and to operator crews (R1–R3) are

represented in these diagrams. Also, for the sake of clarity in the
presentation of results, tasks that contribute to non-zero earliness
are colored darker than those that ended just-in-time. Although
this case study can be considered as a relatively small and sim-
ple scheduling problem, it still represents a significant challenge
for pure optimization techniques. Interestingly, the computa-
tional effort in terms of CPU time and nodes clearly reflects
the higher complexity of resource constrained scheduling prob-
lems, as reported in Table 4. Significant differences in model
sizes and in results can be observed for the different approaches
evaluated. A major reason is that the MILP models are not the
same, and the CPU times and number of nodes were obtained
with different computers and with different MILP solvers (OSL
and CPLEX) over a 7 year period. This illustrates the combined
impact of modeling, speed of computers and sophistication of
MILP solvers on the computational effort in solving these prob-
lems.

For the time slot model, a mixed integer representation for
resource constraints is utilized together with the core of the for-
mulation reported in Section 3.4. Since the pure MILP approach
proved to be ineffective, a more efficient logic-based approach
was also presented in Pinto and Grossmann (1997). Since the
set of new variables and constraints for modeling resource lim-
itations notably increases the model complexity, preordering
rules were embedded into the formulation to expedite the search.
These rules along with a likely underestimation of the number

hedul
Fig. 10. Optimal sc
 es for case study 2.



C.A. Méndez et al. / Computers and Chemical Engineering 30 (2006) 913–946 935

of time slots required can generate suboptimal solutions, which
can be observed in the solutions reported for this model.

Subsequently, Méndez and Cerdá (2002) revisited this
resource constrained scheduling problem and proposed an opti-
mization approach based on the general precedence concept and
a uniform treatment of resource limitations, as described in Sec-
tion 3.7. Instead of using the standard approach that monitors the
level of resources at specific time points, this method employs
allocating and sequencing decisions over time to guarantee that
resource availabilities are never exceeded. In this case, specific
allocating variables were used for processing units and opera-
tors crews, whereas a common sequencing variable was used for
both shared resources. This was possible because of the use of
the general precedence concept. Given that a limited number of
checking points was not used to monitor the limited resources,
the optimality of the solution can be guaranteed.

Finally, the same scheduling problem was recently addressed
by Janak et al. (2004) through the extended version of the for-
mulation based on the definition of unit-specific time events.
As can be observed in Table 4, both the resource unconstrained
and constrained problems were efficiently solved with a mod-
est computational effort although, curiously, the model sizes
reported were significantly larger than the other approaches. For
the cases with manpower limitations, the number of event points
required was increased from 4 to 12 event points which gave
rise to more complicated models involving more variables and
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optimization models. A concise description highlighting the
major characteristics and difficulties of two challenging indus-
trial problems, both extensively studied by different authors, is
presented. They deal with the scheduling of a polymer plant
and a steel-making plant, respectively. The section is concluded
with some discussion on the sizes of the required mathematical
formulations in terms of variables and constraints.

5.1. Scheduling of a polymer batch plant

A real-world scheduling problem from the polymer industries
was studied by Schulz, Engell, and Rudolf (1998) and Wang,
Löhl, Stobbe, and Engell (2000). It deals with a multiproduct
batch plant where two types of expandable polystyrene (EPS)
are produced in several grain fractions. Within the considered
scheduling horizon a number of orders has to be fulfilled. Each
order specification includes information on due date and a given
amount of some grain size fraction. The main objective is to
satisfy the customer orders with minimum delay. A schematic
representation of the plant is shown in Fig. 11.

The considered polymerization process includes three stages:
preparation of raw material, polymerization and finishing. The
first two stages are operated in batch mode and each stage
involves several units running in parallel. The finishing step
splits the polystyrene suspension into different grain fractions
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onstraints. It should be noted that Table 4 only reports the com-
utational statistics for a given number of event points, i.e. 4 and
2 event points, respectively. However, considering the fact that
hese numbers are unknown a priori, the iterative procedure pre-
iously described in Section 3 must be used in each case, which
ay represent a much higher total CPU time. For the case 2.c,

his formulation was not able to reach the actual optimal solution
see Table 4). This situation typically arises when a smaller num-
er of time events than needed is predefined. However, in this
articular case the problem was attributed to a special constraint
estricting the starting time of a given batch and, consequently,
liminating the optimal solution from the feasible region (Janak,
in, & Floudas, 2005). The use of special constraints is not men-

ioned in their original paper but we assume that they were used
o speed up the search.

. Real-world scheduling examples involving complex
rocess considerations

From a mathematical perspective, most scheduling problems
ound in industrial environments can be regarded as very large-
cale combinatorial and complex optimization problems, which
arely can be solved to optimality within a reasonable amount
f computational time. Such a combinatorial explosiveness has
o do with the increased number of products to be processed, the
ong sequence of processing stages, the multiple units available
or each task and the length of the scheduling horizon to be con-
idered. The complexity arises from a wide range of operational
onstraints that often need to be taken into account in real world
roblems. Based on this fact, this section attempts to illustrate
he main motivation for developing more realistic and efficient
n a pair of continuous production lines. In the preparation step,
atches of input material are mixed in vessels, and then the
ixture is pumped into one of several storage tanks and sub-

equently fed into the polymerization reactor. Every tank has a
apacity equal to the batch size in the next polymerization step
nd is devoted to just one type of polystyrene during the entire
orizon. On the other hand, polymerization and finishing steps
re connected by mixers in which batches of polystyrene of the
ame type coming from the reactors are mixed and continuously
upplied to the finishing lines. The feed flowrate can change with
ime but its value must remain within certain bounds. Each fin-
shing line is assigned to just one type of polystyrene and must
e shutdown whenever the minimal feed rate condition cannot
e satisfied.

Since the polymerizations require the same basic structure
ith minor variations in some parameters, the plant layout is of

he flowshop type. The major input to the polymerization step is a
ixture of styrene and some additives coming from the prepara-

ion stage. The choice of the additives (i.e. the recipe) determines
he grain size distribution and the type of expandable polystyrene

Fig. 11. Schematic representation of the polymer batch process.
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being made. For each EPS-type, there are five recipes, each one
yielding a different grain distribution. However, the choice of
the recipe has a limited influence on the particle size distribu-
tion and all grain fractions are produced in significant amounts
in all batch runs. Therefore, none of the different products can
be produced separately and batches processed in the reactors
using different recipes are mixed together before going to the
finishing stage.

Overproduction is another major issue. Since the batch size
at the polymerization step is constant and the number of recipes
is limited, every grain fraction demand can hardly be satisfied
exactly. This results in overproduction of certain grain frac-
tions that must be stored. Moreover, unwanted grain fractions to
be sold at low prices are always produced. Therefore, the real
scheduling goal is not only to produce the required grain size
fractions with minimum delay, but also to make them in the right
amounts and with least production of unwanted fractions.

Several process constraints are to be satisfied: (1) the batch
size in the polymerization stage is constant due to technological
restrictions. The filling level of the reactors affects the grain size
distribution. (2) For safety reasons, the simultaneous start of two
or more polymerization runs in different reactors is prohibited.
A minimum delay of 4 h between the starts of two subsequent
polymerizations in different reactors is required. (3) Each mixer
connecting reactors to finishing lines is allocated to just one
type of polymerization and the assignment must remain fixed
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Assuming that 36 polymerizations (batches) are made using
one of the ten available recipes, the total number of possible tasks
adds up to 360. Moreover, the whole set of batches processed
in the polymerization stage must be ordered to account for the
minimum delay of 4 h between subsequent polymerizations in
different reactors. Therefore, there are 36! possible sequences
of batches in the polymerization stage. Preordering of batches
by due dates cannot be applied since every polymerization pro-
duces significant amounts of each grain size fraction; i.e. the
batches are coupled. In addition, a huge number of continuous
variables are also required. For instance, the actual concentra-
tion of every fraction in each mixer and the feed flowrates to the
finishing lines must be handled. Considering the production of
ten different fractions and the running of four mixers, a total of
4 mixers × 36 polymerizations × 10 different fractions = 1440
concentration variables must be defined. Since the problem is
intrinsically non-linear, it must be represented through a mixed-
integer non-linear mathematical problem formulation (MINLP).
Adopting a scheduling horizon of 8 days, Schulz et al. (1998)
developed a problem formulation involving 2656 variables of
which 1009 are binary variables. Given that the size of the prob-
lem, especially the large number of binary variables, makes it
impossible to use general purpose algorithms, they presented
a special scheduling algorithm, which takes particular problem
features into account, leading to a good suboptimal solution with
a reasonable CPU time.
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long the scheduling horizon. (4) At the end of a polymerization,
nough volume must be available in the corresponding mixer so
hat the reactor can be emptied. (5) If the mixers run empty,
he finishing line connected to them has to be temporarily shut
own. In some cases, the shutdown of the finishing lines is not
ermitted and, therefore, the feed flowrate should be properly
djusted with respect to time to always have enough material
n the mixers. (6) Tracking of each grain fraction concentration
n every mixer with respect to time is required to establish the
raction feed rate to the corresponding finishing line. To do so,
on-linear mass balances around the mixer must be included in
he problem formulation.

The major decisions of discrete and continuous nature include
he following:

a) The choice of the recipes and the number of batches (poly-
merizations) to be processed. There are five choices for each
type of polymerization. In addition, a maximum number of
36–70 polymerizations can be performed over a time hori-
zon ranging from 8 to 14 days, respectively (Wang et al.,
2000).

b) The assignment of a reactor unit and the timing of every
polymerization.

c) The mixer assignment to each polymerization, as well as,
both the concentration of each grain size fraction and the
total mass in the mixer after completing the loading of a
polymerization batch.

d) The feed rates of the separation stages and the total output
of each grain fraction at any time.

e) The timing of the start-up and shut-down of the finishing
lines.
.2. Scheduling of a steel-making casting plant

The production scheduling of a steel-making continuous cast-
ng plant producing a wide variety of steel ingots in a production
ine has been recognized as one of the most difficult indus-
rial scheduling problems (Harjunkoski & Grossmann, 2001;
acciarelli & Pranzo, 2004). Products are characterized by their
idth, thickness and chemical composition or grade. Each grade
as a given production recipe with strict specifications of temper-
ture, chemistry and processing times at the different production
tages. Grades are further subdivided into sub-grades with minor
ifferences in, for instance, the carbon content.

The production is organized by orders or lots, each one com-
osed of a given number of ladles with similar product grades to
e cast consecutively. The size of a lot may typically vary from
ne to eight ladles. The scheduling horizon is often 1 week, dur-
ng which typically an average of 30 orders and 120 ladles are

ade. Given the customer orders, the equipment items and the
uality constraints, the scheduling problem consists of complet-
ng all the production requirements at minimum makespan, thus

aximizing the throughput of the plant.
The processing of stainless steel consists of a sequence of

igh temperature operations starting with the loading of scrap
ron into an electric arc furnace (EAF) and ending with the
ontinuous casting (CC). The molten steel from the EAF is
oured into ladles that a crane transports to a subsequent equip-
ent called argon oxygen decarburization unit (AOD), where
ainly the carbon is removed by argon and oxygen injection in

rder to meet the steel quality requirements. After the AOD, the
adles are transported to a ladle furnace (LF) for secondary met-
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allurgy operations, such as chemical adjustments (e.g. nickel,
oxygen, nitrogen, hydrogen contents), degassing and temper-
ature homogenization. In practice, LF also acts as a buffer to
maintain the ladles at the proper temperature before the last
operation in the continuous caster (CC). Between the LF and
the CC there is a buffer that can hold at most one ladle. A ladle
can stay in the buffer at most for 10 min, otherwise the liquid
steel may cool down and must be reheated to the correct tem-
perature. In the CC, the liquid steel is cast and cooled to form
slabs. The time required for casting one ladle ranges from 60 to
70 min.

In the CC operation, the melt steel is solidified into slabs of a
pre-specified width and thickness. In order to achieve the desired
properties of the final products, the slab formation process has
strict requirements of material continuity and casting speed to
fulfill. When a continuous steel flow is broken, the caster needs
maintenance and the caster mold needs to be replaced, which
involves high costs and a delay in production. A new setup of
the caster means several hours of interruption in the casting.
This happens, for instance, when either the slab thickness or
the grade is changed. If two subsequent products have a simi-
lar thickness and grade, it may be possible to proceed without
stopping. Otherwise, the caster needs to be stopped for service.
Moreover, the caster can only be run continuously for a limited
number of compatible ladles or products due to the extreme oper-
ating conditions. Therefore, the continuous casting process can
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ordered such that the schedule makespan and the average order
tardiness/earliness are both minimized.

Harjunkoski and Grossmann (2001) studied the scheduling
of a steel-making continuous casting plant producing up to 82
different ladles or products within a 1-week time horizon. If
this industrial example were formulated as a single schedul-
ing problem, the mathematical model would include as many
as 74,000 equations and 34,000 variables of which more than
33,000 are discrete. Most likely such a large MILP problem is
not solvable, at least in the near future. Instead, Harjunkoski and
Grossmann (2001) applied a three-stage decomposition strategy
in order to: (1) optimally group ladles into sequences so as to
minimize the total CC setup time, (2) find a detailed sched-
ule of each sequence at every production stage that reduces the
makespan and the buffer hold-time violations and (3) determine
the proper ordering of sequences to decrease the number of caster
mold thickness changes while accounting for the order due dates.
Since the products are clustered into 20–25 groups, the result-
ing MILP mathematical models for the steps (1) and (3) remain
still quite large and the formulation for step (3) may involve as
many as 16,000 variables (620 binary) and 15,643 constraints
for the last step of the solution strategy. Although the CPU time
required may exceed 10,000 CPU-s, the predicted schedules lie
within 3% of the theoretically optimal makespan.
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e considered as one of the major challenges in steel production
lanning, and even obtaining feasible solutions is not trivial. It
as been addressed separately in several studies, see for instance
ang, Liu, Rong, and Yang (2000). The steel production process

s illustrated in Fig. 12.
Scheduling 80–100 orders on a production system involving

sequence of four processing stages with some parallel units and
ubject to many operational restrictions is a highly complex com-
inatorial problem requiring a huge number of 0–1 sequencing
ariables and constraints. For simplification of the problem rep-
esentation, a common approach by practitioners and reflected
n research is grouping of customer orders, often named as heats,
nto a smaller number of sequences. Heats featuring the same
rade and/or related subgrades and similar slab thickness can
e cast in the same sequence. Members of a sequence are then
rranged by monotonically decreasing or increasing slab width
nd increasing carbon content. In this way, the grouping strategy
ims to minimize the number of sequences and, consequently,
he overall casting setup time. The resulting sequences are to be

Fig. 12. Steel making process.
. Alternative solution approaches

While this paper has been focused on optimization
pproaches and related modeling aspects, it is important to note
hat there are other solution methods for dealing with short-term
cheduling of batch processes. These methods can be used either
s alternative methods, or as methods that can be combined with
ILP. As seen in Fig. 13 there is a great variety of solution meth-

ds for solving scheduling problems.
This paper has dealt with MILP methods where the most

ommon solution algorithms are LP-based branch and bound
ethods (Wolsey, 1998), which are enumeration methods that

olve LP subproblems at each node of the search tree (Dakin,
965). Cutting plane techniques, which were initially proposed
y Gomory (1958), and which consist of successively generating
alid inequalities for the relaxed MILP problem, have received
enewed interest through the work of Crowder, Johnson, and
adberg (1983), Van Roy and Wolsey (1986), and especially the

ift and project method of Balas, Ceria, and Cornuejols (1993).

Fig. 13. Solution methods used in batch scheduling problems.
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Currently most MILP methods correspond to branch-and-cut
techniques in which cutting planes are generated at the various
nodes of the branch and bound tree in order to tighten the LP
relaxation. A recent review of branch and cut methods can be
found in Johnson, Nemhauser, and Savelsbergh (2000). Finally,
Benders decomposition (Benders, 1962) is another technique
for solving MILPs in which the problem is successively decom-
posed into LP subproblems for fixed 0–1 and a master problem
for updating the binary variables.

The major software packages for MILP are CPLEX (ILOG,
1999) and XPRESS (Dash Optimization, 2003), which use the
LP-based branch and bound algorithm combined with cutting
plane techniques. These codes have seen tremendous progress
over the last decade in terms of capabilities for solving much
larger problem sizes and achieving several order of magni-
tude reductions in the speed of computation, as discussed in
Bixby, Fenelon, Gu, Rothberg, and Wunderling (2002) and
Bixby (2002). MILP models and solution algorithms have been
developed and successfully applied to many industrial prob-
lems (e.g. see Kallrath, 2000). In addition, some work has
been done in the area of batch scheduling to try to accelerate
the branch and bound method by using some problem specific
structure, as reported in Shah et al. (1993) and Burkard and
Hatzl (2005). It should also be noted that MINLP models may
arise in batch scheduling problems. Particularly, modeling the
effect of inventories may give rise to non-linearities in the objec-
t
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includes OPL and ILOG Solver from ILOG, CHIP (Dincbas
et al., 1988), and ECLiPSe (Wallace, Novello, & Schimpf,
1997).

CP methods have proved to be quite effective in solving
certain types of scheduling problems, particularly those that
involve sequencing and resource constraints. However, they are
not always effective for solving more general optimal schedul-
ing problems that involve assignments. Therefore the use of
constraint programming in combination with MILP techniques,
known as hybrid methods (see Fig. 13), has recently received
attention since the two techniques are complementary to each
other. Significant computational savings have been reported by
Harjunkoski and Grossmann (2002), Jain and Grossmann (2001)
and Maravelias and Grossmann (2004) using hybrid methods in
which assignment decisions are handled by an MILP subprob-
lem and sequencing decisions by a CP subproblem.

It should be noted that methods based on meta-heuristics, or
also known as local search methods, do not make any assump-
tions on the functions as they are often inspired by moves arising
in natural phenomena. For larger scheduling problems the use of
a local search algorithms such as Simulated Annealing (Aarts &
Korst, 1989; Kirkpatrick, Gelatt, & Vechi, 1983), Genetic Algo-
rithms (Goldberg, 1989), or Tabu Search (Glover, 1990) may
be preferable, since these algorithms can obtain good quality
solutions within reasonable time. Therefore, these techniques
have become popular for optimizing certain types of scheduling
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ive function. For a review on MINLP methods see Grossmann
2002).

Constraint Programming (CP) (Van Hentenryck, 1989; Van
entenryck, 2002; Hooker, 1999) is a relatively new modeling

nd solution paradigm that was originally developed to solve
easibility problems, but it has been extended to solve optimiza-
ion problems, particularly scheduling problems. Constraint Pro-
ramming is very expressive since continuous, integer, as well as
oolean variables are permitted and moreover, variables can be

ndexed by other variables. Furthermore, a number of constructs
nd global constraints have also been developed to efficiently
odel and solve specific problems, and constraints need neither

e linear nor convex. The solution of CP models is based on
erforming constraint propagation at each node by reducing the
omains of the variables. If an empty domain is found the node
s pruned. Branching is performed whenever a domain of an
nteger, binary or boolean variable has more than one element,
r when the bounds of the domain of a continuous variable do
ot lie within a tolerance. Whenever a solution is found, or a
omain of a variable is reduced, new constraints are added. The
earch terminates when no further nodes must be examined.
he effectiveness of CP depends on the propagation mecha-
ism behind constraints. Thus, even though many constructs
nd constraints are available, not all of them have efficient prop-
gation mechanisms. For some problems, such as scheduling,
ropagation mechanisms have been proven to be very effective.
ome of the most common propagation rules for scheduling are

he “time-table” constraint (Le Pape, 1998), the “disjunctive-
onstraint” propagation (Baptiste, Le Pape, & Nuijten, 2001),
he “edge-finding” (Nuijten, 1994) and the “not-first, not-last”
Baptiste et al., 2001). Software for constraint programming
roblems. However, these algorithms also have significant draw-
acks - they do not provide any guarantee on the quality of the
olution obtained, and it is often impossible to tell how far the
urrent solution is from optimality. Furthermore, these methods
o not formulate the problem as a mathematical program since
hey involve procedural search techniques that in turn require
ome type of discretization or graph representation, and the vio-
ation of constraints is handled through ad hoc penalty functions.
or that reason, the use of meta-heuristics based on local search
ethods might be problematic for problems involving complex

onstraints and continuous variables. In this case, the set of fea-
ible solutions might lack nice properties and it might even be
ifficult to find a feasible solution (see Burkard, Hujter, Klinz,
udolf, & Wennink, 1998). Tabu Search is the more determinis-

ic of the three techniques and also has fewer tunable parameters.
he variant of Tabu Search called Reactive Tabu Search (RTS)

Battiti & Tecchiolli, 1994) has proved to be the more successful
mplementation for scheduling problems. Examples of applica-
ion of these techniques in batch scheduling include the work
y Graells, Cantón, Peschaud, and Puigjaner (1998), Lee and
alone (2000) and Ryu, Lee, and Lee (2001) for simulated

nnealing, Löhl, Schulz, and Engell (1988) for genetic algo-
ithms, and Cavin, Fischer, Glover, and Hungerbühler (2004)
or tabu search.

Meta-heuristics are also known as improvement heuristics,
iven that they employ an iterative procedure that starts with an
nitial schedule that is gradually improved. On the other hand,
here are several heuristics called dispatching rules which are
onsidered as construction heuristics. These rules use certain
mpirical criteria to prioritize all the batches that are waiting
or processing on a unit. For simple scheduling problems, they
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have demonstrated to have very good performance, although
their efficiency is usually evaluated empirically. The usefulness
of dispatching rules is still limited to quite a narrow variety
of scheduling problems and optimality can be proved only in
some special cases. Some relevant dispatching rules are: FCFS
(first come first served), EDD (earliest due date), SPT (shortest
processing time), LPT (longest processing time), ERD (earli-
est release date), WSPT (weighted shortest processing time).
Often, composite dispatching rules involving a combination of
basic rules can perform significantly better. Besides, dispatch-
ing rules can be easily embedded in exact models to gener-
ate more efficient hybrid approaches for large-scale scheduling
problems. An extensive review and a classification of various
dispatching rules can be found in Blackstone, Phillips, and
Hogg (1982) and Panwalkar and Iskander (1977).With the main
goal of making a more efficient use of the process informa-
tion as well as the essential knowledge provided by human
schedulers, artificial intelligence (AI) techniques have also been
widely applied to scheduling problems. AI is the mimicking
of human thought and cognitive processes to solve complex
problems automatically. It uses techniques for writing com-
puter code to represent and manipulate knowledge. Different
techniques mimic the different ways that people think and rea-
son. For instance, case-based reasoning (CBR) solves a current
problem by retrieving the solution to previous similar prob-
lems and altering those solutions to meet the current needs.
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7. Use of exact methods in industrial problems

The vast literature in the scheduling area highlights the suc-
cessful application of different optimization approaches to an
extensive variety of challenging problems. Nowadays, more
difficult and larger problems than those studied years ago can
be solved, sometimes even to optimality, in a reasonable time
by using more efficient integrated mathematical frameworks.
This important achievement comes mainly from the remark-
able advances in modeling techniques, algorithmic solutions and
computational technologies that have been made in the last few
years.

Although a promising near future in the area can be predicted
from this optimistic current situation, it is also well-known that
the actual gap between practice and theory is still evident. New
academic developments are mostly tested on complex but rel-
atively small problems whereas current real-world applications
consist of hundreds of batches, dozens of pieces of equipment
and long scheduling periods, usually ranging from one to sev-
eral weeks. Industrial problems are also very hard-constrained,
which means that optimization solvers have to find the optimal
or near-optimal solutions in a huge search space with a relatively
small feasible region. This difficulty can be easily observed in the
reported results for case study II. This may result in unstable and
unpredictable computational performance of optimization mod-
els, which is definitely not suitable for industrial environments.

t
d
n
p
a
a
r
A
a
b
v
t
g
i
t
d
t
a

s

1

t is based upon previous experiences and patterns of previ-
us experiences. On the other hand, model-based reasoning
MBR) concentrates on reasoning about a system’s behavior
rom an explicit model of the mechanisms underlying that behav-
or. Within the AI field, agent-based approaches are software
rograms that are capable of autonomous, flexible, purposeful
nd reasoning action in pursuit of one or more goals. They are
esigned to take timely action in response to external stimu-
us from their environment on behalf of a human. Schedul-
ng problems have been solved by a set of individual agents
see Rabelo & Camarinha-Matos, 1994), which can work par-
llel and their coordination may bring a more effective way
o find an optimal solution. When multiple agents are being
sed together in a system, individual agents are expected to
nteract together to achieve the goals of the overall system. A
urvey by Shen and Norrie (1999) reports 30 projects using
gent technology for manufacturing planning, scheduling and
xecution control where agents represent physical entities, pro-
esses, operations, parts, etc.The development of expert sys-
ems, also known as knowledge-based approaches, is also an
mportant field of the AI area. They encapsulate the specialist
nowledge gained from a human expert (such as an experi-
nced scheduler) and apply that knowledge automatically to
ake decisions. The process of acquiring the knowledge from

he experts and their documentation and successfully incorpo-
ating it in the software is called knowledge engineering, and
equires considerable skills to perform successfully. Some inter-
sting applications based on AI technologies for addressing
eal-world scheduling problems have been reported in Henning
nd Cerdá (2000), Sauer and Bruns (1997) and Zweben and Fox
1994).
In order to make the use of exact methods more attractive in
he real-world, increasing effort has been oriented towards the
evelopment of systematic techniques that allow maintaining the
umber of decisions at a reasonable level, even for large-scale
roblems. A reduced search space can guarantee a more stable
nd predictable behavior of the optimization model. Manage-
ble model sizes may be obtained by applying heuristic model
eduction methods, decomposition or aggregation techniques.
dditionally, once the best possible solution has been gener-

ted in the specified time, optimization-based techniques could
e employed to gradually enhance a non-optimal solution with
ery modest computational effort. A clear disadvantage of these
echniques is that the optimality of the solution can no longer be
uaranteed. However, requiring optimality may not be relevant
n practice due to the following: (1) a very short time is available
o generate a solution, (2) optimality is easily lost because of the
ynamic nature of industrial environments, (3) implementing
he schedule as such is limited by the real process and (4) only
subset of the actual scheduling goals are taken into account.

Some available techniques widely used to deal with large-
cale problems are described below.

. Heuristic model reduction methods: taking advantage of an
empirical and well-known solution method or a particular
feature of the problem addressed, it is frequently convenient
to incorporate this essential knowledge into the mathematical
problem representation. Performing this task usually permits
not only to obtain reduced models that describe only the criti-
cal decisions to be made but also to generate good solutions in
a reasonable time. A clear example of this strategy is given by
multiple sequential process-oriented models that make use of
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simple or combined dispatching rules, also called preorder-
ing rules, to generate better solutions in a given short time.
(See Blömer & Günther, 2000; Cerdá et al., 1997; Méndez
et al., 2001; Pinto & Grossmann, 1995).

2. Decomposition and aggregation techniques: two major
approaches are to either consider aggregation techniques, or
else to use decomposition either in spatial or in temporal
forms. Examples of strategies based on aggregation are works
by Bassett et al. (1997), Birewar and Grossmann (1990) and
Wilkinson (1996). These include aggregating later time peri-
ods within the specified time horizon in order to reduce the
dimensionality of the problem, or to aggregate the schedul-
ing problem so that it can be considered as part of a planning
problem. Approaches based on spatial or temporal decom-
position, usually rely on Lagrangean decomposition (Graves,
1982; Gupta & Maranas, 1999). In the case of spatial decom-
position the idea is to use the links between subsystems (e.g.
manufacturing, distribution and retail) by dualizing the cor-
responding interconnection constraints, which then requires
the multiperiod optimization of each system. In the case of
temporal decomposition the idea is to dualize the inventory
constraints in order to decouple the problem by time periods.
The advantage of this decomposition scheme is that con-
sistency is maintained over every time period (Jackson &
Grossmann, 2003).

3. Improvement optimization-based techniques: the gradual
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in the market, and for which the users only need to specify data
on the problem at hand. Establishing the precise capabilities and
methodologies behind these packages is not an easy task since
vendors do not normally disclose the full technical information
behind these packages. We should also clarify that there are sev-
eral software packages available that require that the user model
the scheduling problem as a mixed-integer program or a con-
strained programming problem. Examples of the former type of
software includes systems like GAMS, AMPL, AIMMS, while
examples of the former include systems like OPL, CHIP and
ECLIPSE, although among these OPL can handle both MILP as
well as CP models. Furthermore, OPL has access to the special
purpose software ILOG scheduler, which is especially suitable
for batch scheduling problems.

8.1. Aspen Plant Scheduler

Aspen Plant Scheduler from AspenTech (http://www.
aspentech.com) is a member of the MIMI family of supply chain
solutions (Jones & Baker, 1996). Its objective is to create an
optimal or near-optimal short-term schedule for unit produc-
tion, consistent with the longer-term group production plan, to
address the inevitable variability in actual versus planned cus-
tomer orders. The solution is developed at the end item level (i.e.
a shippable, billable item) scheduled by production work center
by start and stop times, shift, day, or other finite time period.
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improvement of a non-optimal solution can be interpreted as
a special case of rescheduling where the available solution is
partially adjusted with the only goal of enhancing a particular
scheduling criterion. These techniques use the entire current
schedule as the starting point of a procedure that, based on
the problem representation, iteratively enhances the exist-
ing solution in a systematic manner. The model size remains
usually under user control by allowing that only a small num-
ber of potential changes be performed in each iteration. The
work that has followed this direction has shown promis-
ing results with modest computational effort (see Méndez
& Cerdá, 2003b; Roslöf, Harjunkoski, Björkqvist, Karlsson,
& Westerlund, 2001).

. Academic and commercial software for scheduling of
atch plants

With few exceptions, academic software for batch schedul-
ng is normally available as part of a modeling system such as
AMS and AMPL. Therefore, there are relatively few academic

oftware packages that can be used as commercial packages and
hich involve sophisticated graphical user interfaces. For the

ake of brevity, we only present a table of a number of academic
roups who are actively working in the area of batch schedul-
ng and are known to have unique computational tools for batch
cheduling. As can be seen in Table 5, there is a growing number
f active researchers in batch scheduling, although the size of
his community is still rather modest.

Commercial software for batch scheduling, on the other hand,
as only begun to emerge over the last few years. Table 6 lists
ew representative software packages that are currently available
ecision rules and heuristics are used to speed creation of an
xecutable schedule for large numbers of items sharing limited
apacity. Users typically generate a schedule for a time horizon
panning a few days to a few weeks. The solution is integrated
ith the Aspen Available-to-Promise/Capable-to-Promise solu-

ion, to enable rapid response to customer requests for new
rders, make-to-order items, and new product formulations. The
olution is also linked to Aspen Collaborative Forecasting and
ollaborative Replenishment solutions to link the Aspen client

o both suppliers and customers. Finally, integration from Aspen
upply Planner allows for direct conversion of an annual plan to
more granular schedule used to organize final staging, testing,
nd product distribution.

.2. Model Enterprise Optimal Single-site Scheduler (OSS
cheduler)

The OSS scheduler from Process Systems Enterprise Ltd.
http://www.psenterprise.com) determines optimal production
chedules for given availabilities of plant resources, recipe infor-
ation and known product demands, using as a basis the STN

nd RTN MILP models by Kondili et al. (1993) and Pantelides
1994), respectively. The OSS scheduler determines an econom-
cally optimal schedule for a process plant producing multiple
roducts. It is especially suited to multi-purpose plants where
roducts can be processed on a selection of alternative equip-
ent, via different routes and in any batch size. The objective

f the schedule can be configured according to the economic
equirements of the operation, for example, to deliver maxi-
um profit, maximum output or on-time in full. The sched-

les produced satisfy all operating constraints such as hard

http://www.aspentech.com/
http://www.psenterprise.com/


C.A. Méndez et al. / Computers and Chemical Engineering 30 (2006) 913–946 941

Table 5
Academic groups with software for batch scheduling

School Researcher(s)
(weblink)

Åbo Akademi University T. Westerlund
(http://www.abo.fi/∼twesterl/)

Carnegie Mellon University I.E. Grossmann
(http://egon.cheme.cmu.edu)

Imperial College C. Pantelides, N. Shah
(http://www.ps.ic.ac.uk)

INETI P. Castro
(http://www.ineti.pt/colaborador/colaborador.aspx?id=7540&UO=&subUO=)

Instituto Superior Lisbon A. Barbosa Povoa
(http://alfa.ist.utl.pt/∼d3662/)

INTEC – CONICET J. Cerdá and C. Méndez
(http://intecwww.arcride.edu.ar/∼jcerda/)

National University of Singapore I.A. Karimi
(http://www.chee.nus.edu.sg/staff/000731karimi.html)

Polytechnic University J. Pinto
(http://www.poly.edu/faculty/josempinto/)

Princeton University C.A. Floudas
(http://titan.princeton.edu/home.html)

Purdue University J. Pekny and G.V. Reklaitis
(http://engineering.purdue.edu/ChE/Research/Systems/index.html)

Rutgers University M. Ierapetritou
(http://sol.rutgers.edu/staff/marianth/)

Technical University Graz R. E. Burkard
(http://www.opt.math.tu-graz.ac.at/burkard/)

Universitat Politécnica de Catalunya L. Puigjaner
(http://deq.upc.es/wwwdeq/cat/infogral/curriculs/Lluis%20Puigjaner.htm)

University College London L. Papageorgiou
(http://www.chemeng.ucl.ac.uk/staff/papageorgiou.html)

University Karlsruhe (TH) K. Neumann
(http://www.wior.uni-karlsruhe.de/LS Neumann/)

University of Dortmund S. Engell
(http://www.bci.uni-dortmund.de/ast/en/content/mitarbeiter/elehrstuhlinhaber/engell.html)

University of Sao Paulo J. Pinto
(http://www.lscp.pqi.ep.usp.br/pro zeca.html)

University of Tessaloniki M. Georgiadis
(http://www.cperi.certh.gr/en/compro.shtml#SECT2)

University of Wisconsin C. Maravelias
(http://www.engr.wisc.edu/che/faculty/maravelias christos.html)

and soft delivery deadlines. The OSS scheduler can be applied
to both continuous and batch processing. Intermediate prod-
ucts can be stored in vessels, in individual tanks or a tank
farm. The application accepts complex recipes with blending,
separation and re-cycles. Changeovers and downtime can be
included and cleaning can be added as downtime or even as
a process. The OSS scheduler can also be used to design the
economically optimum process plant for a given production
requirement.

Table 6
Batch scheduling Software

Software Vendor

Aspen Plant Scheduler AspenTech
Model Enterprise Optimal Single-site

Scheduler
Process systems Enterprise

VirtECS Schedule Advanced Process Combinatorics
SAP Advanced Planner and

Optimizer (APO)
SAP

8.3. VirtECS Schedule

VirtECS Schedule from Advanced Process Combinatorics
(http://www.combination.com) builds an optimized schedule
that satisfies all constraints and levels load on parallel equip-
ment. The package is based on an MILP model similar to the
STN model, but incorporates a special MILP solver developed
at Purdue University that exploits more effectively the structure
of the scheduling models (e.g. see Bassett, Pekny, & Reklaitis,
1997). VirtECS Schedule includes an Interactive Scheduling
Tool (IST) to facilitate the ability to modify production sched-
ules through direct control of key inputs. VirtECS Schedule has
also the capability of rescheduling to respond to changing oper-
ating conditions on the plant floor, for instance when mechanical
failures or rush orders make the current schedule obsolete.

8.4. SAP advanced planner and optimizer (SAP APO)

SAP (http://www.sap.com) offers the system mySAP, a com-
prehensive framework for supply chain optimization. mySAP

http://www.abo.fi/~twesterl/
http://egon.cheme.cmu.edu/
http://www.ps.ic.ac.uk/
http://www.ineti.pt/colaborador/colaborador.aspx?id=7540&amp;uo=&amp;subuo=
http://alfa.ist.utl.pt/~d3662/
http://intecwww.arcride.edu.ar/~jcerda/
http://www.chee.nus.edu.sg/staff/000731karimi.html
http://www.poly.edu/faculty/josempinto/
http://titan.princeton.edu/home.html
http://engineering.purdue.edu/che/research/systems/index.html
http://sol.rutgers.edu/staff/marianth/
http://www.opt.math.tu-graz.ac.at/burkard/
http://deq.upc.es/wwwdeq/cat/infogral/curriculs/lluis%20puigjaner.htm
http://www.chemeng.ucl.ac.uk/staff/papageorgiou.html
http://www.wior.uni-karlsruhe.de/ls_neumann/
http://www.bci.uni-dortmund.de/ast/en/content/mitarbeiter/elehrstuhlinhaber/engell.html
http://www.lscp.pqi.ep.usp.br/pro_zeca.html
http://www.cperi.certh.gr/en/compro.shtml
http://www.engr.wisc.edu/che/faculty/maravelias_christos.html
http://www.combination.com/
http://www.sap.com/
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includes the module SAP Advanced Planner and Optimizer
(SAP APO), in which the planning and scheduling tool helps to
support real-time and network optimization across the extended
supply chain (Braun & Kasper, 2004). This module is used
within a hierarchical decomposition scheme for planning and
scheduling. While the higher level planning tools are based on
MILP models, it appears that the detailed scheduling module
(PP/DS) is largely based on constraint programming and genetic
algorithms. It also appears to be restricted to multistage plant
configurations.

9. Current reactive scheduling capabilities

The scheduling techniques examined in the previous sections
are aimed at generating a priori production schedules assuming
that plant parameters and production requirements will remain
unchanged throughout the entire time horizon. However, indus-
trial environments are highly dynamic and although the proposed
initial schedule may be the best option under the predicted cir-
cumstances, it can quickly become inefficient or even infeasible
after the occurrence of unforeseen events, which are not only
related to external market factors (late order arrivals, orders
cancellations, delayed raw material shipments, modifications
in order due dates and/or customer priorities) but also to the
operational level (changes in batch processing/setup times, unit
breakdown/startup, reprocessing of batches, changes in resource
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operation, limited changes in batch sequencing and unit assign-
ment were permitted. Subsequently, the original model was
extended in Méndez and Cerdá (2004a) to consider resource-
constrained multistage batch facilities, where manpower limita-
tions aside from processing units must be taken into account in
the rescheduling framework.

So far the reported work clearly reveals that current capabil-
ities of optimization methods to reactive scheduling problems
are still very restricted and mostly focused on sequential batch
processes. More general, efficient and systematic rescheduling
tools are required for recovering feasibility and/or efficiency
with short reaction time and minimum additional cost. The main
effort should be oriented towards avoiding a time-expensive full-
scale rescheduling, allowing during the rescheduling process
only limited changes to the scheduling decisions already made at
the beginning of the time horizon. In addition to the data required
for predictive scheduling models, a generic rescheduling tool
also needs to provide an explicit representation of the current
situation by incorporating the information related to: (a) the
schedule in progress, (b) the present plant state, (c) current inven-
tory levels, (d) present resource availabilities, (e) the current
time data, (f) unexpected events, (g) rescheduling actions that
can be taken and (h) the criterion to be optimized. Rescheduling
actions may range from a simple time shifting to a full-scale re-
optimization, depending on the type of events that occurred, the
current situation of the plant and the available time to adjust the
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vailabilities). In such a case, the ability to handle unpredictable
ircumstances and periodically or driven by events re-optimize
he schedule on a daily or hourly basis becomes a key issue in
atch plant operation.

Despite the great importance of rescheduling functionality for
atch processes, only a few number of optimization approaches
ave been reported in the last decade. Hasebe, Hashimoto,
nd Ishikawa (1991) proposed a reordering algorithm for the
cheduling of multiproduct batch plants consisting of parallel
roduction lines with a shared unit. The algorithm involved two
eordering operations, the insertion of a job and the exchange
f two jobs. More recently, Vin and Ierapetritou (2000) devel-
ped a solution approach that addresses the problem of reactive
cheduling in multiproduct batch plants. The approach was
ased on a two-stage solution procedure where the optimal
eschedule is obtained from the solution of a MILP formulation
hat systematically incorporates all different rescheduling alter-
atives. Two kinds of disturbances involving machine break-
own and rush order arrivals were only considered. Roslöf et
l. (2001) presented an MILP reordering algorithm to improve a
on-optimal schedule or update the schedule in progress because
f unforeseen events. Test runs were performed by releasing, i.e.
e-allocating and/or re-sequencing, either one or two jobs at a
ime. Méndez and Cerdá (2003b) developed a MILP formulation
or the reactive scheduling problem in multiproduct batch plants.
he proposed approach allowed performing multiple reschedul-

ng operations at the same time such as the insertion of new
rder arrivals, the reassignment of existing batches to alter-
ative units due to equipment failures and the reordering and
ime-shifting of old batches at the current processing sequences.
o prevent rescheduling actions from disrupting smooth plant
chedule. Given that more flexible rescheduling operations usu-
lly involve higher computational cost, the role of the human
xpert or scheduler should be oriented at the definition of the
cope of the possible rescheduling actions. Therefore, a reac-
ive scheduling framework for general batch processes should
rovide the basic rescheduling operations to optimally:

1) Fix critical scheduling decisions already made at the begin-
ning of the time horizon (lot-sizing, allocation, sequencing
and timing).

2) Modify or adjust some scheduling decisions (resource re-
allocation, batch re-sequencing and time-shifting).

3) Eliminate batches (order cancellation).
4) Mix or split batches already scheduled.
5) Modify size of batches already scheduled (re-sizing).
6) Transform new demands into a set of new batches to be

processed (lot-sizing).
7) Insert new batches into the schedule in progress.

urthermore, these rescheduling actions should be performed
imultaneously and with a modest computational effort, aiming
t satisfying all process constraints while optimizing a specific
escheduling goal. The estimated cost of updating the on-going
chedule should be incorporated in the problem representation.

0. Beyond short-term scheduling

We would like to conclude this paper by noting that short-
erm scheduling is an important problem in its own right for
hich a number of challenges must still be overcome (e.g.

ffective handling of changeovers in discrete time models or
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efficient solutions for continuous time models as discussed in
Section 4).

However, we should note that scheduling is also a basic
building block in the more general area of Enterprise-wide
Optimization (see Grossmann, 2005) where significant exten-
sions that give rise to interesting research challenges are the
following. First, simultaneous planning and scheduling is con-
cerned with coupling the longer term planning decisions for
establishing production levels with the shorter term scheduling
decisions. The main research issue is how to guarantee consis-
tency and optimality between the two levels (e.g. see Erdirik
Dogan & Grossmann, 2006; Subrahmanyam, Bassett, Pekny,
& Reklaitis, 1995; Wilkinson, Shah, & Pantelides, 1996; Zhu
& Majozi, 2001). Second, simultaneous design and scheduling
considers a further level of integration where decisions on the
configuration and design of units must be coupled with schedul-
ing decisions. The main research issue here is how to develop
superstructures for batch plants that are rich enough in terms of
alternatives and that in a realistic way be coupled to scheduling
models (e.g. see Barbosa-Povoa and Macchietto, 1994; Lin and
Floudas, 2001; Papageorgaki and Reklaitis, 1990). Third, at a
lower level an important question is how to couple scheduling
models with process models (see Section 5), and particularly
with dynamic models that can rigorously predict the optimal
control for the transitions. Here a major research issue is how to
solve complex mixed-integer dynamic optimization problems
(
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general scheduling software that can address all cases is still elu-
sive. The important issue of rescheduling capabilities was also
briefly discussed showing that substantial work remains to be
done in this area.

It is hoped that this paper will stimulate further research as
it is clear that even though very significant progress has been
made in short-term batch scheduling, the direct and systematic
solution of large-scale industrial problems through mathemati-
cal programming is still an unresolved issue.
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Méndez, C. A., & Cerdá, J. (2002). An MILP framework for short-term
scheduling of single-stage batch plants with limited discrete resources.
Computer-aided Chemical Engineering, 12, 721–726, Elsevier Science
Ltd., ISBN 0-444-51109-1.
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Wang, K., Löhl, T., Stobbe, M., & Engell, S. (2000). A genetic algorithm
for online-scheduling of a multiproduct polymer batch plant. Computers
and Chemical Engineering, 24, 393–400.

Westenberger, H. & Kallrath, J. (1995). Formulation of a job shop problem
in process industry. Internal report, Bayer AG, Leverkusen, and BASF
AG, Ludwigshafen.

Wilkinson, S. J. (1996) Aggregate formulations for large-scale process
scheduling problems, Thesis dissertation, Department of Chemical Engi-
neering and Chemical Technology, Imperial College, London.

Wilkinson, S. J., Shah, N., & Pantelides, C. C. (1996). Aggregate modeling
of multipurpose plant operation. Computers and Chemical Engineering,
19(Supplement 1, 11), 583–588.

Wolsey, L. (1998). Integer programming. John Wiley and Sons.
Zhang, X., & Sargent, W. H. (1996). The optimal operation of mixed pro-

duction facilities—a general formulation and some approaches for the
solution. Computers and Chemical Engineering, 20, 897–904.

Zhu, X. X., & Majozi, T. (2001). Novel continuous time MILP formula-
tion for multipurpose batch plants. 2. Integrated planning and scheduling.
Industrial and Engineering Chemistry Research, 40, 5621–5634.

Zweben, M., & Fox, M. S. (1994). Intelligent scheduling. San Francisco:
Morgan Kaufmann.


	State-of-the-art review of optimization methods for short-term scheduling of batch processes
	 Introduction
	Classification of batch scheduling problems
	Classification of optimization models for batch scheduling
	Modeling aspects of alternative approaches
	Global time intervals (discrete time)
	STN-based discrete formulation
	Allocation constraints
	Capacity limitations
	Material balances
	Resource balances
	Sequence-dependent changeovers

	RTN-based discrete formulation
	Resource balances
	Operational constraints
	Sequence-dependent changeovers


	Global time points (continuous time)
	STN-based continuous formulation
	Assignment constraints
	Batch size constraints
	Material balances
	Utility constraints
	Timing and sequencing constraints
	Sequence-dependent changeover times
	Shared storage tanks

	RTN-based continuous formulation
	Timing constraints
	Batch size constraints
	Resource balances
	Storage constraints


	Unit-specific time event
	Assignment constraints
	Batch size constraints
	Material balances
	Timing and sequencing constraints (processing tasks)
	Storage constraints
	Resource constraints

	Time slots
	Allocation constraints
	Time matching constraints

	Unit-specific immediate precedence
	Allocation and sequencing constraints
	Timing constraints

	Immediate precedence
	Allocation constraints
	Sequencing-allocation matching constraints
	Sequencing constraints
	Timing constraints

	General precedence
	Allocation constraints
	Timing constraints
	Sequencing constraints
	Resource limitations


	Comparison of optimization approaches
	Case study I
	Case study II

	Real-world scheduling examples involving complex process considerations
	Scheduling of a polymer batch plant
	Scheduling of a steel-making casting plant

	Alternative solution approaches
	Use of exact methods in industrial problems
	Academic and commercial software for scheduling of batch plants
	Aspen Plant Scheduler
	Model Enterprise Optimal Single-site Scheduler (OSS scheduler)
	VirtECS Schedule
	SAP advanced planner and optimizer (SAP APO)

	Current reactive scheduling capabilities
	Beyond short-term scheduling
	Conclusions
	Acknowledgments
	References


