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Introduction 
 
Unconstrained Optimization 
•!  Algorithms 
•!  Newton Methods 
•!  Quasi-Newton Methods 

 
Constrained Optimization 
•!  Karush Kuhn-Tucker Conditions 
•!  Special Classes of Optimization Problems 
•!  Reduced Gradient Methods (GRG2, CONOPT, MINOS) 
•!        Successive Quadratic Programming (SQP) 
•!        Interior Point Methods (IPOPT) 

 
Process Optimization 
•!        Black Box Optimization 
•!  Modular Flowsheet Optimization – Infeasible Path 
•!  The Role of Exact Derivatives 

 
Large-Scale Nonlinear Programming 
•!  rSQP:  Real-time Process Optimization 
•!        IPOPT:  Blending and Data Reconciliation 

Further Applications 
•!  Sensitivity Analysis for NLP Solutions 
•!  Multi-Scenario Optimization Problems 

 
Summary and Conclusions 

Nonlinear Programming and Process Optimization 
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Introduction 

Optimization:  given a system or process, find the best solution to 
this process within constraints. 

Objective Function:  indicator of "goodness" of solution, e.g., cost, 
yield, profit, etc. 

Decision Variables:  variables that influence process behavior and 
can be adjusted for optimization. 

 

In many cases, this task is done by trial and error (through case 
study).  Here, we are interested in a systematic approach to this 
task - and to make this task as efficient as possible. 

 

Some related areas: 

 -  Math programming 

 -  Operations Research 

Currently - Over 30 journals devoted to optimization with roughly 
200 papers/month - a fast moving field! 
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Optimization Viewpoints 

Mathematician - characterization of theoretical properties 
of optimization, convergence, existence, local 
convergence rates. 

Numerical Analyst - implementation of optimization method 
for efficient and "practical" use. Concerned with ease of 
computations, numerical stability, performance. 

Engineer - applies optimization method to real problems.  
Concerned with reliability, robustness, efficiency, 
diagnosis, and recovery from failure. 
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Scope of optimization 
Provide systematic framework for searching among a specified  

space of alternatives to identify an !optimal" design, i.e., as a   
decision-making tool 

Premise 
Conceptual formulation of optimal product and process design  

corresponds to a mathematical programming problem 

!!

"

Motivation 

MINLP ! NLP 
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x x Hybrid 

x x Nonlinear 

MPC 

x Linear MPC 

x x Real-time 

optimization 

x x x Supply Chain 
x x x x Scheduling 

x x Flowsheeting 

x x x  Equipment 

Design 

x  x x x Reactors 
x x Separations 

x x x x x x MENS 
x x x x x x HENS 

SA/GA NLP LP,QP Global MINLP MILP 

Optimization in Design, Operations and Control  
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Unconstrained Multivariable Optimization 

Problem:           Min    f(x)      (n variables) 

 

Equivalent to:  Max  -f(x), x ! Rn 

 

Nonsmooth Functions 

-  Direct Search Methods 

-  Statistical/Random Methods 

 

Smooth Functions 

-  1st Order Methods 

-  Newton Type Methods 

-  Conjugate Gradients 
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Example:  Optimal Vessel Dimensions 
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What is the optimal L/D ratio for a cylindrical vessel? 

Constrained Problem 

! ! ! ! ! !(1) ! 

Convert to Unconstrained (Eliminate L)! ! 

(2) ! 

! ! 

! !==> L/D  =  CT/CS 

Note: 

- !What if L cannot be eliminated in (1) explicitly? (strange shape) 

- !What if D cannot be extracted from (2)?   

!(cost correlation implicit) 

L 

D 

V 
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Two Dimensional Contours of F(x) 
 

Convex Function ! !Nonconvex Function Multimodal, Nonconvex 

!Discontinuous ! !Nondifferentiable (convex) 

 

! 

"
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Local vs. Global Solutions 
Convexity Definitions 

•!a set (region) X is convex, if and only if it satisfies: 

  " y + (1-")z ! X    

   for all !, 0 ! ! ! 1, for all points y and z in X.  

•! f(x) is convex in domain X, if and only if it satisfies: 

  f(" y + (1-") z) ! " f(y)  + (1-")f(z)    

   for any !, 0 ! ! ! 1, at all points y and z in X.  

 

•!Find a local minimum  point x* for f(x) for feasible region defined by   
constraint functions: f(x*) ! f(x) for all x satisfying the constraints in 
some neighborhood around x* (not for all x ! X) 

•!Sufficient condition for a local solution to the NLP to be a global is 
that f(x) is convex for x ! X. 

•!Finding and verifying global solutions will not be considered here.  

•!Requires a more expensive search (e.g. spatial branch and bound).  
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Linear Algebra - Background 

Some Definitions 

• !Scalars - Greek letters, !, ", # 
• !Vectors - Roman Letters, lower case 

• !Matrices - Roman Letters, upper case!

•!     Matrix Multiplication:!

      C = A B if A $ %n x m, B $ %m x p and C $ %n x p, Cij = &k Aik Bkj 

•!     Transpose - if A $ %n x m, !

      interchange rows and columns --> AT$ %m x n 

•!     Symmetric Matrix - A $ %n x n (square matrix) and A = AT
 

•!     Identity Matrix - I, square matrix with ones on diagonal !

      and zeroes elsewhere.  

•!     Determinant: "Inverse Volume" measure of a square matrix 

det(A) = &i (-1)i+j Aij Aij  for any j, or   

det(A) = &j (-1) i+j Aij Aij for any i, where Aij is the determinant!

of an order n-1 matrix with row i and column j removed. !

det(I) = 1 

!

•!     Singular Matrix: det (A) = 0 
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Note:    =  

Linear Algebra - Background 
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•!      Some Identities for Determinant 

det(A B) = det(A) det(B); !det (A) = det(AT) 

det(!A) = !n det(A); !det(A) = (i )i(A)!

!

•!      Eigenvalues: det(A- ) I) = 0, Eigenvector: Av = ) v 

Characteristic values and directions of a matrix. 

For nonsymmetric matrices eigenvalues can be complex, !

so we often use singular values, * = )(AT+)1/2 , 0-

•! Vector Norms 

|| x ||p = {&i |xi|
p}1/p 

(most common are p = 1, p = 2 (Euclidean) and p = . (max norm = maxi|xi|)) 

•! Matrix Norms 

!||A|| = max ||A x||/||x|| over x (for p-norms) 

!||A||1 - max column sum of A, maxj (&i |Aij|) 

!||A||. - maximum row sum of A, maxi (&j |Aij|) 
!||A||2 = [*max(+)] (spectral radius)  

-||A||F = [&i &j (Aij)2]1/2
 (Frobenius norm) 

-/(+) = ||A|| ||A-1|| (condition number) = *max/*min (using 2-norm)  

Linear Algebra - Background 
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Find v and ) where Avi  =  )i vi, i = i,n 

Note:  Av -  )v = (A - )I) v = 0  or det (A - )I) = 0 

For this relation ) is an eigenvalue and v is an eigenvector of A. 
!

If A is symmetric, all )i are real  
!)i > 0, i = 1, n;  A is positive definite 

!)i < 0, i = 1, n;  A is negative definite 

!)i = 0, some i:  A is singular!
 

Quadratic Form can be expressed in Canonical Form (Eigenvalue/Eigenvector) 

! !xTAx      0      A V  =  V  1 

! !V - eigenvector matrix  (n x n) 

! !1 - eigenvalue (diagonal) matrix  =  diag()i) 

!

If A is symmetric, all )i are real and V can be chosen orthonormal (V-1 = VT).  !
Thus,  A = V 1 V-1 = V 1 VT!

 

For Quadratic Function:  Q(x) = aTx + # xTAx!
 

Define:! z = VTx  and   Q(Vz) = (aTV) z + #  zT (VTAV)z!
                                                = (aTV) z + # zT 1 z!
!

Minimum occurs at (if )i > 0)!  x = -A-1a    or !x = Vz = -V(1-1VTa)!

Linear Algebra - Eigenvalues 
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Positive (Negative) Curvature 
Positive (Negative) Definite Hessian 

Both eigenvalues are strictly positive (negative) 

• !A is positive (negative) definite 

• !Stationary points are minima (maxima) 

x1"

x2"

"
z1"

z2"

(#1)
!1/2$

(#2)
!1/2$
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Zero Curvature  
Singular Hessian 

One eigenvalue is zero, the other is strictly positive or negative 

• !A is positive semidefinite or negative semidefinite 

• !There is a ridge of stationary points (minima or maxima) 
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One eigenvalue is positive, the other is negative 

• !Stationary point is a saddle point 

• !A is indefinite 

 

Note: these can also be viewed as two dimensional projections for higher dimensional problems 

Indefinite Curvature  
Indefinite Hessian 



19 

Eigenvalue Example     
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1. Convergence Theory 

• !Global  Convergence  -  will  it  converge  to  a  local  optimum (or  stationary 

!point) from a poor starting point?!
 

• !Local Convergence Rate - how fast will it converge close to this point? !

!
 

2. Benchmarks on Large Class of Test Problems 

 

Representative Problem (Hughes, 1981) 

"

Min  f(x1, x2) = " exp(-&) 

u = x1 - 0.8 
v = x2 - (a1 + a2 u

2 (1- u)1/2 - a3 u) 

" = -b1 + b2 u
2 (1+u)1/2 + b3 u 

& = c1 v
2 (1 - c2 v)/(1+ c3 u

2) 

"

a = [ 0.3, 0.6, 0.2] 
b = [5, 26, 3] 

c = [40, 1, 10] 
x* = [0.7395, 0.3144] "f(x*) = -5.0893 

!

"

 

Comparison of Optimization Methods 
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Three Dimensional Surface and Curvature for Representative Test Problem 

"

 

Regions where minimum 
eigenvalue is greater than: 

[0, -10, -50, -100, -150, -200] 
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What conditions characterize an optimal solution? 

x1

x2

x*

Contours of f(x)

Unconstrained Local Minimum!
Necessary Conditions 

'f (x*) = 0 

pT'2f (x*) p $ 0   for p$%n
 

(positive semi-definite) 

Unconstrained Local Minimum!
Sufficient Conditions 

'f (x*) = 0 

pT'2f (x*) p > 0   for p$%n
 

(positive definite) 

Since 'f(x*) = 0, f(x) is purely quadratic for x close to x* 

( )32

2

1
*xxO*)xx*)(x(f*)xx(*)xx(*)x(f*)x(f)x(f TT

!+!"!+!"+=

For smooth functions, why are contours around optimum elliptical?!
Taylor Series  in n dimensions about x*:"
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Taylor Series for f(x) about xk 

!!

!Take derivative wrt x, set LHS % 0!

 

! "0 #'f(x) = 'f(xk) + '2f(xk) (x - xk) + O(||x - xk||2) 

$(   (x - xk) ) d =  - ('2f(xk))-1 'f(xk) 

!

•!  f(x) is convex (concave) if for all x !*n, '2f(x) is positive (negative) semidefinite!

   i.e.  minj )j , 0 (maxj )j & 0) 

•!  Method can fail if: 

!-  x0 far from optimum 

!- '2f is singular at any point 

!-  f(x) is not smooth 

•!  Search direction, d, requires solution of linear equations. 

•!  Near solution:  !

2

 

Newton's Method 

2
**1
xxOxx

kk
!=!

+
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0. !Guess x0, Evaluate  f(x0).!

 

1. !At xk, evaluate 'f(xk). 

!

2. !Evaluate Bk = '2f(xk) or an approximation. 

!

3. !Solve:    Bk d = -'f(xk) 

!If convergence error is less than tolerance: 

!e.g., ||'f(xk) || + , and ||d|| + , STOP, else go to 4.  

!

4. !Find ! so that 0 < ! 3 1 and f(xk + " d) < f(xk) !!

      sufficiently (Each trial requires evaluation of f(x)) 

!

5. !xk+1 = xk + " d.  Set k = k + 1 Go to 1.!

"

!

Basic Newton Algorithm - Line Search 
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Newton's Method - Convergence Path 

Starting Points 

[0.8, 0.2]     needs steepest descent steps w/ line search up to 'O', takes 7 iterations to ||'f(x*)|| ! 10-6!

 

[0.35, 0.65] converges in four iterations with full steps to ||'f(x*)|| ! 10-6 
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•!  Choice of Bk determines method. 

- Steepest Descent: Bk =  - I ""

- Newton: Bk =  '2f(x)!!

•!  With suitable Bk, performance may be good enough if f(xk + "d) !

    is sufficiently decreased (instead of minimized along line search !

    direction).!

•!  Trust region extensions to Newton's method provide very strong !

   global convergence properties and very reliable algorithms. 

•!  Local rate of convergence depends on choice of Bk. 

Newton#s Method - Notes 

! 

Newton"Quadratic Rate :            lim
k#$

x
k+1
" x *

x
k
" x *

2
= K

Steepest descent "  Linear Rate :   lim
k#$

x
k+1
" x *

x
k
" x *

<1

Desired?"  Superlinear Rate :       lim
k#$

x
k+1
" x *

x
k
" x *

= 0
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! 
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Motivation: ! 
• !Need Bk to be positive definite.   

• !Avoid calculation of ' 2f.   
• !Avoid solution of linear system for d = - (Bk)-1 'f(xk) 

!

Strategy: !Define matrix updating formulas that give (Bk) symmetric, positive 

definite and satisfy: 

! "(Bk+1)(xk+1 - xk) = ('f k+1 – 'f k)  (Secant relation)!
 

DFP Formula: (Davidon, Fletcher, Powell, 1958, 1964) 

!where: !s = xk+1- xk 
" " " "y = 'f (xk+1) - 'f (xk)!

Quasi-Newton Methods 
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BFGS Formula  (Broyden, Fletcher, Goldfarb, Shanno, 1970-71) 

Notes: 

1)! Both formulas are derived under similar assumptions and have !

        symmetry 

2) ! Both have superlinear convergence and terminate in n steps on 

quadratic functions. They are identical if ! is minimized.  
3) ! BFGS is more stable and performs better than DFP, in general. 

4) ! For n 3 100, these are the best methods for general purpose 

problems if second derivatives are not available.  

Quasi-Newton Methods 
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Quasi-Newton Method - BFGS 

Convergence Path 

 

Starting Point 
[0.2, 0.8] !starting from B0 = I, converges in 9 iterations to ||'f(x*)|| ! 10-6 

!
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Harwell (HSL) 

IMSL 

NAg - Unconstrained Optimization Codes 

Netlib (www.netlib.org) 

•!MINPACK 

•!TOMS Algorithms, etc. 

These sources contain various methods 

•!Quasi-Newton 

•!Gauss-Newton 

•!Sparse Newton 

•!Conjugate Gradient 

Sources For Unconstrained Software 
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Problem: "Minx  f(x) 

" " "s.t. "g(x) + 0 

" " " "h(x) = 0 

where: 

! !f(x)  -  scalar objective function 

! "   x   -  n vector of variables 

! !g(x)  -  inequality constraints, m vector 

! !h(x)  -  meq equality constraints. 

 

Sufficient Condition for Global Optimum 

- f(x) must be convex, and 

- feasible region must be convex, 

!i.e.  g(x) are all convex 

! !   h(x) are all linear 

Except in special cases, there is no guarantee that a local optimum is global 

if sufficient conditions are violated.!

Constrained Optimization 

(Nonlinear Programming) 
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Example:  Minimize Packing Dimensions 

What is the smallest box for three round objects? 

Variables:  A, B, (x1, y1),  (x2, y2),  (x3, y3) 

Fixed Parameters:  R1,  R2,  R3  
Objective:  Minimize Perimeter = 2(A+B) 

Constraints:  Circles remain in box, can't overlap 

Decisions:  Sides of box, centers of circles. 

no overlaps  
! !in box!

x1, x2, x3, y1, y2, y3,  A, B , 0 
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Mi n

Linear  Progr am

Mi n

Linear  Progr am

(Alter nate Opt im a)

Min

Min

Min

Convex Objective Functions

Linear Constraints

Mi n

Mi n

Mi n

Nonconvex Region

Mul ti ple O pti ma

Mi nMi n

Nonconvex Object ive

Mul ti ple O pti ma

Characterization of Constrained Optima 

!
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What conditions characterize an optimal solution? 

Unconstrained Local Minimum!
Necessary Conditions 

'f (x*) = 0 

pT'2f (x*) p $ 0   for  p$%n
 

(positive semi-definite) 

Unconstrained Local Minimum!
Sufficient Conditions 

'f (x*) = 0 

pT'2f (x*) p > 0   for p$%n
 

(positive definite) 
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Optimal solution for inequality constrained problem 

"Min !f(x) 

!  s.t!.   g(x) & 0 

Analogy:  Ball rolling down valley pinned by fence 

Note:  Balance of forces ('f, 'g1) 

36 

Optimal solution for general constrained problem 

 

Problem: !Min !f(x) 

! ! !  s.t. !g(x) & 0 

! ! ! !h(x) = 0 

Analogy:  Ball rolling on rail pinned by fences 

Balance of forces:  'f, 'g1, 'h 
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Necessary First Order Karush Kuhn - Tucker Conditions!

 

$' L (x*, u, v) = 'f(x*) + 'g(x*) u + 'h(x*) v = 0     

 (Balance of Forces)!

!u $ 0 (Inequalities act in only one direction) 

!g (x*) ! 0,  h (x*) = 0  (Feasibility) 

"uj gj(x*) = 0  (Complementarity: either gj(x*) = 0 or  uj = 0) 

     u, v are "weights" for "forces," known as KKT multipliers, shadow !

!prices, dual variables!

!

!To guarantee that a local NLP solution satisfies KKT conditions, a constraint 
qualification is required. E.g., the Linear Independence Constraint Qualification 

(LICQ)  requires  active  constraint  gradients,  ['gA(x*)  'h(x*)],  to  be  linearly 
independent. Also, under LICQ, KKT multipliers are uniquely determined.” 

!

Necessary (Sufficient) Second Order Conditions 

- !Positive curvature in "constraint" directions. 

- !pT' 2L (x*) p . 0  (pT' 2L (x*) p > 0)  

!where p are the constrained directions: 'h(x*)Tp = 0  

      for gi(x*)=0, 'gi(x*)Tp = 0, for ui > 0, 'gi(x*)Tp ! 0, for ui = 0  

Optimality conditions for local optimum 

38 

Single Variable Example of  KKT Conditions 

-a a

f(x)

x

Min (x)2 "s.t. -a ! x ! a, a > 0 

x* = 0 is seen by inspection!

!

Lagrange function :   

L(x, u) = x2 + u1(x-a) + u2(-a-x) 

!

First Order KKT conditions: 

'L(x, u) = 2 x + u1 - u2 = 0 

u1 (x-a) = 0 ""

 u2 (-a-x) = 0 

 -a ! x ! a "u1, u2 $ 0!

Consider three cases:  

•     u1 $ 0,  u2 = 0 !Upper bound is active, x = a, u1 = -2a, u2 = 0 

•!     u1 = 0,  u2 $ 0               Lower bound is active, x = -a, u2 = -2a, u1 = 0 

•!    u1 = u2 = 0 " !Neither bound is active, u1 = 0, u2 = 0,  x = 0 

!

Second order conditions (x*, u1, u2 =0) "

" "           'xxL (x*, u*) = 2 "

" "            pT'xxL (x*, u*) p = 2 (/x)2 > 0 ""
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Single Variable Example  
of  KKT Conditions - Revisited 

Min -(x)2"s.t. -a ! x ! a, a > 0 

x* = ±a is seen by inspection!

!

Lagrange function :   

L(x, u) = -x2 + u1(x-a) + u2(-a-x) 

!

First Order KKT conditions: 

'L(x, u) = -2x + u1 - u2 = 0 

u1 (x-a) = 0 ""

 u2 (-a-x) = 0 

 -a ! x ! a "u1, u2 $ 0!

Consider three cases:  

•     u1 $ 0,  u2 = 0 !Upper bound is active, x = a, u1 = 2a, u2 = 0 

•!     u1 = 0,  u2 $ 0               Lower bound is active, x = -a, u2 = 2a, u1 = 0 

•!    u1 = u2 = 0 " !Neither bound is active, u1 = 0, u2 = 0,  x = 0 

!

Second order conditions (x*, u1, u2 =0) "

" "           'xxL (x*, u*) = -2 "

" "            pT'xxL (x*, u*) p = -2(/x)2 < 0 ""

a-a

f(x)

x
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For x = a or x = -a, we require the allowable direction to satisfy the 

active constraints exactly. Here, any point along the allowable 

direction, x* must remain at its bound. !

!

For this problem, however, there are no nonzero allowable directions 

that satisfy this condition. Consequently the solution x* is defined 

entirely by the active constraint. The condition:  

pT 'xxL (x*, u*, v*) p  > 0 !

for the allowable directions, is vacuously  satisfied - because there are 

no allowable directions that satisfy 'gA(x*)T p  = 0. Hence, sufficient 

second order conditions are satisfied. 

 

As we will see, sufficient second order conditions are satisfied by linear 

programs as well.  

Interpretation of Second Order Conditions 
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Role of KKT Multipliers 

a-a

f(x)

x a + !a

Also known as: 
• !Shadow Prices 

• !Dual Variables 

• !Lagrange Multipliers!
 

Suppose a  in the constraint is increased to a + /a 

f(x*) =- (a + /a)2 

and 

[f(x*, a + /a) - f(x*, a)]//a =- 2a - /a 

df(x*)/da = -2a = -u1 
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Another Example: Constraint 
Qualifications 
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KKT conditions not satisfied at NLP solution 

Because a CQ is not satisfied (e.g., LICQ) 
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Linear Programming: 

!Min !cTx 

!  s.t. !Ax & b 

! ! !Cx = d,  x $ 0 

Functions are all convex  0  global min. 
Because of Linearity, can prove solution will !

always lie at vertex of feasible region. 

x2

x
1

Simplex Method 

!- !Start at vertex 

!- !Move to adjacent vertex that offers most improvement 
!- !Continue until no further improvement 

Notes:   
!1) !LP has wide uses in planning, blending and scheduling ! 

!2) !Canned programs widely available.  !

"

 

Special Cases of Nonlinear Programming 
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Simplex Method 

"Min "-2x1 - 3x2 " " "Min "-2x1 - 3x2 

"  s.t. " 2x1 + x2 ! 5 "  ( "               s.t. 2x1 + x2 + x3 = 5 

" " "   x1, x2 $ 0 " " " "x1, x2, x3 $ 0 

! ! ! ! ! ! ! !(add slack variable) 

Now, define f = -2x1 - 3x2  $( $  f + 2x1 + 3x2 = 0 

Set x1, x2 = 0,  x3 = 5 and form tableau 

" "x1" "x2 "x3 "f "b "x1, x2    nonbasic 

! !2 ! !1 !1 !0 !5 !x3        basic 

! !2 ! !3 !0 !1 !0!

 

To decrease f, increase x2.  How much?  so x3 $ 0 

" "x1" "x2 "x3 "f "b 

! ! 2! !1 ! 1 !0 !  5 

! !-4! !0 !-3 !1 !-15 

        f can no longer be decreased!  Optimal!

 

Underlined terms are -(reduced gradients); nonbasic variables (x1, x3), basic variable x2!

Linear Programming Example 
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Problem: !Min !aTx + 1/2 xT B x 

! ! ! !   A x & b 

! ! ! !   C x = d 

1) !Can be solved using LP-like techniques:   

! !(Wolfe, 1959) 

! !0 !Min !&j (zj+ + zj-) 

! ! !s.t. !a + Bx + ATu + CTv = z+ - z- 

! ! ! !Ax - b + s = 0 

! ! ! !Cx - d = 0 

! ! ! !u, s, z+, z-  $  0 

! ! ! !{uj sj = 0} 

!with complicating conditions.!

 

2) !If B is positive definite, QP solution is unique. 

!If B is pos. semidefinite, optimum value is unique. 

!

3) !Other methods for solving  QP's (faster) 

! !-  Complementary Pivoting (Lemke) 

! !-  Range, Null Space methods (Gill, Murray).!

Quadratic Programming 
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i
µ  =  

1

T
 ir

t=1

T

! (t)

Definitions: 

!xi  -   fraction or amount invested in security i 

!ri (t) - (1 + rate of return) for investment i in year t. 

!µi  -   average r(t) over T years, i.e.  

Note:  maximize average return, no accounting for risk. 

Portfolio Planning Problem 

.  ,0

1   .t.

   

etcx

xs

xMax

i

i

i

i

ii

!

="

"µ
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ijS{ }  =  ij
2!  =  

1

T
 ir (t) - iµ( )

t =1

T

" jr (t) - jµ( )

S =   

    3      1      - 0.5

    1       2        0.4

-0.5   0.4           1

! 

" 

# 

# 

$ 

% 

& 

& 

Definition of Risk  -  fluctuation of ri(t) over investment (or past) time period. 
To minimize risk, minimize variance about portfolio mean (risk averse). 

!

Variance/Covariance Matrix, S    

Example:  3 investments 

! ! ! !µj ! 

1. !IBM ! !1.3 ! 

2. !GM ! !1.2 

3. !Gold ! !1.08 

 

Portfolio Planning Problem 

.  ,0

1   .t.

   

etcx

Rx

xs

SxxMin

i

i

ii

i

i

T

!

!

=

"

"

µ
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SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ) 
4 
5 !OPTION LIMROW=0; 

6 !OPTION LIMXOL=0; 
7 

8 !VARIABLES IBM, GM, GOLD, OBJQP, OBJLP; 
9 
10 !EQUATIONS E1,E2,QP,LP; 

11 
12 !LP.. OBJLP =E= 1.3*IBM + 1.2*GM + 1.08*GOLD; 

13 
14 !QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM  -  IBM*GOLD 
15 !+    2*GM**2 - 0.8*GM*GOLD +  GOLD**2; 

16 
17 !E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G= 1.15; 
18 

19 !E2.. IBM + GM + GOLD =E= 1; 
20 

21 !IBM.LO = 0.; 
22 !IBM.UP = 0.75; 
23 !GM.LO = 0.; 

24 !GM.UP = 0.75; 
25 !GOLD.LO = 0.; 

26 !GOLD.UP = 0.75; 
27 
28 !MODEL PORTQP/QP,E1,E2/; 

29 
30 !MODEL PORTLP/LP,E2/; 

31 
32 !SOLVE PORTLP USING LP MAXIMIZING OBJLP; 
33 

34! SOLVE PORTQP USING NLP MINIMIZING OBJQP; 

Portfolio Planning Problem - GAMS 
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S O L VE  S U M M A R Y 

**** MODEL STATUS ! !1 OPTIMAL 

**** OBJECTIVE VALUE ! !1.2750 

RESOURCE USAGE, LIMIT !1.270 ! !1000.000 

ITERATION COUNT, LIMIT !1 ! !1000 

BDM  -  LP !VERSION 1.01 

A. Brooke, A. Drud, and A. Meeraus, 

Analytic Support Unit, 

Development Research Department, 

World Bank, 

Washington D.C. 20433, U.S.A. 

!

Estimate work space needed !- - ! 33  Kb 

Work space allocated ! ! !- - !231  Kb 

EXIT - -  OPTIMAL SOLUTION FOUND. 

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL 

- - - -  EQU LP !   . !   . ! !   . ! ! !  1.000 

- - - -  EQU E2 !1.000 ! !1.000 ! !1.000 ! !  1.200!

 

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL 

- - - -  VAR IBM !   0.750 ! !0.750 ! !  0.100 

- - - -  VAR GM !   . ! !0.250 ! !0.750 ! ! !   . 

- - - -  VAR GOLD !   . ! !.. ! !0.750 ! ! -0.120 

- - - -  VAR OBJLP ! -INF ! !1.275 ! !+INF ! ! !   . 

**** REPORT SUMMARY  : !0        NONOPT 

! ! ! ! !0   INFEASIBLE 

! ! ! ! !0  UNBOUNDED 

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ) 

Model Statistics     SOLVE PORTQP USING NLP FROM LINE 34 

MODEL STATISTICS!

BLOCKS OF EQUATIONS ! 3 !SINGLE EQUATIONS ! !3!

BLOCKS OF VARIABLES ! 4 !SINGLE VARIABLES ! !4!

NON ZERO ELEMENTS !10 !NON LINEAR N-Z ! !3!

DERIVITIVE POOL ! ! 8 !CONSTANT POOL ! !3!

CODE LENGTH ! !95 !!

GENERATION TIME !   =        2.360 SECONDS!

EXECUTION TIME           =         3.510 SECONDS ! ! ! !!

Portfolio Planning Problem - GAMS 
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S O L VE  S U M M A R Y 

MODEL !PORTLP ! !OBJECTIVE !OBJLP 

TYPE! !LP ! ! !DIRECTION !MAXIMIZE 

SOLVER !MINOS5 ! !FROM LINE !34 

**** SOLVER STATUS ! !1 NORMAL COMPLETION 

**** MODEL STATUS ! !2 LOCALLY OPTIMAL 

**** OBJECTIVE VALUE ! !0.4210 

RESOURCE USAGE, LIMIT !3.129 ! !1000.000 

ITERATION COUNT, LIMIT !3 ! !1000 

EVALUATION ERRORS !0 ! !     0 

M I N O S !  5.3 !(Nov. 1990) ! !Ver:  225-DOS-02 

B.A. Murtagh, University of New South Wales 

  and 

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright 

Systems Optimization Laboratory, Stanford University. 

!

EXIT - -  OPTIMAL SOLUTION FOUND 

MAJOR ITNS, LIMIT ! !  1 

FUNOBJ, FUNCON CALLS !  8 

SUPERBASICS ! ! !  1 

INTERPRETER USAGE ! !.21 

NORM RG / NORM PI !   3.732E-17 

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL 

- - - -  EQU QP !   . ! ! !   .   . ! ! !  1.000 

- - - -  EQU E1 !1.150 ! !1.150 ! !+INF ! !  1.216 

- - - -  EQU E2 !1.000 ! !1.000 ! !1.000 ! ! -0.556 

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL 

- - - -  VAR IBM !   . ! !0.183 ! !0.750 ! ! !   . 

- - - -  VAR GM !   . ! !0.248 ! !0.750 ! !  EPS 

- - - -  VAR GOLD !   . ! !0.569 ! !0.750 ! ! !   . 

- - - -  VAR OBJLP ! -INF ! !1.421 ! !+INF ! ! !   . 

**** REPORT SUMMARY  : ! !0        NONOPT 

! ! ! ! !0   INFEASIBLE 

! ! ! ! !0  UNBOUNDED 

! ! ! ! !0         ERRORS 

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ) 

Model Statistics     SOLVE PORTQP USING NLP FROM LINE 34 

EXECUTION TIME           =         1.090  SECONDS ! ! ! ! 

Portfolio Planning Problem - GAMS 
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Motivation:  Build on unconstrained methods wherever possible. 

 

Classification of Methods: 

 

•!Reduced Gradient Methods  -  (with Restoration) GRG2, CONOPT  

•!Reduced Gradient Methods - (without Restoration) MINOS 

•!Successive Quadratic Programming  -  generic implementations 

•!Penalty Functions  - popular in 1970s, but fell into disfavor. Barrier    

 Methods have been developed recently and are again popular. 

•!Successive Linear Programming  -  only useful for "mostly linear"  

 problems 

We will concentrate on algorithms for first four classes. 

 

Evaluation:  Compare performance on "typical problem," cite experience 

on process problems. 

Algorithms for Constrained Problems 
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Representative Constrained Problem  

(Hughes, 1981) 

 

Min f(x1, x2) = ! exp(-") 

g1 = (x2+0.1)2[x1
2+2(1-x2)(1-2x2)] - 0.16 & 0 

g2 = (x1 - 0.3)2 + (x2 - 0.3)2 - 0.16 & 0 

x* = [0.6335, 0.3465] !f(x*) = -4.8380 
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Min    f(x) " " " " "Min "f(z)"

s.t." g(x) + s = 0 (add slack variable) " "`( "s.t. c(z) = 0"

"h(x) = 0 " " " " "              a ! z ! b"

"a ! x ! b, s $ 0 ! ! ! ! ! !
! !!

 Partition variables into: !!

zB - dependent or basic variables!

zN - nonbasic variables, fixed at a bound!

zS - independent or superbasic variables!

Reduced Gradient Method with Restoration  

(GRG2/CONOPT) 

! 

Modified KKT Conditions

"f (z) +"c(z)# $% L + %U = 0

c(z) = 0

z
(i)

= zU
(i)

   or    z
(i)

= zL
(i)

,    i & N

%U
( i)

 ,  % L

( i)
 =  0,   i ' N
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•!  Solve bound constrained problem in space of superbasic variables!

(apply gradient projection algorithm)!

•!  Solve (e) to eliminate zB"

•!  Use (a) and (b) to calculate reduced gradient wrt zS.  "

•!  Nonbasic variables zN (temporarily) fixed (d)!

•!  Repartition based on signs of 4, if zs remain at bounds or if zB violate bounds-

Reduced Gradient Method with Restoration  

(GRG2/CONOPT) 

! 

a)   "S f (z) +"Sc(z)# = 0

b)   "B f (z) +"Bc(z)# = 0

c)   "N f (z) +"Nc(z)# $% L + %U = 0

d)    z
( i)

= zU
( i)

   or    z
( i)

= zL
( i)

,    i & N

e)    c(z) = 0' zB = zB (zS )
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•!By remaining feasible always, c(z) = 0, a ! z ! b, one can apply an  !

 unconstrained algorithm (quasi-Newton) using (df/dzS), using (b)"

"

•!Solve problem in reduced space of zS variables, using (e).   

Definition of Reduced Gradient 

! 

df

dzS
=
"f

"zS
+
dzB

dzS

"f

"zB
Because c(z) = 0,we have :

dc =
"c

"zS

# 

$ 
% 

& 

' 
( 

T

dzS +
"c

"zB

# 

$ 
% 

& 

' 
( 

T

dzB = 0

dzB

dzS
= )

"c

"zS

# 

$ 
% 

& 

' 
( 
"c

"zB

# 

$ 
% 

& 

' 
( 

)1

= )* zS
c * zB

c[ ]
)1

This leads to :

df

dzS
=*S f (z) )*Sc *Bc[ ]

)1
*B f (z) =*S f (z) +*Sc(z)+
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- - 

- - 

If 'cT is (m x n); 'zSc
T is m x (n-m); 'zBcT is (m x m) 

"

(df/dzS) is the change in f along constraint direction per unit change in zS 

Example of Reduced Gradient 
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Gradient Projection Method 
(superbasic ! nonbasic variable partition) 

Define the projection of an arbitrary point 
x onto box feasible region.!

The ith component is given by!

Piecewise linear path x(t) starting at the 
reference point x0 and obtained by projecting 
steepest descent (or any search) direction at x0 
onto the box region is given by!

where g is the reduced gradient, t is the 
stepsize.!

Also, can adapt to (quasi-) Newton method.!
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Sketch of GRG Algorithm 

1.! Initialize problem and obtain a feasible point at z0 

2.! At feasible point zk, partition variables z into zN, zB, zS  

3.! Calculate reduced gradient, (df/dzS) 

4.! Evaluate search direction for zS, d = B-1(df/dzS)  

5.! Perform a line search. 

•! Find !$(0,1]  with  zS := zS
k + " d 

•! Solve for c(zS
k + " d, zB, zN) = 0 

•! If f(zS
k + " d, zB, zN) < f(zS

k, zB, zN),  

 set zS
k+1 =zS

k + " d, k:= k+1 

6.! If ||(df/dzS)||<,, Stop. Else, go to 2. -
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Reduced Gradient Method with Restoration 

zS 

zB 
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Reduced Gradient Method with Restoration 

zS 

zB 

Fails, due to singularity in  

basis matrix (dc/dzB) 
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Reduced Gradient Method with Restoration 

zS 

zB 

Possible remedy: repartition basic 
and superbasic variables to create 
nonsingular basis matrix (dc/dzB) 
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1.! GRG2 has been implemented on PC's as GINO and is very reliable and 

robust. It is also the optimization solver in MS EXCEL. !

2.! CONOPT is implemented in GAMS, AIMMS and AMPL 

3.! GRG2 uses Q-N for small problems but can switch to conjugate 

gradients if problem gets large. CONOPT uses exact second derivatives.!

4.! Convergence of c(zS, zB , zN) = 0 can get very expensive because 'c(z) 

is calculated repeatedly.!

5.! Safeguards can be  added so that restoration (step 5.) can be dropped 

and efficiency increases.!

 

Representative Constrained Problem Starting Point [0.8, 0.2] 

•! GINO Results - 14 iterations to ||'f(x*)|| & 10-6!

•! CONOPT Results - 7 iterations to ||'f(x*)|| & 10-6 from feasible point.!

GRG Algorithm Properties 
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Reduced Gradient Method without Restoration 

zS 

zB 
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Motivation: Efficient algorithms 

are available that solve linearly 

constrained optimization 

problems (MINOS):!

 

! !Min   f(x) 

" "s.t."Ax ! b 

" " "Cx = d 

!

Extend to nonlinear problems, 

through successive linearization!

!

Develop major iterations 

(linearizations) and minor 

iterations (GRG solutions) .!

Reduced Gradient Method without Restoration  

(MINOS/Augmented) 

Strategy: (Robinson, Murtagh & Saunders) 

1. !Partition variables into basic, nonbasic 

variables and superbasic variables..  

2.! Linearize active constraints at zk "

Dkz = rk"

3.! Let 0 = f (z) + #Tc (z) + & (c(z)Tc(z)) 

(Augmented !Lagrange), !

4.! Solve linearly constrained problem: 

! !Min "0 (z) 

" "s.t. "Dz = r 

" " "a ! z ! b 

 !using reduced gradients to get zk+1 

5.  Set k=k+1,  go to 2.!

6. !Algorithm terminates when no 

movement between steps 2) and 4).!
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1.! MINOS has been implemented very efficiently to take care of 
linearity.  It becomes LP Simplex method if problem is totally 

linear.  Also, very efficient matrix routines. 

2.! No restoration takes place, nonlinear constraints are reflected in 

0(z) during step 3). MINOS is more efficient than GRG. 

3.! Major iterations (steps 3) - 4)) converge at a quadratic rate.!
4.! Reduced gradient methods are complicated, monolithic codes: 

hard to integrate efficiently into modeling software. 

!

Representative Constrained Problem – Starting Point [0.8, 0.2] 

MINOS Results: 4 major iterations, 11 function calls !
 !to ||'f(x*)|| & 10-6 

!

 

MINOS/Augmented Notes 
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Motivation: ! 

• !Take KKT conditions, expand in Taylor series about current point. 

• !Take Newton step (QP) to determine next point.  

!

Derivation – KKT Conditions 

'xL (x*, u*, v*) = 'f(x*) + 'gA(x*) u* + 'h(x*) v* = 0 

" " h(x*) = 0 "

" " gA(x*) = 0,   where gA are the active constraints. 

!

Newton - Step!

xx! L
A
g! ! h

A
g!

T 0 0

! h
T

0 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  

(x

(u

(v

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 =  -  

x! L k
x , ku , kv( )

Ag  k
x( )

h kx( )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

Requirements: 

•! 'xxL must be calculated and should be $regular# 

•!correct active set gA 

•!good estimates of uk, vk 

Successive Quadratic Programming (SQP) 
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1. !Wilson (1963) 

  - !active set can be determined by solving QP: 

" "Min "'f(xk)
Td + 1/2 dT 'xx L(xk, uk, vk) d 

" "   d 

" "s.t. "g(xk) + 'g(xk)
T d ! 0 

" " " "h(xk) + 'h(xk)
T d = 0 

"

2. !Han (1976), (1977), Powell (1977), (1978) 

  - !approximate 'xxL using a positive definite quasi-Newton update (BFGS) 

  - !use a line search to converge from poor starting points.!

 

Notes: 

  - !Similar methods were derived using penalty (not Lagrange) functions. 

  - !Method converges quickly; very few function evaluations. 

  - !Not well suited to large problems (full space update used).  !

     For n > 100, say, use reduced space methods (e.g. MINOS).!

SQP Chronology 
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What about 'xxL? 

• !need to get second derivatives for f(x), g(x), h(x). 

• !need to estimate multipliers, uk, vk;  'xxL may not be positive !

     semidefinite 

0!Approximate 'xxL (xk, uk, vk) by Bk, a symmetric positive !

    definite matrix. 
 

 

BFGS Formula !s = xk+1 - xk 

" " "y = 'L(xk+1, uk+1, vk+1) - 'L(xk, uk+1, vk+1) 

• second derivatives approximated by change in gradients!
• positive definite Bk ensures unique  QP solution 

 

Elements of SQP – Hessian Approximation 

! 

k+1

B  =  
k

B  +  

T
yy
T
s y

 -  

k
B s T

s
k

B
k

s B s
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How do we obtain search directions? 

• !Form QP and let QP determine constraint activity 

• !At each iteration, k, solve: 

! !Min "'f(xk) Td + 1/2 dT Bkd 

" "   d 

" "s.t. "g(xk) + 'g(xk) T d ! 0 

" " "h(xk) + 'h(xk) T d = 0 

"

Convergence from poor starting points 

•  As with Newton's method, choose ! (stepsize) to ensure progress  !

   toward optimum:       xk+1 = xk + " d. 

•  ! is chosen by making sure a merit function  is decreased at each !

   iteration. 

!Exact Penalty Function 

!0(x) = f(x) + µ [1 max (0, gj(x)) + 1 |hj (x)|] 

" "        µ > maxj {| uj |, | vj |} 

!Augmented Lagrange Function 

!0(x) = f(x) + uTg(x) + vTh(x)  

" " "+ 2/2 {1 (hj (x))2 + 1 max (0, gj (x))2}!

Elements of SQP – Search Directions 
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Fast Local Convergence 

B = 'xxL ! ! !Quadratic 

'xxL is p.d and B is Q-N ! !1 step Superlinear 

B is Q-N update, 'xxL not p.d !2 step Superlinear 

!

Enforce Global Convergence 

Ensure decrease of merit function by taking ! & 1 

Trust region adaptations provide a stronger guarantee of global 

convergence - but harder to implement.  

Newton-Like Properties for SQP 
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0. !Guess x0,  Set B0 = I (Identity). Evaluate  f(x0), g(x0) and h(x0). 

1. !At xk, evaluate 'f(xk),  'g(xk), 'h(xk). 

2. !If k > 0, update Bk using the BFGS Formula. 

3. !Solve: "Mind  'f(xk)Td  + 1/2 dTBkd 

" " "s.t. "g(xk) + 'g(xk)Td + 0 

" " " "h(xk) + 'h(xk)Td = 0 

!If KKT error less than tolerance: ||'L(x*)|| 3 5, ||h(x*)|| 3 5,  

-||g(x*)+|| 3 5. STOP, else go to 4.  

4. !Find ! so that 0 < ! 3 1 and 0(xk + "d) < 0(xk) sufficiently !

     (Each trial requires evaluation of f(x), g(x) and h(x)). 

5. !xk+1 = xk + " d.  Set k = k + 1 Go to 2.!

Basic SQP Algorithm 
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Nonsmooth Functions  - Reformulate 

Ill-conditioning - Proper scaling 

Poor Starting Points – Trust Regions can help 

Inconsistent Constraint Linearizations 

- !Can lead to infeasible QP's 

 
x2

x1

Min "x2 

s.t.    1 + x1 - (x2)
2 ! 0 

"   1 - x1 - (x2)
2 ! 0 

"      x2 $ -1/2 

Problems with SQP 
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SQP Test Problem 

1.21.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

Min !x2 

s.t. !-x2 + 2 x1
2 - x1

3 & 0 

          -x2 + 2 (1-x1)
2 - (1-x1)

3 & 0 

            x* = [0.5, 0.375]. 
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SQP Test Problem – First Iteration 

1.21.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

Start from the origin (x0 = [0, 0]T) with B0 = I, form: !

 

Min " d2 + 1/2 (d1
2 + d2

2) 

s.t. "d2 $ 0 "      " "   

" "d1 + d2 $ 1 

" "d = [1, 0]T. with µ1 = 0  and µ2 = 1.  
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1.21.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

From x1 = [0.5, 0]T with B1 = I "

(no update from BFGS possible), form: !

 

Min " d2 + 1/2 (d1
2 + d2

2) 

s.t." "-1.25 d1 - d2 + 0.375 ! 0 

            1.25 d1 - d2 + 0.375 ! 0 

d = [0, 0.375]T with µ1 = 0.5  and µ2 = 0.5  

" "x* = [0.5, 0.375]T is optimal 

SQP Test Problem – Second Iteration 
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Representative Constrained Problem  

SQP Convergence Path 

Starting Point [0.8, 0.2] - starting from B0 = I and staying in bounds !!

and linearized constraints; converges in 8 iterations to ||'f(x*)|| ! 10-6 
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Barrier Methods for Large-Scale  

Nonlinear Programming 

0        

0)(s.t    

)(min

!
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Original Formulation 

0)(s.t    

ln)()(  min
1
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xxfx
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i

i
x n

µ%µBarrier Approach 

Can generalize for 

a ! x ! b  

0!As  µ   "  0,     x*(µ)  !  x*           Fiacco and McCormick (1968) 
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Solution of the Barrier Problem 

0!Newton Directions (KKT System) 
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Global Convergence of Newton-based  
Barrier Solvers 

 Merit Function 

Exact Penalty:    P(x, 2) = f(x) + 2 ||c(x)|| 

Aug#d Lagrangian: L*(x, #, 2) = f(x) + #Tc(x) + 2 ||c(x)||2 

Assess Search Direction (e.g., from IPOPT) 

Line Search – choose stepsize " to give sufficient decrease of merit function 
using a $step to the boundary# rule with 6 ~0.99.  

 

 

 

 

•! How do we balance  3 (x) and c(x) with 2? 

•! Is this approach globally convergent? Will it still be fast? 
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Global Convergence Failure 
(Wächter and B., 2000) 

0 ,

01)(
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xfMin

x1 
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x

k
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x

Tk

dx

xcdxA

!

Newton-type line search $stalls# 

even though descent directions 

exist 

 

 

 

Remedies: 

•!Composite Step Trust Region 
(Byrd et al.) 

•!Filter Line Search Methods 
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Line Search Filter Method 

Store (7k, 8k) at allowed iterates 

Allow progress if trial point is 
acceptable to filter with 8 margin 

If switching condition  

 

is satisfied, only an Armijo line 
search is required on 7k 

If insufficient progress on stepsize, 
evoke restoration phase to reduce 8.  

Global convergence and superlinear 
local convergence proved (with 
second order correction) 

22,][][ >>!"# bad
b

k

aT

k
$%&'

7(x) 

8(x) = ||c(x)|| 
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Implementation Details 

Modify KKT (full space) matrix if singular 

-

-

-

•! 91 - Correct inertia to guarantee descent direction 

•! 92 - Deal with rank deficient Ak  

KKT matrix factored by MA27 

Feasibility restoration phase 

 

 

 

 

Apply Exact Penalty Formulation 

Exploit same structure/algorithm to reduce infeasibility  

!
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IPOPT Algorithm – Features 

Line Search Strategies for 
Globalization 

- l2 exact penalty merit function 

- augmented Lagrangian merit function 

- Filter method (adapted and extended 
from Fletcher and Leyffer) 

 

Hessian Calculation  

- BFGS (full/LM and reduced space) 

- SR1 (full/LM and reduced space) 

- Exact full Hessian (direct) 

- Exact reduced Hessian (direct) 

- Preconditioned CG  

Algorithmic Properties 
Globally, superlinearly 

convergent (Wächter and B., 
2005) 

 
Easily tailored to different 

problem structures  

 
Freely Available 

CPL License and COIN-OR 

distribution: http://www.coin-
or.org  

 
IPOPT 3.1 recently rewritten 

in C++ 

 
Solved on thousands of test 

problems and applications 
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IPOPT Comparison on 954 Test Problems 
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Recommendations for Constrained Optimization 

!

1. !Best current algorithms 

•!  GRG 2/CONOPT 

•!  MINOS 

•!  SQP!
•!  IPOPT 

2. !GRG 2 (or CONOPT)  is generally slower, but is robust.  Use with highly 

nonlinear functions. Solver in Excel! 

3. !For small problems (n & 100) with nonlinear constraints, use SQP. 

4.! For large problems (n $ 100) with mostly linear constraints, use MINOS.  
==> Difficulty with many nonlinearities 

Small, Nonlinear Problems - SQP solves QP's, not LCNLP's, fewer function calls. 
Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition.  

Works efficiently in reduced space if function calls are cheap! 
Exploit Both Features – IPOPT takes advantages of few function evaluations and large-

scale linear algebra, but requires exact second derivatives  

Fewer Function 

Evaluations 

Tailored Linear 

Algebra 
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SQP Routines 

HSL, NaG and IMSL (NLPQL) Routines 

NPSOL – Stanford Systems Optimization Lab 

SNOPT – Stanford Systems Optimization Lab (rSQP discussed later) 

IPOPT – http://www.coin-or.org 

 

GAMS Programs 

CONOPT - Generalized Reduced Gradient method with restoration 

MINOS - Generalized Reduced Gradient method without restoration 
A student  version of GAMS is now available from the CACHE office. The cost for this package 

including Process Design Case Students, GAMS: A User's Guide, and GAMS - The Solver Manuals, 

and a CD-ROM is $65 per CACHE supporting departments, and $100 per non-CACHE supporting 

departments and individuals. To order please complete standard order form and fax or mail to 

CACHE Corporation. More information can be found on http://www.che.utexas.edu/cache/gams.html 

"

MS Excel  

Solver uses Generalized Reduced Gradient method with restoration!

Available Software for Constrained 
Optimization 
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1) !Avoid overflows and undefined terms, (do not divide, take logs, etc.)  
!e.g. !x + y - ln z = 0  " !x + y - u = 0 

! ! ! ! !exp u - z = 0 
2) !If constraints must always be enforced, make sure they are linear or bounds. 

!e.g. !v(xy - z2)1/2 = 3 !" !vu = 3 
! ! ! ! ! !u2 - (xy - z2) = 0, u $ 0 

3) !Exploit linear constraints as much as possible, e.g. mass balance 

! !xi L + yi V = F zi !   li + vi = fi 

" " " "   L – 4  li = 0"

4) !Use bounds and constraints to enforce characteristic solutions. 

!      e.g. !a ! x ! b,  g (x) ! 0 
!     to isolate correct root of h (x) = 0."

5)! Exploit global properties when possibility exists. Convex (linear equations?)!
          Linear Program? Quadratic Program? Geometric Program?!

6) !Exploit problem structure when possible. 

!e.g. !Min "[Tx - 3Ty] 
" "s.t. "xT + y - T2 y = 5 

" " "4x - 5Ty + Tx = 7 
" " "0 ! T ! 1 

  ! !(If T is fixed 0 solve LP)  0  put T in outer optimization loop.!

Rules for Formulating Nonlinear Programs 
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State of Nature and Problem Premises

Restrictions: Physical, Legal

Economic, Political, etc.
Desired Objective: Yield, 

Economic, Capacity, etc.

Decisions

Process Model Equations

Constraints Objective Function

Additional Variables

Process Optimization 

Problem Definition and Formulation 

Mathematical Modeling and Algorithmic Solution 
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Hierarchy of Nonlinear Programming 
Formulations and Model Intrusion  

CLOSED 

OPEN 

Decision Variables 

101 102 103 

Black Box 

Direct Sensitivities 

Multi-level Parallelism 

SAND Tailored 

Adjoint Sens & SAND Adjoint 

SAND Full Space Formulation 

100 

Compute 

Efficiency 
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Large Scale NLP Algorithms  
Motivation: Improvement of Successive Quadratic Programming 
as Cornerstone Algorithm  

! process optimization for design, control and operations 

Evolution of NLP Solvers: 

  

1981-87: Flowsheet optimization  
               over 100 variables and constraints   

1988-98: Static Real-time optimization 
               over 100 000 variables and constraints 
2000 - : Simultaneous dynamic optimization 
            over 1 000 000 variables and constraints 

SQP rSQP IPOPT 

rSQP++ 

Current: Tailor structure, architecture and problems 

IPOPT 3.x 
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In Out

Modular Simulation Mode 

Physical Relation to Process 
" 

- Intuitive to Process Engineer 

- Unit equations solved internally  

- tailor-made procedures. 

 

•!Convergence Procedures - for simple flowsheets, often identified!

    from flowsheet structure 

•!Convergence "mimics" startup. 

•!Debugging flowsheets on "physical" grounds 

Flowsheet Optimization Problems - Introduction 
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C

1

3

2
4

Design Specifications 

!Specify # trays reflux ratio, but would like to specify 

!overhead comp. ==> Control loop  -Solve Iteratively 

•!Frequent block evaluation can be expensive!

•!Slow algorithms applied to flowsheet loops.!

•!NLP methods are good at breaking loops 

Flowsheet Optimization Problems - Features 

Nested Recycles Hard to Handle 

Best Convergence Procedure?!
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Chronology in Process Optimization 

 
! ! ! ! ! !Sim. Time Equiv. 

1. Early Work - Black Box Approaches ! 

!Friedman and Pinder (1972) ! ! !75-150 

!Gaddy and co-workers (1977) ! ! !300 

2. Transition - more accurate gradients 

!Parker and Hughes (1981)! ! ! !64 

!Biegler and Hughes (1981) ! ! !13 

3. Infeasible Path Strategy for Modular Simulators 

!Biegler and Hughes (1982) ! ! !<10 

!Chen and Stadtherr (1985) 

!Kaijaluoto et al. (1985) 

! !and many more  

4. Equation Based Process Optimization 

!Westerberg et al. (1983) ! ! ! !<5 

!Shewchuk (1985)! ! ! ! !  2 

!DMO, NOVA, RTOPT, etc. (1990s)! !1-2!

 

Process optimization should be as cheap and easy as process simulation 
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Aspen Custom Modeler (ACM) 

Aspen/Plus 

gProms 

Hysim/Hysys 

Massbal 

Optisim 

Pro/II 

ProSim 

ROMeo 

VTPLAN 

Process Simulators with Optimization 
Capabilities (using SQP) 
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4

3 2

1

5

6

h (y ) =  0

w(y ) y

f(x, y(x))

x

Simulation and Optimization of Flowsheets 

Min f(x), s.t. g(x) ! 0 

For single degree of freedom: 

• !work in space defined by curve below.   
• !requires repeated (expensive) recycle convergence 

"
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Expanded Region with Feasible Path 

"
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! 

 

"Black Box" Optimization Approach 

•  Vertical steps are expensive (flowsheet convergence) 

•  Generally no connection between x and y. 
•  Can have "noisy"  derivatives for gradient optimization. 

98 

SQP - Infeasible Path Approach 

•  solve and optimize simultaneously in x and y 

•  extended Newton method  
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Architecture 

  - "Replace convergence with optimization block 

  - "Problem definition needed (in-line FORTRAN) 

  - "Executive, preprocessor, modules intact.!

 

Examples 

1. !Single Unit and Acyclic Optimization  

  - !Distillation columns & sequences 

!

2. !"Conventional" Process Optimization !

  - Monochlorobenzene process!

  - NH3 synthesis 

!

3. !Complicated Recycles & Control Loops 

  - !Cavett problem 

  - !Variations of above 

 

Optimization Capability for Modular Simulators 
(FLOWTRAN, Aspen/Plus, Pro/II, HySys) 

100 

S06
HC1

A-1
ABSORBER

15 Trays

(3 Theoret ical Stages)

32 psia

P

S04
Fe ed

80
o
F

37 psia

T

270
o

F

S01 S02

Steam

360
o

F

H-1

U = 100

Maximize

Profit

Fe ed F low Rates

LB Moles/Hr

HC1           10
Benzene      40
MCB          50

S07

S08

S05

S09

HC1

T-1

TREATER

  F-1
FLASH

S03

S10

25

ps ia

S12

S13
S15

P-1

C

120
0

F

T

MCB

S14

U = 100 Cooling

Water

80
o

F

S11

Benzene,

0.1 Lb Mole/Hr

of MC B

D-1
DISTILLATION 

30 Trays

(20 Theoreti cal Stages)

Steam
360

o
F

12,000

Btu/hr- ft
2

90
o
F

H-2
U = 100

Water
80

o
F

PHYSICAL PROPERTY OPTIONS"

Cavett Vapor Pressure!

Redlich-Kwong Vapor Fugacity!

Corrected Liquid Fugacity!

Ideal Solution Activity Coefficient!

OPT  (SCOPT)  OPTIMIZER"

Optimal Solution Found After 4 Iterations!

Kuhn-Tucker Error !         0.29616E-05!

Allowable Kuhn-Tucker Error  0.19826E-04!

Objective Function                  -0.98259!

!

!

Optimization Variables"

32.006  0.38578  200.00 !120.00!

Tear Variables"

0.10601E-19  13.064   79.229  120.00  50.000!

Tear Variable Errors (Calculated Minus Assumed)!

-0.10601E-19  0.72209E-06!

-0.36563E-04   0.00000E+00 !0.00000E+00!

-Results of infeasible path optimization!

-Simultaneous optimization and convergence of tear streams. 

Optimization of Monochlorobenzene Process 
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H
2

N2

Pr

Tr

To

T Tf f

!

Prod uc t

Hydrogen and Nitrogen feed are mixed, compressed, and combined 

with a recycle stream and heated to reactor temperature. Reaction 

occurs in a multibed reactor (modeled here as an equilibrium reactor) 

to partially convert the stream to ammonia. The reactor effluent is 

cooled and product is separated using two flash tanks with intercooling. 

Liquid from the second stage is flashed at low pressure to yield high 

purity NH3 product. Vapor from the two stage flash forms the recycle 

and is recompressed. 

Ammonia Process Optimization 

!Hydrogen Feed  Nitrogen Feed 

N2 !  5.2%       !      99.8% 

H2 !94.0% !        --- 

CH4 !0.79 % !      0.02% 

Ar !  --- !      0.01% !
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Optimization Problem"

"

Max !{Total Profit @ 15% over five years}

! ! ! ! 

s.t.! !•  105 tons NH3/yr. 

! !•  Pressure Balance 

! !•  No Liquid in Compressors 

! !•  1.8 &  H2/N2 & 3.5!

               •  Treact & 1000o F 

! !•  NH3 purged & 4.5 lb mol/hr 

               •  NH3 Product Purity $ 99.9 % 

               •  Tear Equations 

Performance Characterstics"
 

• 5 SQP iterations.  

• 2.2 base point simulations.  
• objective function improves by 

$20.66 x 106 to $24.93 x 106.  

• difficult to converge flowsheet !
  at starting point 

Item! Optimum Starting point 

Objective Function($106)     24.9286     20.659 
1. Inlet temp.  reactor (oF) 400  400 
2. Inlet temp. 1st flash (oF)   65    65 
3. Inlet temp. 2nd flash (oF)   35    35 
4. Inlet temp. rec. comp. (oF)     80.52  107 
5. Purge fraction (%)       0.0085       0.01 
6. Reactor Press. (psia) 2163.5 2000 
7. Feed 1   (lb mol/hr) 2629.7 2632.0 
8. Feed 2  (lb mol/hr)   691.78   691.4 

Ammonia Process Optimization 
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Recognizing True Solution 

• !KKT conditions and Reduced Gradients determine true solution 

• !Derivative Errors will lead to wrong solutions!!

 

Performance of Algorithms 

Constrained NLP algorithms are gradient based !

  (SQP, Conopt, GRG2, MINOS, etc.) 

Global and Superlinear convergence theory assumes accurate gradients!

!

Worst Case Example (Carter, 1991)!

Newton#s Method generates an ascent direction and fails for any , !!

How accurate should gradients be for optimization? 
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Implementation of Analytic Derivatives 

Module Equations

c(v, x, s, p, y) = 0

Sensitivity 

Equations

x y

parameters, p exit variables, s

dy/dx
ds/dx
dy/dp
ds/dp

Automatic Differentiation Tools 
 

JAKE-F, limited to a subset of FORTRAN (Hillstrom,  1982)  
DAPRE, which has been developed for use with the NAG library (Pryce, Davis,  1987) 

ADOL-C,  implemented  using operator overloading features of C++ (Griewank, 1990) 
ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code .  

TAPENADE, web-based source transformation for FORTRAN code 

 
Relative effort needed to calculate gradients is not n+1 but about 3 to 5  

(Wolfe, Griewank) 
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Ammonia Process Optimization 

(9 decisions and 6 tear variables) 
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Min  f(z)             Min     'f(zk)T d + 1/2 d T Wk d 

s.t.  c(z)=0    s.t.  c(zk) + (5k)T d = 0 

  zL ! z ! zU        zL ! zk + d ! zU 

 

Characteristics 

•  Many equations and variables (! 100 000) 

•  Many bounds and inequalities (! 100 000) 

Few degrees of freedom (10 - 100) 

Steady state flowsheet optimization!

Real-time optimization 

Parameter estimation!
 

Many degrees of freedom ($ 1000) 

Dynamic optimization (optimal control, MPC) 

State estimation and data reconciliation 

Large-Scale SQP 
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• !Take advantage of sparsity of  A='c(x) 

• !project W into space of active (or equality constraints) 

• !curvature (second derivative) information only needed in space of degrees of !

   freedom 

• !second derivatives can be applied or approximated with positive curvature !

   (e.g., BFGS) 

• !use dual space QP solvers!

 

+ easy to implement with existing sparse solvers, QP methods and line search  !

   techniques 

+ exploits 'natural assignment' of dependent and decision variables (some   !

   decomposition steps are 'free') 

+ does not require second derivatives 

!

- reduced space matrices are dense 

- may be dependent on variable partitioning 

- can be very expensive for many degrees of freedom 

- can be expensive if many QP bounds!

Few degrees of freedom => reduced space SQP (rSQP) 
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"

 

Reduced space SQP (rSQP) 

Range and Null Space Decomposition 
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•! Define reduced space basis, Zk! *n x (n-m) with (Ak)TZk = 0 
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  is nonsingular.  
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Reduced space SQP (rSQP) 
Range and Null Space Decomposition 

 

•! (ATY) dY =-c(xk) is square, dY determined from bottom row.!

•! Cancel YTWY and YTWZ; (unimportant as dZ, dY --> 0) 

•! (YTA) # = -YT'f(xk), # can be determined by first order estimate!

•! Calculate or approximate w= ZTWY dY, solve ZTWZ dZ =-ZT'f(xk) - w  

•! Compute total step: d  =  Y dY + Z dZ!
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Range and Null Space Decomposition 

• !SQP step (d) operates in a higher dimension  

• !Satisfy constraints using range space to get dY 

• !Solve small QP in null space to get dZ 

• !In general, same convergence properties as SQP.!

Reduced space SQP (rSQP) Interpretation 

dY 

dZ 
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1. Apply QR factorization to A. Leads to dense but well-conditioned Y and Z. 

2. Partition variables into decisions u and dependents v. Create 

orthogonal Y and Z with embedded identity matrices (ATZ = 0, YTZ=0).!

3. Coordinate Basis - same Z as above, YT =  [ 0   I ]"
 

• !Bases use gradient information already calculated. 

• !Adapt decomposition to QP step 

• !Theoretically same rate of convergence as original SQP. 

• !Coordinate basis can be sensitive to choice of u and v. Orthogonal is not. 

• !Need consistent initial point and nonsingular C;  automatic generation 

Choice of Decomposition Bases 

[ ] !
"

#
$
%

&
=!

"

#
$
%

&
=

00

R
ZY

R
QA

[ ] [ ]

!
"

#
$
%

&
=!

"

#
$
%

&

'
=

=((=

'

'
I

CN
Y

NC

I
Z

CNccA

TT

T

v

T

u

T

    
1

112 

1.! Choose starting point x0. 

2.! At iteration k, evaluate functions f(xk), c(xk) and their gradients. 

3. ! Calculate bases Y and Z. 

4.! Solve for step dY in Range space from !

" " "(ATY) dY =-c(xk) !

5.! Update projected Hessian Bk ~ ZTWZ (e.g. with BFGS), wk (e.g., zero) 

6.! Solve small QP for step dZ in Null space.!

7.! If error is less than tolerance stop.  Else!

8.! Solve for multipliers using   (YTA) # = -YT'f(xk) 

9.! Calculate total step  d = Y dY + Z dZ. 

10.! Find step size " and calculate new point, xk+1 = xk + " d!

13.  Continue from step 2 with k = k+1.!

rSQP Algorithm 
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rSQP Results:  Computational Results for 

General Nonlinear Problems 
Vasantharajan et al (1990) 
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rSQP Results:  Computational Results 

for Process Problems 
Vasantharajan et al (1990) 
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Coupled Distillation Example - 5000 Equations 

Decision Variables - boilup rate, reflux ratio!

 

!Method         CPU Time   Annual Savings     Comments 

1. ! !SQP* !2 hr !  negligible !     Base Case  

2. ! !rSQP   !15 min. !  $  42,000 !     Base Case 

3. ! !rSQP !15 min. !  $  84,000 !     Higher Feed Tray Location 

4. ! !rSQP !15 min. !  $  84,000 !     Column 2 Overhead to Storage 

5. ! !rSQP !15 min !  $107,000 !     Cases 3 and 4 together!

18

10

1

QVK
Q
VK

Comparison of SQP and rSQP 
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• square parameter case to fit the model to operating data.  !
• optimization to determine best operating conditions  

Existing process, optimization on-line at regular intervals: 17 hydrocarbon 
components, 8 heat exchangers, absorber/stripper (30 trays), debutanizer (20 
trays), C3/C4 splitter (20 trays) and deisobutanizer (33 trays).   

Real-time Optimization with rSQP 
Sunoco Hydrocracker Fractionation Plant  

(Bailey et al, 1993) 
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Model consists of 2836 equality constraints and only ten independent variables. It 
is also reasonably sparse and contains 24123 nonzero Jacobian elements.   

P = z
i
C
i

G

i!G

" + z
i
C
i

E

i!E

" + z
i
C
i

P
m

m=1

NP

" # U

Cases Considered: 

1. Normal Base Case Operation 

2. Simulate fouling by reducing the heat exchange coefficients for the debutanizer 

3. Simulate fouling by reducing the heat exchange coefficients for splitter !

    feed/bottoms exchangers 

4. Increase price for propane 

5. Increase base price for gasoline together with an increase in the octane credit  

 

Optimization Case Study Characteristics 

118 
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Nonlinear Optimization Engines  

Evolution of NLP Solvers: 

! process optimization for design, control and operations 

  

#80s: Flowsheet optimization  
               over 100 variables and constraints   
$90s: Static Real-time optimization (RTO) 
               over 100 000 variables and constraints 
#00s: Simultaneous dynamic optimization 
               over 1 000 000 variables and constraints 

SQP rSQP IPOPT 
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Many degrees of freedom => full space IPOPT  

• !work in full space of all variables 

• !second derivatives useful for objective and constraints 

• !use specialized large-scale Newton solver!

 

+ W='xxL(x,#) and A='c(x) sparse, often structured 

+ fast if many degrees of freedom present 

+ no variable partitioning required!

 

- second derivatives strongly desired 

- W is indefinite, requires complex stabilization 

- requires specialized large-scale linear algebra 
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GAS STATIONS 

Final Product tanks 

Supply tanks 

Intermediate tanks 

Gasoline Blending Here  

Gasoline Blending 

OIL TANKS 

FINAL PRODUCT TRUCKS 
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Blending Problem & Model Formulation 

 

 

!  
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Final Product tanks (k) Intermediate tanks (j) Supply tanks (i) 
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jtv ,
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..

 

f & v  ------   flowrates and tank volumes 

q       ------   tank qualities  

 

Model Formulation in AMPL  
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F1 

F2 

F3 

P1 

B1 

B2 

 

F1 

F2 

F3 

P2 

P1 

B1 

B2 

B3 

 Haverly, C. 1978 (HM) Audet & Hansen 1998 (AHM) 

Small Multi-day Blending Models   

Single Qualities  
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Honeywell Blending Model – Multiple Days 

48 Qualities 
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Summary of Results – Dolan-Moré plot  

Performance profile (iteration count)
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Comparison of NLP Solvers: Data Reconciliation 
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Comparison of NLP solvers 
(latest Mittelmann study) 

 

117 Large-scale Test Problems 

500 - 250 000 variables, 0 – 250 000 constraints 

 

Mittelmann NLP benchmark (10-26-2008)
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                   Limits     Fail 

IPOPT           7            2 

KNITRO        7            0 

LOQO           23          4 

SNOPT         56         11 

CONOPT      55         11 
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Typical NLP algorithms and software 
 

 

SQP -        NPSOL, VF02AD, NLPQL, fmincon 

reduced SQP -    SNOPT, rSQP, MUSCOD, DMO, LSSOL" 

 

Reduced Grad. rest. -    GRG2, GINO, SOLVER, CONOPT 

Reduced Grad no rest. - MINOS 

Second derivatives and barrier - IPOPT, KNITRO, LOQO  

 

Interesting hybrids -  

•!FSQP/cFSQP - SQP and constraint elimination 

•!LANCELOT (Augmented Lagrangian w/ Gradient Projection)  
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At nominal conditions, p0 

!

               Min f(x, p0) 
        s.t.   c(x, p0) = 0 

              a(p0) ! x  ! b(p0) 

!

How is the optimum affected at other conditions, p % p0? 

 

•!  Model parameters, prices, costs 

•!  Variability in external conditions 

•!  Model structure 

•!  How sensitive is the optimum to parametric uncertainties? 

•!  Can this be analyzed easily? 

Sensitivity Analysis for Nonlinear Programming 
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x1

x2

z1

z2

Saddle 

Point

x* 

- Nonstrict local minimum: If nonnegative, find eigenvectors for zero 

eigenvalues, " regions of nonunique solutions 
 

- Saddle point: If any are eigenvalues are negative, move along 

directions of corresponding eigenvectors and restart optimization.  

Second Order Optimality Conditions: 

Reduced Hessian needs to be positive semi-definite 
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IPOPT Factorization Byproducts:  
Tools for Postoptimality and Uniqueness 

Modify KKT (full space) matrix if nonsingular 

-

-

-

•! 91 - Correct inertia to guarantee descent direction 

•! 92 - Deal with rank deficient Ak  

KKT matrix factored by indefinite symmetric factorization 

•!Solution with 91, 92 =0 " sufficient second order conditions  

•!Eigenvalues of reduced Hessian all positive  – unique 
minimizer and multipliers 

•!Else: 

–! Reduced Hessian available through sensitivity calculations 
–! Find eigenvalues to determine nature of stationary point 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have 
been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete 
the image and then insert it again.
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NLP Sensitivity 

Parametric Programming  

NLP Sensitivity  ! Rely upon Existence and Differentiability of Path 

  

  ! Main Idea: Obtain         and  find               by Taylor Series Expansion             

Optimality Conditions  

Solution Triplet 
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NLP Sensitivity Properties (Fiacco, 1983) 

Assume sufficient differentiability, LICQ, SSOC, SC:   

 Intermediate IP solution (s(µ)-s*) = O(µ)"

 Finite neighborhood around p0 and µ=0  with same 
 active set 

  exists and is unique 
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NLP Sensitivity 

Optimality Conditions of  

Obtaining   

! Already Factored at Solution 

! Sensitivity Calculation from Single Backsolve 

! Approximate Solution Retains Active Set 

KKT Matrix IPOPT   

   Apply Implicit Function Theorem to                                  around  
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Sensitivity for Flash Recycle Optimization 

(2 decisions, 7 tear variables) 

 

S1 S2

S3

S7

S4
S5

S6

P

Ratio

M ax  S3(A)  *S3(B) - S3(A)  - S3(C)  + S3(D) - (S 3(E))
2 2 3 1/2

M ix er
Flas h

•!Second order sufficiency test:   
•!Dimension of reduced Hessian = 1 

•!Positive eigenvalue 

•!Sensitivity to simultaneous change in feed rate  

 and upper bound on purge ratio 

136 
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Sensitivity

Ammonia Process Optimization 

(9 decisions, 8 tear variables) 

•!Second order sufficiency test: 
•!Dimension of reduced Hessian = 4  

•!Eigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5] 
•!Sensitivity to simultaneous change in feed rate  

and upper bound on reactor conversion 
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Multi-Scenario Optimization 
Coordination

Case 1 Case 2 Case 3 Case 4 Case N

1.! Design plant to deal with different operating scenarios (over time or with 

uncertainty)  
 

2. Can solve overall problem simultaneously 

•! large and expensive 

•! polynomial increase with number of cases 

•! must be made efficient through specialized decomposition 

  

3. Solve also each case independently as an optimization problem (inner 

problem with fixed design) 

•! overall coordination step (outer optimization problem for design) 

•! require sensitivity from each inner optimization case with design   

   variables as external parameters 

Design Under Uncertain Model Parameters 

and Variable Inputs 

E[P, "] : expected value of an objective function 
h : process model equations 

g : process model inequalities 
y : state variables (x, T, p, etc) 

d : design variables (equipment sizes, etc) 
#p : uncertain model parameters  

#v : variable inputs  ! =  [!p
T

 !v
T] 

z : control/operating variables (actuators, flows, etc) 
    (may be fixed or a function of (some) #) 

     (single or two stage formulations) 
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Multi-scenario Models for Uncertainty 
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Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway, 
Perkins and Barton (1991),  Srinivasan, Bonvin, Visser and Palanki (2002), 

Walsh and Perkins (1994, 1996) 

Multi-scenario Models for Uncertainty 
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Walsh and Perkins (1994, 1996) 



Multi-scenario Models for Variability 

Some References: Grossmann and coworkers (1983-1991), Ierapetritou, 
Acevedo and Pistikopoulos (1996), Pistikopoulos and coworkers (1995-2001) 
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Multi-scenario Models for Variability 
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Multi-scenario Models for Both 
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Multi-scenario Models for Both 

Some References: Ostrovsky, Volin, Achenie (2003), Rooney, B. (2003) 
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Example: Williams-Otto Process  
(Rooney, B., 2003) 
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Uncertainty and Variability: Williams-Otto Process 
(Rooney, B., 2003) 
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Solving Multi-scenario Problems: 

Interior Point Method 
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Newton Step for IPOPT 
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Schur Complement Decomposition Algorithm 
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Key Steps 

1. 

IPOPT 
Line Search 

& reduction of µ-

2. 

Computational cost is linear in number of periods 
Trivial to parallelize 

Evaluate functions and derivatives 
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Nonlinear Optimization Engines  

Evolution of NLP Solvers: 

! process optimization for design, control and operations 

  

#80s: Flowsheet optimization  
               over 100 variables and constraints   
$90s: Static Real-time optimization (RTO) 
               over 100 000 variables and constraints 
#00s: Simultaneous dynamic optimization 
               over 1 000 000 variables and constraints 

SQP rSQP IPOPT 

Object Oriented Codes to tailor structure, architecture to problems 

IPOPT 3.x 



Min f0(d) + 1i fi(d, xi) 

s.t. hi(xi, d) = 0, i = 1,… N 

     gi(xi, d) ! 0, i = 1,… N 

"r(d) ! 0  

Variables: 

x: state (z) and control (u) variables in each operating period  

d: design variables (e. g. equipment parameters) used!

9i: substitute for d in each period and add 9i = d 

Multi-scenario Design Model 

Composite NLP!

Min  1i (fi(6i, xi) + f0(6i)/N)  

s.t. hi(xi, 6i) = 0, i = 1,… N 

     gi(xi, 6i) +si = 0, i = 1,… N"

     0 ! si, d – 6i=0, i = 1,… N 

"r(d) ! 0"

Internal Decomposition 

Implementation 

•! Water Network Base Problem 

–! 36,000 variables 

–! 600 common variables 

•! Testing 

–! Vary # of scenarios 

–! Vary # of common variables 

NLP 

Interface 
NLP Algorithm 

Multi-scenario 
NL P 

Linear Algebra 

Interface 

Default 

Linear Algebra 

Block-Bordered 

Linear Solver 

1 2 3 4 5 
Composite NLPs 
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Parallel Schur-Complement 
Scalability 

Multi-scenario Optimization 

•! Single Optimization over many 
scenarios, performed on parallel 
cluster 

Water Network Case Study 

•! 1 basic model 

–! Nominal design optimization 

•! 32 possible uncertainty scenarios 

–! Form individual blocks 

Determine Injection time profiles as 
common variables 

Characteristics 

•! 36,000 variables per scenario 

•! 600 common variables 
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Optimization Algorithms 
-Unconstrained Newton and Quasi Newton Methods 

-KKT Conditions and Specialized Methods 

-Reduced Gradient Methods (GRG2, MINOS) 

-Successive Quadratic Programming (SQP) 

-Reduced Hessian SQP 
-Interior Point NLP (IPOPT) 

 

Process Optimization Applications 

-Modular Flowsheet Optimization 

-Equation Oriented Models and Optimization 
-Realtime Process Optimization 

-Blending with many degrees of freedom 

 

Further Applications 
-Sensitivity Analysis for NLP Solutions 

-Multi-Scenario Optimization Problems 

Summary and Conclusions 


