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ﬁmﬁﬁé Introduction

Optimization: %iyen a system or process, find the best solution to
this process within constraints.

Objective Function: indicator of "goodness" of solution, e.g., cost,
yield, profit, etc.

Decision Variables: variables that influence process behavior and
can be adjusted for optimization.

In many cases, this task is done by trial and error (through case
study). Here, we are interested in a systematic approach to this
task - and to make this task as efficient as possible.

Some related areas:
- Math programming
- Operations Research

Currently - Over 30 journals devoted to optimization with roughly
200 papers/month - a fast moving field!

w  Optimization Viewpoints

Mathematician - characterization of theoretical properties
of optimization, convergence, existence, local
convergence rates.

Numerical Analyst - implementation of optimization method
for efficient and "practical" use. Concerned with ease of
computations, numerical stability, performance.

Engineer - applies optimization method to real problems.
Concerned with reliability, robustness, efficiency,
diagnosis, and recovery from failure.
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ical Motivation

Scope of optimization

Provide systematic framework for searching among a specified
space of alternatives to identify an “optimal” design, i.e., as a
decision-making tool

Premise
Conceptual formulation of optimal product and process design
corresponds to a mathematical programming problem

~
MINLP = NLP

IA

R,




« Optimization in Design, Operations and Control

MILP MINLP Global LP,QP NLP SA/GA

s Unconstrained Multivariable Optimization

Problem: Min f{x) (n variables)
Equivalent to: Max -f{x), x ER"
Nonsmooth Functions

- Direct Search Methods
- Statistical/Random Methods

Smooth Functions

- 1st Order Methods

- Newton Type Methods
- Conjugate Gradients




w Example: Optimal Vessel Dimensions

What is the optimal L/D ratio for a cylindrical vessel?
Constrained Problem

- o

4

Convert to Unconstrained (Eliminate L)
7 D* } D

Min {cT D
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T Cs

==>L/D = C/Cq
Note:
- What if L cannot be eliminated in (1) explicitly? (strange shape)
- What if D cannot be extracted from (2)?
(cost correlation implicit) 9

ﬁ%ﬂ Two Dimensional Contours of F(x)
ERING

Convex Function Nonconvex Function Multimodal, Nonconvex

N

S S

Discontinuous Nondifferentiable (convex)



ﬁﬁé Local vs. Global Solutions

Convexity Definitions

ea set (region) X is convex, if and only if it satisfies:
ay+(l-a)z EX
forall a, 0 < a <1, for all points y and z in X.
* f(x) is convex in domain X, if and only if it satisfies:

flay+(1-a)z) < afly) +(1-a)f(z)
forany a, 0 <a <1, at all points y and z in X.

*Find a local minimum point x* for f(x) for feasible region defined by
constraint functions: fix*) < f{x) for all x satisfying the constraints in
some neighborhood around x* (not for all x €X)

«Sufficient condition for a local solution to the NLP to be a global is
that f{x) is convex for x €X.

*Finding and verifying global solutions will not be considered here.
*Requires a more expensive search (e.g. spatial branch and bound).

il Linear Algebra - Background

Some Definitions

e Scalars - Greek letters, a, 3, v

¢ Vectors - Roman Letters, lower case

*  Matrices - Roman Letters, upper case

e Matrix Multiplication:
C=ABifA€R*m BERm*Pand C € Roxr, C,; =2, A, B,

* Transpose - if A€ Rnxm,
interchange rows and columns --> AT fimxn

*  Symmetric Matrix - A € Rnxn (square matrix) and A = AT

e Identity Matrix - I, square matrix with ones on diagonal
and zeroes elsewhere.

* Determinant: "Inverse Volume" measure of a square matrix
det(A) = i (-1)"1 A A, for any j, or
det(A) = 2j (-1) M A A, for any i, where A, is the determinant
of an order n-1 matrix with row i and column j removed.
det(l) =1

e Singular Matrix: det (A) =0



ical
ERING

ical
ERING

Linear Algebra - Background

Gradient Vector - (Vf(x))

[9f 1 ox, ]
lof 1 o |
Vf = |f axZ|

lﬁf/ o’*xJ

Hessian Matrix (V3f(x) - Symmetric)

[o2f ot _of ]
| oxi  d9xi9x2 X1 dx, |
V2E(x) = | o
R S
I_&xn ox1 0%Xndx2 axa J
2¢ 92f
Note =
IX; 0X j 0xjoxj

Linear Algebra - Background

Some Identities for Determinant
det(A B) = det(A) det(B); det (A) = det(AT)
det(aA) = an det(A); det(A) = L M(A)

Eigenvalues: det(A- A I) = 0, Eigenvector: Av=A v
Characteristic values and directions of a matrix.

For nonsymmetric matrices eigenvalues can be complex,
so we often use singular values, 6 = M(ATA)'2 = 0

Vector Norms
IIx Il = {Z Ix/p}P
(most common are p = 1, p = 2 (Euclidean) and p = o (max norm = max;x,l))
Matrix Norms
[IAIl = max IA xIl/lIxIl over x (for p-norms)

lIAll - max column sum of A, max; (2, IA,l)

lIAll- - maximum row sum of A, max; (2 1A,!)

All: = [Omax(A) ] (spectral radius)

Al = [X, X, (A;):]"? (Frobenius norm)

K(A) = Al 1A'l (condition number) = Gmax/Omin (USing 2-norm)



ﬁtﬁ Linear Algebra - Eigenvalues

M
Find v and A where Av, = A, v,,i=1in
Note: Av- Av=(A-A)v=0 ordet(A-Al)=0

For this relation A is an eigenvalue and v is an eigenvector of A.

If A is symmetric, all A, are real
A, >0,i=1,n; Ais positive definite
A, <0,i=1,n; Ais negative definite
A, =0,some i: Ais singular

Quadratic Form can be expressed in Canonical Form (Eigenvalue/Eigenvector)
xTAx = AV =VA
V - eigenvector matrix (n x n)
A - eigenvalue (diagonal) matrix = diag(\,)

If A is symmetric, all A, are real and V can be chosen orthonormal (V-! = VT).
Thus, A=VAV!I=VAVT

For Quadratic Function: Q(x) = a™x + ¥ xTAx

Define: z=VTx and Q(Vz)=(@"V)z+ % zT(VTAV)z
=@V)z+%zTAz

Minimum occurs at (if A,>0) x=-A'a or x=Vz=-V(A'VTa)

ﬁ% Positive (Negative) Curvature
Positive (Negative) Definite Hessian

Both eigenvalues are strictly positive (negative)
e Ais positive (negative) definite

e Stationary points are minima (maxima)




Zero Curvature
Singular Hessian

One eigenvalue is zero, the other is strictly positive or negative
e A s positive semidefinite or negative semidefinite
e There is a ridge of stationary points (minima or maxima)

ﬁ% Indefinite Curvature
Indefinite Hessian

One eigenvalue is positive, the other is negative
e Stationary point is a saddle point
e Ais indefinite

e
A\

L ’{’oint

Note: these can also be viewed as two dimensional projections for higher dimensional problems

18



Eigenvalue Example

%
ERING

win o <[] <+ L2 s
X) =| | x+=x
" 12 o
, 2 1
AV =VA with A=
12
0
VIAV = A = with v = | N2 142
A2 1A2

» All eigenvalues are positive

* Minimum occurs at z*=-A"V7q
r [ -x)/2 o [ ex)N2
2=lx [(xl+x2)/\/_} x_VZ_[(-xl+x2)/\/§l
. 0 [-1/3
: "[-2/(3\/5)} -1/3}

%
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1. Convergence Theory

Comparison of Optimization Methods

e Global Convergence - will it converge to a local optimum (or stationary

point) from a poor starting point?

e Local Convergence Rate - how fast will it converge close to this point?

2. Benchmarks on Large Class of Test Problems

Representative Problem (Hughes, 1981)

Min f(x,, x,) = aexp(-B)
u=x;-08

v=Xx,-(a; +ayu? (1-u)'?- az u)
a=-b,+byu?(1+u)’?+ bsu
B=c, v’ (I-c,v)/(1+c;u?)

=10.3,0.6,0.2]
b=15,26,3]
c =1[40,1,10]

x* =10.7395,0.3144]

flx*) = -5.0893

09+

08+

07+

06+

05+

03¢

02

01 02 03 04 05 06 07 0B 09



.. 1hree Dimensional Surface and Curvature for Representative Test Problem
ENGINEETL

Regions where minimum
eigenvalue is greater than: 03

[0, -10, -50, -100, -150, -200] 02

01 02 03 04 05 06 07 08 09 1.1

w What conditions characterize an optimal solution?

. Unconstrained Local Minimum
Necessary Conditions
VI (x*)=0

pTVA (x*¥) p=0 for pER®
(positive semi-definite)
Unconstrained Local Minimum
Sufficient Conditions
VI (x*)=0
Contom ) p"™VA (x*¥) p>0 for pER™
(positive definite)

X1

For smooth functions, why are contours around optimum elliptical?
Taylor Series in n dimensions about x*:

f(X)=f(X*)+Vf(X*)T(x—X*)+%(X—X*)Tsz(x*)(x-x*)+00|x‘x*||3)

Since Vf(x*) = 0, f(x) is purely quadratic for x close to x*

22



ical Newton's Method

Taylor Series for f{x) about x
Take derivative wrt x, set LHS =0

0=Vfix) = VA(x*) + V2f(x*) (x - xX5) + O(llx - x*I1?)
= (x-xY) =d= - (VH(xh))! Vfixh)

* f{x) is convex (concave) if for all x EN", V2f(x) is positive (negative) semidefinite
i.e. min; A; =0 (max; A; <0)
e Method can fail if:
- xY far from optimum
- V2fis singular at any point
- f(x) 1s not smooth
 Search direction, d, requires solution of linear equations.

* Near solution: . . L P
Hx " =0Hx -Xx
23
ical - - .
ERNG Basic Newton Algorithm - Line Search

0. Guess x?, Evaluate f{x?).
1. Atxk, evaluate VF{x¥).
2. Evaluate B* = VZf{x¥) or an approximation.
3. Solve: Bkd=-Vf(x¥)
If convergence error is less than tolerance:

e.g., [IVf(xk) Il <& and Ildll =& STOP, else go to 4.

4. Find a.so that 0 < o < 1 and f{x* + ad) < f{x~)
sufficiently (Each trial requires evaluation of f{x))

5. X! =xk+ ad. Setk=k+ 1Gotol.

24



ﬁmﬁ Newton's Method - Convergence Path

0s9F

08f

0.7

06f

0sf

nar

0.3F

02dr

IR

Starting Points

ot 02 03 04 05 0B OF 08 08

111

[0.8,0.2] needs steepest descent steps w/ line search up to 'O', takes 7 iterations to // Vf{x*)Il < 10+

[0.35,0.65] converges in four iterations with full steps to // Vf{x*)Il < 10

g Newton’ s Method - Notes

¢ Choice of B* determines method.

- Steepest Descent: B¥ = y I
- Newton: B*= VZf{x)

25

» With suitable B¥, performance may be good enough if f{x* + ad)
is sufficiently decreased (instead of minimized along line search

direction).

* Trust region extensions to Newton's method provide very strong
global convergence properties and very reliable algorithms.
* Local rate of convergence depends on choice of BX.

Newton — Quadratic Rate :

Steepest descent — Linear Rate: lim,

Desired?— Superlinear Rate :

lim,

lim,_,

[ - x|
et -]
‘xk+1_x*‘
e <1
‘xk+1_x*‘
=0

k
X —-x*

26
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Quasi-Newton Methods

Motivation:

e Need Bk to be positive definite.

e Avoid calculation of V2.

e Avoid solution of linear system for d = - (B¥)"! Vf{x*)

Strategy: Define matrix updating formulas that give (B¥) symmetric, positive
definite and satisfy:

(B¥H)(xk+1 - xk) = (VFk+1 — VFK) (Secant relation)
DFP Formula: (Davidon, Fletcher, Powell, 1958, 1964)

(y- B)y +y(v-Bs)  (v- B syy

kel _ pk -
B B+ yTs (yTS)(yTs)
eyt _ e, s HY Y H
(B 1) =H =H + STy kay
where: 5 = xkHl xk

y = VF(x*) - V()

27

Quasi-Newton Methods

BFGS Formula (Broyden, Fletcher, Goldfarb, Shanno, 1970-71)

T k T pk

N yy B'Ss B
Bk1=Bk+T ) k
sy sB'S

= Hk+1 — Hk + . .
s " s)v"s
Notes:
1) Both formulas are derived under similar assumptions and have
symmetry

2) Both have superlinear convergence and terminate in n steps on
quadratic functions. They are identical if o is minimized.

3) BFGS is more stable and performs better than DFP, in general.

4) For n < 100, these are the best methods for general purpose
problems if second derivatives are not available.

28



il Quasi-Newton Method - BFGS
Convergence Path

09r

08r

07F

06F

05+¢

04+

03F

D2F

0.7 F

01 02 03 04 05 06 07 08B 09 1 1.1
Starting Point
[0.2,0.8] starting from B? = I, converges in 9 iterations to // Vf{x*)/ < 10°

29

el Sources For Unconstrained Software

Harwell (HSL)
IMSL
NAg - Unconstrained Optimization Codes
Netlib (www.netlib.org)
*MINPACK
*TOMS Algorithms, etc.
These sources contain various methods
*Quasi-Newton
*Gauss-Newton
*Sparse Newton
*Conjugate Gradient

30



il Constrained Optimization
(Nonlinear Programming)

Problem: Min, f(x)
s.t. g(x) <0
h(x) =0
where:

f{x) - scalar objective function

x - nvector of variables
g(x) - inequality constraints, m vector
h(x) - megq equality constraints.

Sufficient Condition for Global Optimum
- f{x) must be convex, and
- feasible region must be convex,
1.e. g(x) are all convex
h(x) are all linear

Except in special cases, there is no guarantee that a local optimum is global
if sufficient conditions are violated.

31
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Example: Minimize Packing Dimensions

What is the smallest box for three round objects?
Variables: A, B, (x,,y,), (X, ¥,), (x,,¥,)

Fixed Parameters: R,, R,, R,

Objective: Minimize Perimeter = 2(A+B)

Constraints: Circles remain in box, can't overlap * @
Decisions: Sides of box, centers of circles. A

B X

2 2 2
Yy = R v =B-R.y sA-R (xi - x2) +(3 - ) =2 (R + R)
XY, = Ro x2 <B-R», y, < A-R» (xl - X3)2 + (yl - )’3)2 = (Rl + R3)2
X3, Y32 Rs3 x3 <B-Rs, y; = A-R; 2 2 5
(xz - X3) + ()’2 - )’3) = (Rz + R3)
in box

no overlaps
X» X5, X3, Y15 Y. Y3, A, B=0 p

32



ﬁ@wﬁé Characterization of Constrained Optima

Lnear Pogram Lhear Pogram

( Aternate(nbtim a)
Min
(e
Convex Obj e Functions
Linear Constraints
n

NonconvexRegbn
Mul t peO ptma

NonconvexObpctve

o

ical

- A
Contours of(x)
ey
Unconstrained Local Minimum Unconstrained Local Minimum
Necessary Conditions Sufficient Conditions
VI (x*)=0 VI (x*)=0
p'VA (x*¥)p=0 for pER" p™V (x*¥) p>0 for pER®

(positive semi-definite) (positive definite)

me VVhat conditions characterize an optimal solution?

33
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ﬁm‘iﬁ Optimal solution for inequality constrained problem

¢

Contours ofnf{x)

Min f(x)
st. g(x)=<0
Analogy: Ball rolling down valley pinned by fence
Note: Balance of forces (Vf, Vgi)

35

ﬁ%ﬂ Optimal solution for general constrained problem
ERING

Problem: Min f(x)
S.t. gx)=<0
h(x)=0
Analogy: Ball rolling on rail pinned by fences
Balance of forces: Vf, Vgi, Vh

36



« Optimality conditions for local optimum

ERING
Necessary First Order Karush Kuhn - Tucker Conditions

VL (x* u,v)= Vfix*)+ Vg(x*)u+ Vh(x*)v =20

(Balance of Forces)

u = 0 (Inequalities act in only one direction)

g (x*)<0, h(x*) =0 (Feasibility)

u;g(x*) =0 (Complementarity: either g(x*) =0 or u;=0)

u, v are "weights" for "forces," known as KKT multipliers, shadow
prices, dual variables

“To guarantee that a local NLP solution satisfies KKT conditions, a constraint
qualification is required. E.g., the Linear Independence Constraint Qualification
(LICQ) requires active constraint gradients, [Vg,(x*) Vh(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) Second Order Conditions
- Positive curvature in "constraint" directions.
- pI'V2L(x*¥)p =0 (p"V2L (x*) p > 0)
where p are the constrained directions: VAa(x*)Tp = 0
for g(x*)=0, Vg(x*)Tp = 0, for u; > 0, Vg,(x*)'p <0, for u, = 0

37

&%ﬂ Single Variable Example of KKT Conditions
ERING

Min (x)? st.-asx<a,a>0
x* = 0 is seen by inspection f(x)

Lagrange function :
L(x, u) = X* + u,(x-a) + uy(-a-x) | |

First Order KKT conditions:
VL(x,u) =2x+u;-u,=0

I I
u,(x-a) =0 | I
u,(-a-x) =0 ! !
-asxs<a u;, u,=0 X
-a a
Consider three cases:
e u,=>20, u,=0 Upper bound is active, x = a, u,= -2a, u, = 0
e u, =0, u,=0 Lower bound is active, x = -a, u, = -2a, u, = 0
* u=u=0 Neither bound is active, u, = 0, u, = 0, x =0

Second order conditions (x*, u;, u, =0)
VL (x* u*)=2
TV L (X, w¥) p = 2 (Ax)? > 0

38



ﬁ%ﬂ Single Variable Example
e of KKT Conditions - Revisited

Min -(x)? sit.-asx<a,a >0 'Ia S |a
x* = #qg is seen by inspection I ]
Lagrange function : : :
L(x, u) = x> + u,(x-a) + u,(-a-x)

First Order KKT conditions: I I
VL(x,u) =-2x+u;-u,=0 I I
u,(x-a) =0

u, (-a-x) =0

-asxs<a Uy, u, =0 f(x)
Consider three cases:

e u,=>0, u,=0 Upper bound is active, x = a, u,= 2a, u, = 0
e u, =0, u,=0 Lower bound is active, x = -a, u, = 2a, u, = 0
* u,=u=20 Neither bound is active,u, = 0, u, =0, x =0

Second order conditions (x*, u;, u, =0)
V. L (x* u*)=-2
PTV L (X, u%) p = -2(Ax)2 < 0

39

il Interpretation of Second Order Conditions

For x = a or x = -a, we require the allowable direction to satisfy the
active constraints exactly. Here, any point along the allowable
direction, x* must remain at its bound.

For this problem, however, there are no nonzero allowable directions
that satisfy this condition. Consequently the solution x* is defined
entirely by the active constraint. The condition:

pt VL (x* u*,v¥)p >0
for the allowable directions, is vacuously satisfied - because there are
no allowable directions that satisfy Vg,(x*)T p = 0. Hence, sufficient
second order conditions are satisfied.

As we will see, sufficient second order conditions are satisfied by linear
programs as well.

40



ﬁtwﬁé Role of KKT Multipliers

Also known as: | |
e Shadow Prices
e Dual Variables

f
e Lagrange Multipliers 00

Suppose a in the constraint is increased to a + Aa
J(x*) =- (a + Aa)?
and
[f(x*, a + Aa) - f(x*, a)]/Aa =- 2a - Aa
df(x*)/da = -2a = -u,

4

% Another Example: Constraint

Qualifications
Min x,
* st. x,=0
Xy 5(x1)3
N x*=x,%=0
]

ol e
0] -1 1 U,

-x, =0,u;, =0,u,x, =0

x, —(x,)) =0,u, =0,u,(x,—(x,)) =0

KKT conditions not satisfied at NLP solution
Because a CQ is not satisfied (e.g., LICQ)

42



ﬁ@mﬁ Special Cases of Nonlinear Programming

Linear Programming:

Min cTx
st. Ax<b x2
Cx=d, x=0

Functions are all convex = global min.
Because of Linearity, can prove solution will
always lie at vertex of feasible region.

X

Simplex Method

- Start at vertex

- Move to adjacent vertex that offers most improvement

- Continue until no further improvement
Notes:

1) LP has wide uses in planning, blending and scheduling

2) Canned programs widely available.

43

ﬁ% Linear Programming Example
Hig
Simplex Method
Min -2x, - 3x, Min -2x, - 3x,
st 2x,+x,<5 = SE2x, +x,+x;=5
X,x,20 X, Xy, X320
(add slack variable)
Now, define f = -2x, - 3x, = f+2x,+3x,=0
Set x,,x, =0, x3 =35 and form tableau
X, X, X3 f b X, X, nonbasic
2 1 1 0 5 X5 basic
2 0 1 0

To decrease f, increase x,. How much? so x; >0

X, X, X, f b
2 1 1 0 5
-4 0 -3 1 -15

f can no longer be decreased! Optimal

Underlined terms are -(reduced gradients); nonbasic variables (x,, X;), basic variable x,

44



- Quadratic Programming

Problem: Min aTx + 1/2xTB x
Ax<b
Cx=d

1) Can be solved using LP-like techniques:
(Wolfe, 1959)
= Min 2i (zj+ + zj-)
s.t. a+Bx+ATu+Clv=2z+-2z
Ax-b+s=0
Cx-d=0
u,s,z+,z- = 0
{u;s;=0}
with complicating conditions.

2) If B is positive definite, QP solution is unique.
If B is pos. semidefinite, optimum value is unique.

3) Other methods for solving QP's (faster)
- Complementary Pivoting (Lemke)
- Range, Null Space methods (Gill, Murray).

45

ﬁwa& Portfolio Planning Problem

Definitions:
X, - fraction or amount invested in security 1
r; (t) - (1 + rate of return) for investment i in year t.
u, - average r(t) over T years, i.e.

Note: maximize average return, no accounting for risk.

46



il Portfolio Planning Problem

Definition of Risk - fluctuation of r,(t) over investment (or past) time period.
To minimize risk, minimize variance about portfolio mean (risk averse).

Variance/Covariance Matrix, S

{8}

oi = i(ri(t) - ﬂi)(rj(t) -l‘j)

1
T

Min x"Sx

s.t. Exl. =1

Eﬂl.xl. =R

x, =0, etc.

Example: 3 investments

1. IBM
2. GM
3. Gold

[ 3 1 -05]

}3 s=11 2
108 |-0.5 0.4

0.4]

47

il Portfolio Planning Problem - GAMS

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)

OPTION LIMROW=0;
OPTION LIMXOL=0;

VARIABLES IBM, GM, GOLD, OBJQP, OBJLP;
EQUATIONS E1,E2,.QP.LP;
LP.. OBILP =E= 1 3*IBM + 1.2*GM + 1.08*GOLD;

QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM - IBM*GOLD
+ 2*GM**2 - 0.8*GM*GOLD + GOLD**2;

E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G=1.15;
E2..IBM + GM + GOLD =E=1;

IBM.LO=0.;

IBM.UP =0.75;

GM.LO =0,

GM.UP=0.75;

GOLD.LO =0,

GOLD.UP=0.75;

MODEL PORTQP/QP.E1 E2/;

MODEL PORTLP/LPE2/;

SOLVE PORTLP USING LP MAXIMIZING OBJLP;

SOLVE PORTQP USING NLP MINIMIZING OBJQP;

48



i Portfolio Planning Problem - GAMS

SOLVE SUMMARY

##k% MODEL STATUS

wiik OBJECTIVE VALUE
RESOURCE USAGE, LIMIT 1.270
ITERATION COUNT, LIMIT 1
BDM - LP VERSION 1.01

A. Brooke, A. Drud, and A. Meeraus,
Analytic Support Unit,

Development Research Department,
‘World Bank,

‘Washington D.C. 20433, U.S.A.

Estimate work space needed --
‘Work space allocated
EXIT - - OPTIMAL SOLUTION FOUND.

LOWER

---- EQULP .

---- EQUE2 1.000
LOWER

---- VARIBM 0.750

---- VARGM

---- VAR GOLD

---- VAROBIJLP -INF

##x% REPORT SUMMARY : 0

1 OPTIMAL

1.2750
1000.000
1000

-- 231 Kb

NONOPT

0 INFEASIBLE
0 UNBOUNDED

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)

Model Statistics

SOLVE PORTQP USING NLP FROM LINE 34

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS
BLOCKS OF VARIABLES 4 SINGLE VARIABLES
NON ZERO ELEMENTS 10 NON LINEAR N-Z
DERIVITIVE POOL 8 CONSTANT POOL
CODE LENGTH 95

GENERATION TIME = 2.360 SECONDS

EXECUTION TIME = 3.510 SECONDS

ww W

MARGINAL
1.000
1.200

MARGINAL

-0.120
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i Portfolio Planning Problem - GAMS

SOLVE SUMMARY

MODEL PORTLP
TYPE LP
SOLVER  MINOS5

###% SOLVER STATUS

###% MODEL STATUS

###% OBJECTIVE VALUE
RESOURCE USAGE, LIMIT 3
ITERATION COUNT, LIMIT 3
EVALUATION ERRORS 0
MINOS 53 (Nov. 1990)

OBIJECTIVE OBJLP
DIRECTION MAXIMIZE
FROM LINE 34
1 NORMAL COMPLETION
2 LOCALLY OPTIMAL
04210

129 1000.000

1000

Ver: 225-DOS-02

B.A. Murtagh, University of New South Wales

and
P.E. Gill, W. Murray, M.A. Saunders

and M.H. Wright

Systems Optimization Laboratory, Stanford University.

EXIT - - OPTIMAL SOLUTION FOUND

MAIJOR ITNS, LIMIT

FUNOBJ, FUNCON CALLS

SUPERBASICS

INTERPRETER USAGE

NORM RG / NORM PI
LOWER

---- EQU QP .

---- EQUEI 1.150

---- EQUE2 1.000
LOWER

---- VARIBM

---- VARGM

---- VAR GOLD

---- VAROBJLP  -INF
##%% REPORT SUMMARY :

1
8
1
21
3.732E-17
LEVEL

1.150

1.000

LEVEL

0.183

0.248

0.569

1421

0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 ERRORS

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)

Model Statistics
EXECUTION TIME =

SOLVE PORTQP USING NLP FROM LINE 34
1.090 SECONDS

MARGINAL
1.000
1.216
-0.556
MARGINAL

EPS
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ﬁtwﬁé Algorithms for Constrained Problems

Motivation: Build on unconstrained methods wherever possible.
Classification of Methods:

*Reduced Gradient Methods - (with Restoration) GRG2, CONOPT
*Reduced Gradient Methods - (without Restoration) MINOS
*Successive Quadratic Programming - generic implementations
*Penalty Functions - popular in 1970s, but fell into disfavor. Barrier
Methods have been developed recently and are again popular.
*Successive Linear Programming - only useful for "mostly linear"
problems

We will concentrate on algorithms for first four classes.

Evaluation: Compare performance on "typical problem," cite experience
on process problems.

51

ﬁ%ﬂ Representative Constrained Problem
il (Hughes, 1981)

0sr

08

nzt

06

05

04r

03r

0z2r

o1r

ot 02 03 04 05 06 OF 08 08 1 11

Min f(x,, x,) = o exp(-p)

g, = (X,+0.1)[x,4+2(1-x,)(1-2x,)] - 0.16 < 0
2= (X, - 032+ (x,-03)2-0.16 <0

x* =10.6335, 0.3465] f(x*) =-4.8380
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il Reduced Gradient Method with Restoration

(GRG2/CONOPT)
Min f(x) Min flz)
s.t. g(x) + s =0 (add slack variable) = st.c(z) =0
h(x) =0 aszs<b

a<x<b,s=>0

Partition variables into:
z - dependent or basic variables
Zy - honbasic variables, fixed at a bound
Zg - independent or superbasic variables

Modified KKT Conditions
Vf(z)+Ve(9A-v, +v, =0
c(2)=0
=7 or V=79, iEN

i) A0 _ -
v,), v, =0, i&N

53

il Reduced Gradient Method with Restoration
(GRG2/CONOPT)

a) Vif(2)+Vee(2)A=0
b) V f(2)+Vyc()A=0
c) Vyf@+Vyc(@A-v, +v, =0
d)y 27=70 or P=79 ieN

e) ¢(z2)=0=z; =24(z)

* Solve bound constrained problem in space of superbasic variables
(apply gradient projection algorithm)

 Solve (e) to eliminate zg

* Use (a) and (b) to calculate reduced gradient wrt zg.

* Nonbasic variables z,, (temporarily) fixed (d)

* Repartition based on signs of v, if z, remain at bounds or if z; violate bounds



ﬁtwﬁé Definition of Reduced Gradient

df _of  dz of
dzg  0zg dzg 0z,

Because c(z) =0,we have :

ac | ac |
a’c=[—C] dzs+[a—c} dz; =0

07 4
-1
dz, __ dc || dac __v C[V c]—l
dz 0z, || 9z, soLw
This leads to:
df

" S (@D =Ve[V,ue] 'V, f(2) = Vi f(2) + Vie()A

*By remaining feasible always, c¢(z) = 0, a < z < b, one can apply an
unconstrained algorithm (quasi-Newton) using (df/dz), using (b)

*Solve problem in reduced space of z; variables, using (e).

il Example of Reduced Gradient

Min xl2 -2x,
st. 3x,+4x, =24
Vel =[3 4], V7 =[2x, -2]

Letzg =x,z; = x,

L Loy bt

dz, 0dzg 0z,
Y oy 3[4l (-2)=2x, +3/2
dx,

If VcT is (m x n); VzeeT is m x (n-m); VzgeT is (m x m)

(df/dzg) is the change in f along constraint direction per unit change in zg
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ERING

%
ERING

-

Gradient Projection Method
(superbasic - nonbasic variable partition)

Define the projection of an arbitrary point

x onto box feasible region.
xtg A
S The ith component is given by

l,— if X < [;.

x(t;) P(x,l u); = xi if  x; €[l uil,

4
x(t;) , ’ x(t;) ’
w; if  x; > u;.
x Piecewise linear path x(7) starting at the

reference point x,, and obtained by projecting
steepest descent (or any search) direction at x,
onto the box region is given by

x(t)=P(x"—1tg,1,u),

Figure 16.5 The piecewise linear path x(t), for an example in R>.

where g is the reduced gradient, ¢ is the
stepsize.

Also, can adapt to (quasi-) Newton method.
57

Sketch of GRG Algorithm

Initialize problem and obtain a feasible point at z°

At feasible point z¥, partition variables z into z,, z,, zg
Calculate reduced gradient, (df/dzy)

Evaluate search direction for zg, d = B! (df/dz)

Perform a line search.

« Find a&(0,1] with zg:=zf+ ad

« Solve for ¢z + ad, z zy) =0

« Ifflzd+ ad, zg z) <flz', zp 2y,
etz =z + ad, k= k+1

If ||(df/dzg)||<e, Stop. Else, go to 2.
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i« Reduced Gradient Method with Restoration

[

59

i1 Reduced Gradient Method with Restoration

Fails, due to singularity in
basis matrix (dc/dzg)

\ \zs\u 60




i1 Reduced Gradient Method with Restoration

/

Possible remedy: repatrtitiopn basic
and superbasic variables to create
nonsingular basis matrix|(dc/dzg)

Zg

61

i GRG Algorithm Properties

1.  GRG2 has been implemented on PC's as GINO and is very reliable and
robust. It is also the optimization solver in MS EXCEL.
CONOPT is implemented in GAMS, AIMMS and AMPL

3. GRG2 uses Q-N for small problems but can switch to conjugate
gradients if problem gets large. CONOPT uses exact second derivatives.

4. Convergence of c(zg, g , zy) = 0 can get very expensive because Vc(z)
is calculated repeatedly.

5. Safeguards can be added so that restoration (step 5.) can be dropped

and efficiency increases.

Representative Constrained Problem Starting Point [0.8, 0.2]
e GINO Results - 14 iterations to IVf(x*)ll < 106
e CONOPT Results - 7 iterations to [IVf(x*)ll < 10 from feasible point.
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i« Reduced Gradient Method without Restoration

\

~
~

~
~

il  Reduced Gradient Method without Restoration
(MINOS/Augmented)

Motivation: Efficient algorithms Strategy: (Robinson, Murtagh & Saunders)

are available that solve linearly 1. Partition variables into basic, nonbasic
constrained optimization variables and superbasic variables..
problems (MINOS): 2. Linearize active constraints at z¥
Dkz = rk
Min f(x) 3. Lety=f(z) + Alc(z) + B(c(z)"c(z))
st.Ax<b (Augmented Lagrange),
Cx=d 4. Solve linearly constrained problem:
Min Y (z)
Extend to nonlinear problems, s.t. Dz=r
through successive linearization a<z<b
using reduced gradients to get z5*+/
Develop major iterations 5. Set k=k+1, goto 2.
(linearizations) and minor 6. Algorithm terminates when no

iterations (GRG solutions) . movement between steps 2) and 4).
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ﬁwﬁ% MINOS/Augmented Notes

1. MINOS has been implemented very efficiently to take care of
linearity. It becomes LP Simplex method if problem is totally
linear. Also, very efficient matrix routines.

2. No restoration takes place, nonlinear constraints are reflected in

Y(z) during step 3). MINOS is more efficient than GRG.

Major iterations (steps 3) - 4)) converge at a quadratic rate.

4. Reduced gradient methods are complicated, monolithic codes:
hard to integrate efficiently into modeling software.

oY)

Representative Constrained Problem — Starting Point [0.8, 0.2]
MINOS Results: 4 major iterations, 11 function calls
to IVE(x*)Il < 10-¢

ﬁﬁg Successive Quadratic Programming (SQP)

Motivation:
* Take KKT conditions, expand in Taylor series about current point.
* Take Newton step (QP) to determine next point.

Derivation — KKT Conditions

VL (x*, u*, v¥) = Vf(x*) + Vga(x*) u* + Vh(x*)v* =0
h(x*) =0
gA(x*) =0, where g, are the active constraints.

Newton - Step

VXXL VgA \Y% h Ax VxL (Xk, uk, Vk)
VgAT 0 0 Au| = - g, (x9)
vh' 0 0] [Av h(x*)

Requirements:
* V_L must be calculated and should be ‘regular’

ecorrect active set g,
egood estimates of uX, v

65
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ﬁmﬁﬁé SQP Chronology

1. Wilson (1963)
- active set can be determined by solving QP:

Min Vix)td + 172d" V. L(xy, uy, vi) d
d
s.t. g(x) + Vg(x)Td=<0

h(x,) + Vh(x,)Td =0

2. Han (1976), (1977), Powell (1977), (1978)
- approximate V, L using a positive definite quasi-Newton update (BFGS)
- use a line search to converge from poor starting points.

Notes:
- Similar methods were derived using penalty (not Lagrange) functions.
- Method converges quickly; very few function evaluations.
- Not well suited to large problems (full space update used).
For n > 100, say, use reduced space methods (e.g. MINOS).

W Elements of SQP — Hessian Approximation

What about Vixl?
* need to get second derivatives for f{x), g(x), h(x).
 need to estimate multipliers, ¥, v¢; V_L may not be positive

semidefinite
= Approximate V_L (x*, u¥, v¥) by B¥, a symmetric positive

definite matrix.

B = B* + )?’T ) B's SkTBk
sy sB's
BEGS Formula s = xkrl - xk
y = VL(x"”, uk+], Vk+1) _ VL(x", I/tk’”, vk+1)

* second derivatives approximated by change in gradients
* positive definite B* ensures unique QP solution

67
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ﬁ@wﬁé Elements of SQP — Search Directions

How do we obtain search directions?

. Form QP and let QP determine constraint activity
. At each iteration, k, solve:
Min VIxK)Td + 1/2 dT B*d
d
s.t. g(xk) + Veg(x*)Td<0

h(xk) + Vh(x*)Td = 0

Convergence from poor starting points
* As with Newton's method, choose o (stepsize) to ensure progress

toward optimum: X/ = x* + ad.
* o is chosen by making sure a merit function is decreased at each
iteration.

Exact Penalty Function
W) = f3) + [T max (0, gx) + Zlhy ()]
u>max;{lu;l, v}
Augmented Lagrange Function
Y(x) = fix) + u'g(x) + vTh(x)
+n/2{2(h;(x))? + Zmax (0, g; (x))*}

i Newton-Like Properties for SQP

Fast Local Convergence

B = VL Quadratic

Vil is p.d and B is Q-N 1 step Superlinear
B is Q-N update, VL not p.d 2 step Superlinear

Enforce Global Convergence

Ensure decrease of merit function by taking o < 1

Trust region adaptations provide a stronger guarantee of global
convergence - but harder to implement.
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Basic SQP Algorithm

. Guess x’, Set BY = I (Identity). Evaluate f{x’), g(x°) and h(x?).
. At Xk, evaluate Vf(xk), Vg(xk), Vi(xb).

. If k>0, update B* using the BFGS Formula.

3. Solve: Min, VAxX*)'d + 1/2 d'B*d

s.t. g(xk) + Vg(xh)Td < 0
h(x*) + Vh(x*)Td = 0
If KKT error less than tolerance: |[VL(x*)Il < ¢, ||h(x*)|| < ¢,

|g(x*),]| = &. STOP, else go to 4.

. Find aso that 0 < o < 1 and y(x* + ad) < y(x*) sufficiently

(Each trial requires evaluation of f{x), g(x) and h(x)).

cxktl =xk+ ad. Setk=k+ 1 Goto 2.

Problems with SQP

Nonsmooth Functions - Reformulate
Ill-conditioning - Proper scaling

Poor Starting Points — Trust Regions can help
Inconsistent Constraint Linearizations

- Can lead to infeasible QP's

X2

X1 ]'X]'(XZ)ZSO

Min x,
5 st. 1 +x;-(x,)0<0

X, =-1/2

7
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ﬁh SQP Test Problem

1.2

Min x,
st. X, +2x,.2-%x.°<0
X, +2 (1-%)% - (1-x,)* < 0
x*=10.5,0.375].

73

i SQP Test Problem — First Iteration

1.0 ]
0.8 1
X2
0.6 1

0.4 7

0.2 7

o o LT Lo Tk T Tie 1

Start from the origin (x, = [0, 0]7) with B’ = I, form:

Min d,+ 1/2 (dj? + dy)
st dy=20
d+d,>1
d=[1,0]".with u, =0 and u, = 1.
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i SQP Test Problem — Second Iteration

10 7

08 7

X2

06 7

04

02 7

X ¥

00

kg

00 02 04 4, 06 08 10 12

From x, = [0.5, 0] with B =]
(no update from BFGS possible), form:

Min d,+ 1/2(d? + dy?)
st.  -125d,-dy+ 037550
125d,-d,+0375<0
d=1[0,0375]"with u, =0.5 and u, = 0.5
x*=[0.5,0.375]" is optimal 75

_ Representative Constrained Problem

osr

nar

n7r

0G6r

0ar

04

03r

nzr

I

SQP Convergence Path

N

01 02 03 04 05 06 07 D08 08 1 1.1

Starting Point [0.8, 0.2] - starting from BY = [ and staying in bounds

and linearized constraints; converges in 8 iterations to // Vf{x*)ll < 100
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ﬁtwﬁé Barrier Methods for Large-Scale
Nonlinear Programming

min f(x
min £(x
Original Formulation  §.t c( X) =()

x=0 as<x<bh

\

n
Barrier Approach Ixrelf}t];l (pu (X) = f(X) - M; In X;

st c(x)=0

As u 2 0, x*uw = x* Fiacco and McCormick (1968)

+  Solution of the Barrier Problem

Eﬁl\lﬂ
Newton Directions (KKT System)

Vi(x)+ A(x)A—-v = 0
Xv—ue =

-

e’ =/1,1,1...], X =diag(x)
c(x)
A=Ve¢(x), W=V_L(x,Av)

Reducing the System B 1
d=uXe-v-XVd

W+% Alld Vo,

= _ oyl
A 0| c =AY

IPOPT Code — www.coin-or.org

Can generalize for

77
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w# Global Convergence of Newton-based

Barrier Solvers

Merit Function

Exact Penalty: P, n) =fx) + n||c(x)||

Aug’ d Lagrangian: L*(x, A, n) = f{x) + Alc(x) + n||c(x)||?
Assess Search Direction (e.g., from IPOPT)

Line Search — choose stepsize a to give sufficient decrease of merit function

using a ‘step to the boundary’ rule with T ~0.99.
forae(0,al,x,,, =x, +ad,
x,+ad =(1-7)x, >0
Vig=v,+ad =(1-7)v, >0
A =k +a(A -4)

« How do we balance ¢ (x) and c(x) with n?
« Is this approach globally convergent? Will it still be fast?

79

ical Global Convergence Failure
(Wachter and B., 2000)
Min f(x)
st. x,—x,——=0
X, 1 3 2
(x) =x,-1=0

Xy, %y =0

exist
X

Remedies:

Newton-type line search ‘stalls’
even though descent directions

A d_ +c(x)=0

X +ad >0

*Composite Step Trust Region

(Byrd et al.)

Filter Line Search Methods 80



.. Line Search Filter Method

Store (¢«, 0«) at allowed iterates

Allow progress if trial point is

acceptable to filter with 6 margin
If switching condition
a[-Veldl =0[0,1,a>2b>2

is satisfied, only an Armijo line
search is required on ¢«

Global convergence and superlinear
local convergence proved (with
second order correction)

ical
ERING

Implementation Details

Modify KKT (full space) matrix if singular

W +2Z, +06, A
AkT _52[

+ 9, - Correct inertia to guarantee descent direction
+ 9, - Deal with rank deficient A,

KKT matrix factored by MA27

Feasibility restoration phase
. 2
Min|| c(x) [, + | x-x, |l
X =X =X,

Apply Exact Penalty Formulation

Exploit same structure/algorithm to reduce infeasibility

81
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ﬁ% IPOPT Algorithm — Features

Line Search Strategies for Algorithmic Properties

Globalization Globally, superlinearly

- [, exact penalty merit function convergent (Wachter and B.,
2005)

- augmented Lagrangian merit function

- Filter method (adapted and extended Easily tailored to different

from Fletcher and Leyffer) problem structures

Freely Available

Hessian Calculation CPL License and COIN-OR

- BFGS (full/LM and reduced space) distribution: http://www.coin-
or.or

- SR1 (full/LM and reduced space) 9

- Exact full Hessian (direct) IPOPT 3.1 recently rewritten

: . in C++
- Exact reduced Hessian (direct)
- Preconditioned CG Solved on thousands of test

problems and applications
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ﬁwﬁé IPOPT Comparison on 954 Test Problems
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&tm—ﬁé Recommendations for Constrained Optimization

1. Best current algorithms
o GRG 2/CONOPT

«  MINOS
.  SQP
«  IPOPT

2. GRG 2 (or CONOPT) is generally slower, but is robust. Use with highly
nonlinear functions. Solver in Excel!

3. For small problems (n < 100) with nonlinear constraints, use SQP.

4. For large problems (n = 100) with mostly linear constraints, use MINOS.
==> Difficulty with many nonlinearities

Tailored Linear
Algebra

Fewer Function

A
N

Evaluations

Small, Nonlinear Problems - SQP solves QP's, not LCNLP's, fewer function calls.
Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition.
Works efficiently in reduced space if function calls are cheap!

Exploit Both Features — [IPOPT takes advantages of few function evaluations and large-
scale linear algebra, but requires exact second derivatives

ﬁtwﬁé Available Software for Constrained
Optimization

SQP Routines

HSL, NaG and IMSL (NLPQL) Routines

NPSOL — Stanford Systems Optimization Lab

SNOPT - Stanford Systems Optimization Lab (rSQP discussed later)
IPOPT — http://www.coin-or.org

GAMS Programs
CONOPT - Generalized Reduced Gradient method with restoration

MINOS - Generalized Reduced Gradient method without restoration

A student version of GAMS is now available from the CACHE office. The cost for this package
including Process Design Case Students, GAMS: A User's Guide, and GAMS - The Solver Manuals,
and a CD-ROM is $65 per CACHE supporting departments, and $100 per non-CACHE supporting
departments and individuals. To order please complete standard order form and fax or mail to
CACHE Corporation. More information can be found on http://www.che .utexas.edu/cache/gams.html

MS Excel
Solver uses Generalized Reduced Gradient method with restoration



i# Rules for Formulating Nonlinear Programs

1) Avoid overflows and undefined terms, (do not divide, take logs, etc.)

eg. X+y-lnz=0 = x+y-u=0

expu-z=0

2) If constraints must always be enforced, make sure they are linear or bounds.

eg. vixy-z»)"?2=3 > vu=3

u?-(xy-z)=0,u=0
3) Exploit linear constraints as much as possible, e.g. mass balance
x;L+y,V=Fz;2? L+v,=f

L-31,=0
4) Use bounds and constraints to enforce characteristic solutions.
e.g. as<x<b, g(x)=<0

to isolate correct root of 4 (x) = 0.
5) Exploit global properties when possibility exists. Convex (linear equations?)
Linear Program? Quadratic Program? Geometric Program?
6) Exploit problem structure when possible.
e.g. Min [Tx - 3Ty]
st. xT+y-T’y=15
dx-5Ty+Tx=7
0<T=<1I
(If T is fixed = solve LP) = put T in outer optimization loop.
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ical

Process Optimization
Problem Definition and Formulation

| State of Nature and Problem Premises |

\

Desired Objective: Yield,
Economic, Capacity, etc.

Restrictions: Physical, Legal
Economic, Political, etc.

Decisions

Mathematical Modeling and Algorithmic Solution

| Process Model Equations |

\

Objective Function

[ Additional Variables |
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« Hierarchy of Nonlinear Programming
Formulations and Model Intrusion

SAND Full Space Formulation

Adjoint Sens & SAND Adjoint

Compute SAND Tailored
Efficiency ......................................................................................

Direct Sensitivities

Multi-level Parallelism

Black Box

10° 10! 102 103
Decision Variables

89

ﬁ% Large Scale NLP Algorithms

Motivation: Improvement of Successive Quadratic Programming
as Cornerstone Algorithm

=> process optimization for design, control and operations

Evolution of NLP Solvers:
SQP —— rSQP —— IPOPT

|

rSQP++ IPOPT 3.x

2000 - : Simultaneous dynamic optimization
over 1 000 000 variables and constraints

Current: Tailor structure, architecture and problems

920



it Flowsheet Optimization Problems - Introduction

Modular Simulation Mode
Physical Relation to Process

- Intuitive to Process Engineer
—» —— - Unit equations solved internally
In Out .
- tailor-made procedures.

*Convergence Procedures - for simple flowsheets, often identified
from flowsheet structure

*Convergence "mimics" startup.

*Debugging flowsheets on "physical" grounds

91

s Flowsheet Optimization Problems - Features

Design Specifications
Specify # trays reflux ratio, but would like to specify
overhead comp. ==> Control loop -Solve Iteratively

! l ‘
l . 3
Nested RCC\/CICS Hard to Handle

A 4
Best Convergence Procedure? ]\ 2 J

*Frequent block evaluation can be expensive
*Slow algorithms applied to flowsheet loops.
*NLP methods are good at breaking loops

A
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i« Chronology in Process Optimization

1. Early Work - Black Box Approaches
Friedman and Pinder (1972)
Gaddy and co-workers (1977)

2. Transition - more accurate gradients
Parker and Hughes (1981)
Biegler and Hughes (1981)

3. Infeasible Path Strategy for Modular Simulators

Biegler and Hughes (1982)
Chen and Stadtherr (1985)
Kaijaluoto et al. (1985)
and many more
4. Equation Based Process Optimization
Westerberg et al. (1983)
Shewchuk (1985)

DMO, NOVA, RTOPT, etc. (1990s)

Sim. Time Equiv.

1-2

75-150
300

64
13

<10

<5

Process optimization should be as cheap and easy as process simulation

£l Process Simulators with Optimization
Capabilities (using SQP)

Aspen Custom Modeler (ACM)

Aspen/Plus

gProms

Hysim/Hysys

Massbal
Optisim
Prolll
ProSim
ROMeo
VTPLAN
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s Simulation and Optimization of Flowsheets

3 - 2 “
\

hyg¥0

— 4 | =] ¢ | —

wg) oy

1
Min f(x),s.t.g(x)<0 \ 5 | —

For single degree of freedom:
e work in space defined by curve below.
e requires repeated (expensive) recycle convergence

o \/
ical

NG Expanded Region with Feasible Path

fix, y(x))
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ERING g1(x,y¥)=0
o]

N

"Black Box" Optimization Approach

» Vertical steps are expensive (flowsheet convergence)
* Generally no connection between x and y.

* Can have "noisy" derivatives for gradient optimization.

97

SQP - Infeasible Path Approach

» solve and optimize simultaneously in x and y
+ extended Newton method

98



(FLOWTRAN, Aspen/Plus, Pro/ll, HySys)

- Replace convergence with optimization block
- Problem definition needed (in-line FORTRAN)
- Executive, preprocessor, modules intact.

1. Single Unit and Acyclic Optimization
- Distillation columns & sequences

"Conventional" Process Optimization

- Monochlorobenzene process

3. Complicated Recycles & Control Loops

ical
ERING
Architecture
Examples
2.
- NH3 synthesis
- Cavett problem
- Variations of above
ical
ERING

PHYSICAL PROPERTY OPTIONS
Cavett Vapor Pressure

Redlich-Kwong Vapor Fugacity

Corrected Liquid Fugacity

Ideal Solution Activity Coefficient

OPT (SCOPT) OPTIMIZER

Optimal Solution Found After 4 Iterations
Kuhn-Tucker Error 0.29616E-05
Allowable Kuhn-Tucker Error 0.19826E-04
Objective Function -0.98259

Optimization Variables

32.006 0.38578 200.00 120.00

Tear Variables

0.10601E-19 13.064 79.229 120.00 50.000

SO U=100  Cooling
- €
HC1 Water
80°F
-
A1l
ABSORBER
15 Trays @ Si1
(3 Theoretica Stages) / \ g
32 psia
1 Benzene,
S05 25 0.1Lb Mole/Hr
feed S04 psi of MCB
'€ &
80°F @ S07 S10 -1
37 pin o DISTILLATION
30 Trays
_E-1 HCI (20 Theorei cal Stages)
FLASH
S09 I
’ Steam
360° F | S03 S08 360°F
H-1 -t = 12000
U=100 T-1 s Btuw/hr- ft
- TREATER‘ ! 90°F
Feed Flow Rates Maximize .
. LB Moles/Hr Profit U'=100
HC1 10
Benzene 40 @ S13 Water Sl4
MCB 50 A S15 \ 80°F _
Pl 120°F MCB

Tear Variable Errors (Calculated Minus Assumed)

-0.10601E-19 0.72209E-06
-0.36563E-04 0.00000E+00
-Results of infeasible path optimization

0.00000E+00

-Simultaneous optimization and convergence of tear streams.

Optimization of Monochlorobenzene Process

Optimization Capability for Modular Simulators

99

100



N2
H2
CH4
Ar

ic
ERING

ical
ERING

Ammonia Process Optimization

—

Hydrogen Feed Nitrogen Feed
52% 99.8% 1

94.0% ) G J

0.79 % 0.02% ==
0.01% 67'/“_ ;2/ - @ @

Hydrogen and Nitrogen feed are mixed, compressed, and confbined
with a recycle stream and heated to reactor temperature. Reaction
occurs in a multibed reactor (modeled here as an equilibrium reactor)
to partially convert the stream to ammonia. The reactor effluent is
cooled and product is separated using two flash tanks with intercooling.
Liquid from the second stage is flashed at low pressure to yield high
purity NH; product. Vapor from the two stage flash forms the recycle
and is recompressed.

Prod et

101

Ammonia Process Optimization

Optimization Problem Performance Characterstics

Max

s.t.

{Total Profit @ 15% over five years} * 5 SQP iterations.
* 2.2 base point simulations.

. 5 . . . .
10° tons NH3/yr. * objective function improves by
¢ Pressure Balance

6 6
* No Liquid in Compressors $29‘66 x 10°to $24'93 x 10°.
+ 18< H2/N2<35 e difficult to converge flowsheet
¢ Treact < 1000° F at starting point
e NH3 purged < 4.5 1b mol/hr
e NH3 Product Purity =999 % | Item Optimum Starting point
* Tear Equations
Objective Function($106) 249286 20.659
1. Inlet temp. reactor (°F) 400 400
2. Inlet temp. 1st flash (°F) 65 65
3. Inlet temp. 2nd flash (°F) 35 35
4. Inlet temp. rec. comp. (°F) 80.52 107
5. Purge fraction (%) 0.0085 0.01
6. Reactor Press. (psia) 2163.5 2000
7.Feed 1 (Ib mol/hr) 2629.7 2632.0
8.Feed 2 (Ib mol/hr) 691.78 691.4
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How accurate should gradients be for optimization?
ical
e Recognizing True Solution
¢ KKT conditions and Reduced Gradients determine true solution

* Derivative Errors will lead to wrong solutions!

Performance of Algorithms
Constrained NLP algorithms are gradient based
(SQP, Conopt, GRG2, MINOS, etc.)
Global and Superlinear convergence theory assumes accurate gradients

Worst Case Example (Carter, 1991)
Newton’ s Method generates an ascent direction and fails for any ¢!

d

actual

Min f(x)=x"Ax
[€+1/8 8—1/8] K(A4)=(1/¢)

- e-1/e e+l/¢

B
¥

N

xo=[1 11" Vf(x)=¢x,
8(x,) = Vf(xy) + O(e)
d=-4"g(x,)

103

&%"1 Implementation of Analytic Derivatives

parameters, p exit variables, s
X Module Equations y
—_— —_—

c(v,xs,p,y)=0

dy/dx
Sensitivity gijgg
Equations ds/dp

Automatic Differentiation Tools

JAKE-F, limited to a subset of FORTRAN (Hillstrom, 1982)

DAPRE, which has been developed for use with the NAG library (Pryce, Davis, 1987)
ADOL-C, implemented using operator overloading features of C++ (Griewank, 1990)
ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code .
TAPENADE, web-based source transformation for FORTRAN code

Relative effort needed to calculate gradients is not n+1 but about 3 to 5
(Wolfe, Griewank)
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Ma S3A) >

Flash Recycle Optimization Ammonia Process Optimization
(2 decisions + 7 tear variables) (9 decisions and 6 tear variables)

S3

Flash

sS4

» S7

£ Ratio
1/2

S3(B) - S3(A) S3(0) +33( ) -(S 3B)

8000

200

CPU Seconds (VS 3200)

H GRrG

6000

4000

CPU Seconds (VS 3200)

2000

Numerical Exact 2 Nu merical Exct 2 105

Large-Scale SQP

Min f(z) Min  VIZO)Td+ 1/2dT Wkd
s.t.  c¢(z)=0 s.t. c(zX) + (AT d =0

z; <z<zy ZLSZk—i-dSZU
Characteristics

» Many equations and variables (= 100 000)
» Many bounds and inequalities (= 100 000)

Few degrees of freedom (10 - 100)
Steady state flowsheet optimization
Real-time optimization

Parameter estimation

Many degrees of freedom (= 1000)
Dynamic optimization (optimal control, MPC)
State estimation and data reconciliation
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il Few degrees of freedom => reduced space SQP (rSQP)

» Take advantage of sparsity of A=Vc(x)

* project W into space of active (or equality constraints)

* curvature (second derivative) information only needed in space of degrees of
freedom

* second derivatives can be applied or approximated with positive curvature
(e.g., BFGS)

* use dual space QP solvers

+ easy to implement with existing sparse solvers, QP methods and line search
techniques

+ exploits 'natural assignment' of dependent and decision variables (some
decomposition steps are 'free')

+ does not require second derivatives

- reduced space matrices are dense

- may be dependent on variable partitioning

- can be very expensive for many degrees of freedom
- can be expensive if many QP bounds

107

&Wﬁé Reduced space SQP (rSQP)
Range and Null Space Decomposition

Assume no active bounds, QP problem with » variables and m
constraints becomes:

wt 441 d =_Vf(x")

A0 ||, c(x")

* Define reduced space basis, Z¢& I * (=m) with (4%)TZF = 0

* Define basis for remaining space Y*& Jin<m [ Y* ZF|&)in~n
1s nonsingular.

*Letd = Y*d, + ZF d, to rewrite:

[Yk zk]r ol[w* 4 [Y" zk] 0 dy =_[Yk zk]r 0|[V7(x*)
o Ill4 ol o I}ff o 1|l e(xt)

+
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Reduced space SQP (rSQP)
Range and Null Space Decomposition

0 0

[k Lkyk kT k kT k]
/Y/V{Yv Y Z" Y A \[d, YkTVf(xk)
’ d,|==|Z" Vf(x*)
AC vk 0 0 Aq. c(xk)

(ATY) dy =-c(x*) is square, d, determined from bottom row.

Cancel Y"WY and Y"WZ; (unimportant as d,, dy --> 0)

(YTA) A =-YTVf(x*), A can be determined by first order estimate
Calculate or approximate w= Z'WY d,, solve ZTWZ d, =-Z" Vf(x*) - w
Compute total step:d = Ydy +Z d,

Reduced space SQP (rSQP) Interpretation

g2(x,y)=0

Range and Null Space Decomposition

* SQP step (d) operates in a higher dimension

» Satisfy constraints using range space to get d

* Solve small QP in null space to getd,

e In general, same convergence properties as SQP.

109
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Choice of Decomposition Bases

1. Apply OR factorization to A. Leads to dense but well-conditioned Y and Z.

o o

0

2. Partition variables into decisions u and dependents v. Create
orthogonal Y and Z with embedded identity matrices (A”Z = 0, Y'Z=0).

A =V v |=[v ]

o] [

3. Coordinate Basis - same Z as above, Y' = [0 []

* Bases use gradient information already calculated.

* Adapt decomposition to QP step

e Theoretically same rate of convergence as original SQP.

* Coordinate basis can be sensitive to choice of # and v. Orthogonal is not.
e Need consistent initial point and nonsingular C; automatic generation

ical
ERING

11

rSQP Algorithm

1. Choose starting point x’.
2. Atiteration k, evaluate functions f{x*), c¢(x*) and their gradients.
3. Calculate bases Y and Z.
4. Solve for step dy in Range space from
(ATY) dy =-c(xF)
5. Update projected Hessian B* ~ ZTWZ (e.g. with BFGS), w, (e.g., zero)
6. Solve small QP for step d, in Null space.

Min (Z'Vf(x*)+w)'d, +1/2d, B"d,

st. x, =x"+Yd, +7Zd, <x,
7. If error is less than tolerance stop. Else
8. Solve for multipliers using (Y7A) A = -YTVf{(x¥)
9. Calculate total step d = Y dv + Z dz.

10. Find step size o and calculate new point, x,,; = x, + o d
13. Continue from step 2 with k = k+1.

12
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rSQP Results: Computational Results for
General Nonlinear Problems
Vasantharajan et al (1990)
Problem Specifications MINOS Reduced SQP
(5.2)
N M | ME | TIME| FUNC| TIME" FUNC
Q RND/LP
Ramsey 34 23 10 14 46 1.7 8
1.0/0.7
Chenery | 44| 39| 20 76 8T 75 i
21125
Korcge 100 96 78 39 9 3. 3
1423
Camcge | 280] 243| 243| 236 ! 743 3
10.3/14.1
Ganges 357 274 274 227 B! 507 )
35.7/24.0
* CPU Seconds - VAX 6320
113
rSQP Results: Computational Results
for Process Problems
Vasantharajan et al (1990)
Prob. Specifications MINOS (5.2) Reduced SQP
N M MEQ TIME* FUNC TIME* FUN.
rSQP/LP)
IAbsorber 50 42 42
a) 4.4 144  B.2 (2.1/1.1)
b) 4.7 157 P.8 (1.6/1.2)
Distill’'n
Tdeal 228 227 227
a) 28.5 24 38.6 (9.6/29.0) 7
b) 33.5 58 9.8 (17.2/52.6) 14
Distill’n
Nonideal 569 567 567
1) 172.1 34 130.1 (47.6/82.5) 14
a) 432.1 362 |144.9 (132.6/12.3) 47
b) 855.3 745 211.5 (147.3/64.2) 49
c)
Distill’'n
Nonideal 977 975 975
2) (F) (F) P30.6 (83.1/147.5) 9
a) 520.0F 162 B22.1 (296.4/25.7) 26
b) (F) (F) p66.7 (323/143.7) 34
c)

* CPU Seconds - VAX 6320
+ MINOS (5.1)

(F) Failed
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Comparison of SQP and rSQP

Coupled Distillation Example - 5000 Equations
Decision Variables - boilup rate, reflux ratio

Method CPU Time Annual Savings Comments
1. SQP* 2 hr negligible Base Case
2. rSQP 15min. $ 42,000 Base Case
3. rSQP 15 min. $ 84,000 Higher Feed Tray Location
4. rSQP 15 min. $ 84,000 Column 2 Overhead to Storage
S. rSQP 15min  $107,000 Cases 3 and 4 together

)
Al

?

3

18

10

\—b 115

il Real-time Optimization with rSQP

Sunoco Hydrocracker Fractionation Plant

(Bailey et al, 1993)

Existing process, optimization on-line at regular intervals: 17 hydrocarbon
components, 8 heat exchangers, absorber/stripper (30 trays), debutanizer (20
trays), C3/C4 splitter (20 trays) and deisobutanizer (33 trays).

REACT ORE FL UENT ROM
LOW PRESSURES EPARATOR

e square parameter case to fit the model to operating data.
e optimization to determine best operating conditions 16



ical
ERING

Optimization Case Study Characteristics

Model consists of 2836 equality constraints and only ten independent variables. It
is also reasonably sparse and contains 24123 nonzero Jacobian elements.

P= EziCiG

166G

Cases Considered:

1. Normal Base Case Operation
2. Simulate fouling by reducing the heat exchange coefficients for the debutanizer
3. Simulate fouling by reducing the heat exchange coefficients for splitter

feed/bottoms exchangers

4. Increase price for propane
5. Increase base price for gasoline together with an increase in the octane credit

ical
ERING

1€

NP
E P
+ EziCi + EziCi "-U
m=1

Time MINOS (%)

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5
Base Base Fouling 1  Fouling2 Changing Changing
Parameter Optimization Market 1 ~ Market 2
Heat Exchange
(?oeffi_cient (TJ/de=C)
Debutanizer Feed/Bottoms ¢ 56551074 6.565x10™ 5.000x10™ 2.000x10™ 6.565x10™* 6.565x107]
Splitter Feed/Bottoms 1.030x107 1.030x1073 5.000x10™4 2.000x10™* 1.030x1073 1.030x107
Pricing
Propane ($/1113) 180 180 180 180 300 180
Gasoline Base Price ($/1n3 300 300 300 300 300 350
Octane Credit ($/(RON 2.5 2.5 2.5 2.5 2.5 10
1113))
Profit 230968.96 239277.37 239267.57 236706.82 258913.28 370053.98§]
Change from base case - 8308.41 8298.61 5737.86  27944.32 139085.02
($/d, %) (3.6%) (3.6%) (2.5% (12.1%)  (60.2%)
Infeasible Initialization
MINOS
Tterations 5/275 9 /788 - - - -
(Major/Minor)
CPU Time (s) 182 5768 - - - -
rSQP
Tterations 5 20 12 24 17 12
CPU Time (s) 233 80.1 54.0 93.9 69.8 54.2
Parameter Initialization
MINOS
Iterations n/a 12/132 14/120 16/ 156 11/166 11/76
(Major/Minor)
CPU Time (s) n/a 462 408 1022 916 309
rSQP
Tterations n/a 13 8 18 11 10
CPU Time (s) n/a 58.8 43.8 74.4 52.5 49.7
Time rSQP 12.8% 12.7% 10.7% 7.3% 5.7% 16.1%

17
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i Nonlinear Optimization Engines

Evolution of NLP Solvers:

=> process optimization for design, control and operations

SQP—— rSQP —— IPOPT

it Many degrees of freedom => full space IPOPT

wh+E A*[d =_Vgp(xk)

A 0 || 4, c(x")

* work in full space of all variables
* second derivatives useful for objective and constraints
* use specialized large-scale Newton solver

+ W=V,_L(x,A) and A= Vc(x) sparse, often structured
+ fast if many degrees of freedom present
+ no variable partitioning required

- second derivatives strongly desired
- W is indefinite, requires complex stabilization
- requires specialized large-scale linear algebra
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w Blending Problem & Model Formulation

Gasoline Blending

| ) |
fon

| -“11,A»|
oy

v

FINAL PRODUCT TRUCKS

Supply tanks (i) Intermediate tanks (j) | | Final Product tanks (k)
f&v - flowrates and tank volumes
q - tank qualities

Model Formulation in AMPL

OIL TANKS

max E(ch & 20ftl
s.t. Ef[]k 2

=V
tt/ z+1,j t,j

ftk Et]k

E_q NARY

%qtjftjk_ 1,i't,ij

Gl eq]t]k

e =9k =9k pax
min

v sv, sV
J . Lj =7
min max

GAS STATIONS

v =
t+1,jt+1,j

121

v
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o Small Multi-day Blending Models
Single Qualities

Haverly, C. 1978 (HM) Audet & Hansen 1998 (AHM)

no. of CPU  normalized no. of CPU  normalized
iterations  objective (s) CPU (s) iterations  objective (s) CPU (s)
HM Day 1 (N= 13, M 8, 5=8) HM Day 25 (N 325, M= 200, S=200)
LANCELOT 62 100 0.10 0.05 LANCELOT 1.00 x 10¢  6.75 3.04
MINOS 15 400 0.04 0.13 MINOS 801 6.40 x 10*  1.21 3.83
SNOPT 36 400 0.02 0.01 SNOPT 739 1.00 x 10¢  0.59 0.27
KNITRO 38 100 0.14 0.06 KNITRO =1000 a a a
LOQO 30 400 0.10 0.08 LOQO 31 1.00 x 10*  0.44 0.33
IPOPT, exact 31 400 0.01 0.01 IPOPT, exact 47 1.00 x 10¢  0.24 0.24
IPOPT, L-BFGS 199 400 0.08 0.08 IPOPT, L-BFGS 344 1.00 x 104 1.99 1.99
AHM Day 1 (N=21. M= 14, 5= 14) AHM Day 25 (N= 525, M= 300, S= 350)
LANCELOT 112 49.2 0.32 0.14 LANCELOT 149 8.13 x 102 26.8 12.1
MINOS 29 0.00 0.01 0.03 MINOS 940 3.75 % 102 292 9.23
SNOPT 60 49.2 0.01 <0.01 SNOPT 1473 1.23 x 10% 1.47 0.66
KNITRO 44 316 0.15 0.07 KNITRO 316 1.13x 10* 175 7.88
LOQO 28 49.2 0.10 0.08 LOQO 30 1.23 > 10*  0.80 0.60
IPOPT, exact 28 49.2 0.01 0.01 IPOPT, exact 44 1.23 % 10* 025 0.25
IPOPT, L-BFGS 44 49.2 0.02 0.02 IPOPT, L-BFGS 76 1.23 x 10* 0.98 0.98

123

« Honeywell Blending Model — Multiple Days

- 48 Qualiti
..._3 =
e TS P
- | S free
Al T 143 7 iC3 D353
;Elhann'l NHT =y (GD/V
B =
no. of CPU normalized no. of CPU normalized
iterations objective (s) CPU (s) iterations objective (s) CPU (s)
IHM Day 1 (N 2003, M= 1595, S= 1449) IHM Day 10 (N= 20 826, M = 16 074, S= 15 206)
LANCELOT 6.14 x 10" 1.17 x 105 5.28 x 10° LANCELOT c ¢ ¢ ¢
MINOS 2238 6.14 x 10! 5.24 x 10! 1.66 x 102 MINOS a a 2 a
SNOPT a a a a SNOPT a a a a
KNITRO 37 1.00 x 102 158 x 102 7.11 x 10!
LOOO b b * ba * b * KNITRO a a a a
IPOPT, exact 21 6.14 x 10! 2.60 Z.Gu LOQO b b b b
IPOPT. L-BFGS 52 6.14 x 10' 8.89 8.80 [ IPOPT, exact 65 264x 10" 112x 10" 112x 10" |
IHM Day 5 (N'= 10 134, M= 8073, 5 =T7330) THM Day 15 (N= 31743, M= 25 560 S=123073)
LANCELOT c c c c LANCELOT ¢ ¢ ¢
MINOS 8075  1.39 x 105 3.08 x 102 9.74 x 102 MINOS a2 a a a
SNOPT a a a a
KNITRO a a a a SNOPT a a a a
LOQO b__b b b KNITRO a a a a
IPOPT, exact 39 130 x 105 1.06 x 10° 1.06 x 103 L0OQO b b b b
IPOPT. L-BFGS 1000  1.39 x 10° 2.91 x 10° 291 x 10° [ TPOPT, exact 110 415 x 10 7.25 x 10* 7.25 x 10¢ | 124




s Summary of Results — Dolan-Moré plot

Performance profile (iteration count)

0.9 |
08 |
® ry
0.7 4 v A B
0.6 |
© 05 4 —e— IPOPT
—=— LOQO
0.4 | KNITRO
SNOPT
0.3 | —¥%— MINOS
—e— LANCELOT!
02 |
0.1 |
0 .
1 10 100 1000 10000 100000 1000000 10000000
T
s Comparison of NLP Solvers: Data Reconciliation
1000
800 —e— LANCELOT
-
” —=— MINOS
—=[1] 5600 / SNOPT
£400 KNITRO
10 = 200 /' —x— LOQO
’ —e— IPOPT
— 0%
y 0 200 400 600
Degrees of Freedom
5
9
100
= | =
10 —e— LANCELOT
S /'/ —=— MINOS
g ol x SNOPT
] [
£ o b b0 KNITRO
M [y / —%—L0OQO
—J 28 2 01
= e s —e— IPOPT
0—4«/./
0.01

Degrees of Freedom
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Comparison of NLP solvers

(latest Mittelmann study)

fraction solved within

Mittelmann NLP benchmark (10-26-2008)

0.9 —e—"

or | 27

/4

os W/

04 ¥ // -~

/ =

0.3 —

02// Z

0.1

0+ . . . '
0 2 4 6 8 10

log(2)*minimum CPU time

12

—o— |POPT
—+— KNITRO
—— LOQO
—— SNOPT
CONOPT

117 Large-scale Test Problems

500 - 250 000 variables, 0 — 250 000 constraints

ic
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IPOPT
KNITRO
LOQO
SNOPT
CONOPT

Limits
7
7
23
56
55

_Typical NLP algorithms and software

SQP - NPSOL, VF02AD, NLPQL, fmincon
uced SQP - SNOPT, rSQP, MUSCOD, DMO, LSSOL...

red

Reduced Grad. rest. -

Reduced Grad no rest. - MINOS

Second derivatives and barrier - IPOPT, KNITRO, LOQO

Interesting hybrids -

*FSQP/cFSQP - SQP and constraint elimination
LANCELOT (Augmented Lagrangian w/ Gradient Projection)

Fail
2
0
4

11

11
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GRG2, GINO, SOLVER, CONOPT
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% Sensitivity Analysis for Nonlinear Programming

At nominal conditions, p,

Minf(x, pO)
sit. ¢c(x,p,) =0

a(p,) =x <b(p,)
How is the optimum affected at other conditions, p = p,?

* Model parameters, prices, costs
Variability in external conditions
Model structure

How sensitive is the optimum to parametric uncertainties?
Can this be analyzed easily?

ical Second Order Optimality Conditions:

ERING
Reduced Hessian needs to be positive semi-definite

- Nonstrict local minimum: If nonnegative, find eigenvectors for zero
eigenvalues, =» regions of nonunique solutions

- Saddle point: If any are eigenvalues are negative, move along
directions of corresponding eigenvectors and restart optimization.

N

129
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ﬁ#ﬁé IPOPT Factorization Byproducts:
Tools for Postoptimality and Uniqueness

Modify KKT (full space) matrix if nonsingular

[W +2,

« §, - Correct inertia to guarantee descent direction

¥ 4

+ 8, - Deal with rank deficient A,

KKT matrix factored by indefinite symmetric factorization
+Solution with 8, 6, =0 =» sufficient segond order conditions

*Eigenvalues of reduced Hessian all positive — unique
minimizer and multipliers

*Else:

- Reduced Hessian available through sensitivity calculations
- Find eigenvalues to determine nature of stationary point

%
ERING

Parametric Programming

min  f(z,p)
c(z,p) =0
x>0

Solution Triplet

S* (p)T [x*T )\*T V*T]

P(p)

NLP Sensitivity

Optimality Conditions P(p)

Vaf(@,p) + Vac(z,p) A —v
c(z,p)
XVe

NLP Sensitivity = Rely upon Existence and Differentiability of s* (p)

0
- Main Idea: Obtain o
Op

. \ 9
§(p1) ~ s*(po) + 8—8
%

0
0
0

f(z,p)A

and find s*(p1) by Taylor Series Expansion 5 (p1)
Ppo

T

po

(1 — po)

131

s*(p1)

132



&Wﬁﬂ NLP Sensitivity Properties (Fiacco, 1983)

Assume sufficient differentiability, LICQ, SSOC, SC:
Intermediate IP solution (s(u)-s*) = O(u)

Finite neighborhood around p, and u=0 with same

active set
exists and is unique
@
OPlpg
T
88 2
s(p) — [s(po) + 3 (p —po)] = O((p — po)*)
p po
T

(p — po)] = O((p — po)?) + O(w)
Po,H

5(0) ~ lo(por ) +
p

133

ﬁ% NLP Sensitivity

Obtaining %;

Po

Optimality Conditions of P(p)

0

0 } Q(s,p) =0

0

Vel =Vaf(z,p) + Vac(z,p) A — v
c(z,p)
XVe

Apply Implicit Function Theorem to Q(S, p) = 0 around (po, s* (po))
9Q(s*(po).po) ds
0s

9Q(s*(po).pa) —
Op

Iplpg
A
— . —
W(s*(po)) A(z*(po)) —I % VapL(s*(po))
A(z*(po))T 0 0 o | T| Vpe(@(po)) | =0
V*(po) 0 X*(po) g—; 0

KKT Matrix IPOPT

W(zg, A\p) Alzg) —1
A(z)T 0 0
Vi 0 X

- Already Factored at Solution

- Sensitivity Calculation from Single Backsolve

> Approximate Solution Retains Active Set

134
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Sensitivity for Flash Recycle Optimization

(2 decisions, 7 tear variables)

S3
Flash
S4
» S7
£2X Ratio
1/2
M a S:{A) S3(B) - S3(A) 83( ) + S3([D) -(S 3E))

*Second order sufficiency test:
*Dimension of reduced Hessian = 1
*Positive eigenvalue

10

Sensitivity vs. Re-optimized Points

0.14

Relative change - Objective

0.01

0.011°
0.17

I

=)
=
=

Relative change - Perturbation

*Sensitivity to simultaneous change in feed rate

and upper bound on purge ratio

%
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Ammonia Process Optimization

(9 decisions, 8 tear variables)

*Second order sufficiency test:
*Dimension of reduced Hessian =4

20
Sensitivities vs. Re-optimized Pts

19.5
Sensitivity

o
1

QPlI

QP2

Objective Function
1

135

]
g g
(=] . .
Relative perturbation change

*Eigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5]
*Sensitivity to simultaneous change in feed rate
and upper bound on reactor conversion

0.1
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Multi-Scenario Optimization

\

Case 1 Case 2 Case 3 Case 4 Case N

Coordination

1. Design plant to deal with different operating scenarios (over time or with
uncertainty)

2. Can solve overall problem simultaneously
e large and expensive
*  polynomial increase with number of cases
*  must be made efficient through specialized decomposition

3. Solve also each case independently as an optimization problem (inner
problem with fixed design)
e overall coordination step (outer optimization problem for design)
*  require sensitivity from each inner optimization case with design
variables as external parameters

@ﬁﬁé Design Under Uncertain Model Parameters
and Variable Inputs

min EHE@[P(dazayae)a
st h(d,z,y,0)=0,
g(d,z,y,0)=0]

E[P, ...] : expected value of an objective function

h : process model equations

g : process model inequalities

y : state variables (x, T, p, etc)

d : design variables (equipment sizes, etc)

B, : uncertain model parameters

8, : variable inputs 0=1[6,76,T]

z : control/operating variables (actuators, flows, etc)
(may be fixed or a function of (some) 0)
(single or two stage formulations)




w Multi-scenario Models for Uncertainty

]\gln E%@[P(dazayae)a

st h(d,z,y,0)=0,
g(dQZQy,g) S O]

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway,
Perkins and Barton (1991), Srinivasan, Bonvin, Visser and Palanki (2002),
Walsh and Perkins (1994, 1996)

w Multi-scenario Models for Uncertainty

=
0
a
()
=
0
Q
<]
=
0
o
o)
=
0
o
o)

»y(0)

_______________________________________

Min f,(d) + ijfj(d,z,yj,aj)

st.h;(d,z,y,;,0,)=0

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway,
Perkins and Barton (1991), Srinivasan, Bonvin, Visser and Palanki (2002),
Walsh and Perkins (1994, 1996)



i.ml Multi-scenario Models for Variability

Min Eyq[P(d,2(0),,0),

d,z(6)

s.t. h(d,z(6),y,0) =0,
g(d,z(0),y,0) < 0]

Some References: Grossmann and coworkers (1983-1991), lerapetritou,
Acevedo and Pistikopoulos (1996), Pistikopoulos and coworkers (1995-2001)

i.ml Multi-scenario Models for Variability

Gil eil eil eil

I I
e i
Model | [ Model | | Model | [ Model
I I
| .
! !

zi,yil Z,V, l Z,y; l Z,,Y; l »2(0), y(0)

Min fy(d)+ Y o,f,(d.z,,,.6))

st.h(d,z;,y;,0,)=0
gj(dazjayjagj)so

Some References: Grossmann and coworkers (1983-1991), lerapetritou,
Acevedo and Pistikopoulos (1996), Pistikopoulos and coworkers (1995-2001)



@ Multi-scenario Models for Both

Min E,[P(d,z(0),y,0),

d,z(6,)

s.t. h(d,z(6,),y,0) =0,
g(d,z(6,),y,0)=<0]

Some References: Ostrovsky, Volin, Achenie (2003), Rooney, B. (2003)

@ Multi-scenario Models for Both

| |
| |
| ) 0010, 0010, 046, |
i Model Model | | Model || Model ||
| |
| .
| |

Zk,yil ZluVil(l ZluViI(l Zlnvwl :Z(ev), y(e)

Min f,(d)+ 2wikﬁk(dazk7yik’gv,k’gp,f)

S.L. hik(d,Zk,y,-k, gv,k’gp,i) = O
gik(dﬂzkayikggv’k,gp,i) = O

Some References: Ostrovsky, Volin, Achenie (2003), Rooney, B. (2003)




@m Example: Williams-Otto Process
(Rooney, B., 2003)

Fa

Fg

— Uncertain model parameters, ay,as and aj

—

A + —1>C

C+BP+E Fpea

P+

Fete

Fex

rm‘/@ﬁ

G Fq

— Varying process parameters: | Fy = 10000(1 +4) and

Fp = 40000(1 &£ §)

st Uncertainty and Variability: Williams-Otto Process
(Rooney, B., 2003)

Objective

42
40
38
36
34
32
30

N
N\

—— Uncertainty

AN

Variability
—— Both

0.05

Level of Unc./Var. (9)

0.1

— Uncertain model parameters, a;.a- and a;
— Varying process parameters: F4 = 10000(1+4) and
Fp = 40000(1 + 6)



...  Solving Multi-scenario Problems:
Interior Point Method

Mi d f.(d,z,,y.,0, .
in fy( )+2a)]fj( Z;5); ,) Mmfo(p)*'zwjfj(paxj)
J
st.h(d,z;,y;,0,)=0

st.c;(p,x;)=0, p,x, =0
gj(dazjayjagj)‘l‘sj =O,Sj >0

Minfo(p)+za)jfj(p,xj)—/,t{zmxj. +21an}
st.c;(p,x;)=0

u = 0=[x(u), p(u")] = [x*, p*]

= Newton Step for IPOPT

K, wil[w [ 7]
K2 w, u, H
K3 Wil | U £
Ky [wal || 4y Iy
T T T T
M Wy W ... Wy Kpi wa |7
— (Vx[,x,-Lk-F(Xik)_lVik) foci(x"k’pk) u. = Ax = Ap
| Vel 0 Tz Tz

k kN-117k —
vV, L+P )V, Vrc
\xa 0

p




icalSchur Complement Decomposition Algorithm
ENGINILH
1. (Kpp - EwiTKi_lwi]Aup =7, - Ew,.TKi'lri

2. KAu; =1, —wAu,

Key Steps

IPOPT
Line Search
& reduction of u

Computational cost is linear in number of periods
Trivial to parallelize

i Nonlinear Optimization Engines

Evolution of NLP Solvers:

=> process optimization for design, control and operations

SQP—— rSQP —— IPOPT

|

IPOPT 3.x

Object Oriented Codes to tailor structure, architecture to problems
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@' Multi-scenario Design Model

ERING
Min f(d) + 2. f(d, x,)

st.h(x,d)=0,i=1,...N
g(x,d)=<0,i=1,...N
rd)<0
Variables:
X: state (z) and control (u) variables in each operating period
d: design variables (e. g. equipment parameters) used
d,: substitute for d in each period and add §,=d

Composite NLP
Min 2, (f(0, x;) + fo( 0)/N)
st.h(x,0)=0,i=1,...N
8(x,0,)+s;,=0,i=1,...N
O<s,d-—06=0,i=1,... N

D e 2.

r(d)<0

@ Internal Decomposition
i Implementation

NLP | . ’ |LinearAIgebra
L Interface NLP Algorithm Interface ]

.
E\/Iulti-scenario [ Block-Bordered J

NL P Linear Solver

Composite NLPs

+ Water Network Base Problem
— 36,000 variables
& E — 600 common variables
+ Testing
— Vary # of scenarios
— Vary # of common variables




%
ERING

Parallel Schur-Complement
Scalability

Multi-scenario Optimization

+ Single Optimization over many
scenarios, performed on parallel
cluster

Water Network Case Study

+ 1 basic model
- Nominal design optimization

+ 32 possible uncertainty scenarios
- Form individual blocks

Determine Injection time profiles as
common variables
Characteristics

+ 36,000 variables per scenario

« 600 common variables

%
ERING

Wall Clock Time (seconds)

200,

Summary and Conclusions

Optimization Algorithms

-Unconstrained Newton and Quasi Newton Methods
-KKT Conditions and Specialized Methods
-Reduced Gradient Methods (GRG2, MINOS)
-Successive Quadratic Programming (SQP)

-Reduced Hessian SQP
-Interior Point NLP (IPOPT)

Process Optimization Applications

-Modular Flowsheet Optimization

-Equation Oriented Models and Optimization

-Realtime Process Optimization

-Blending with many degrees of freedom

Further Applications

-Sensitivity Analysis for NLP Solutions
-Multi-Scenario Optimization Problems

1.5e+06

1e+06

-5e+05

Number of Variables
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