

Nonlinear Programming:
Concepts, Algorithms and

Applications

L. T. Biegler

Chemical Engineering Department

Carnegie Mellon University

Pittsburgh, PA

2

Introduction

Unconstrained Optimization
•! Algorithms
•! Newton Methods
•! Quasi-Newton Methods

Constrained Optimization
•! Karush Kuhn-Tucker Conditions
•! Special Classes of Optimization Problems
•! Reduced Gradient Methods (GRG2, CONOPT, MINOS)
•! Successive Quadratic Programming (SQP)
•! Interior Point Methods (IPOPT)

Process Optimization
•! Black Box Optimization
•! Modular Flowsheet Optimization – Infeasible Path
•! The Role of Exact Derivatives

Large-Scale Nonlinear Programming
•! rSQP: Real-time Process Optimization
•! IPOPT: Blending and Data Reconciliation

Further Applications
•! Sensitivity Analysis for NLP Solutions
•! Multi-Scenario Optimization Problems

Summary and Conclusions

Nonlinear Programming and Process Optimization

3

Introduction

Optimization: given a system or process, find the best solution to
this process within constraints.

Objective Function: indicator of "goodness" of solution, e.g., cost,
yield, profit, etc.

Decision Variables: variables that influence process behavior and
can be adjusted for optimization.

In many cases, this task is done by trial and error (through case
study). Here, we are interested in a systematic approach to this
task - and to make this task as efficient as possible.

Some related areas:

 - Math programming

 - Operations Research

Currently - Over 30 journals devoted to optimization with roughly
200 papers/month - a fast moving field!

4

Optimization Viewpoints

Mathematician - characterization of theoretical properties
of optimization, convergence, existence, local
convergence rates.

Numerical Analyst - implementation of optimization method
for efficient and "practical" use. Concerned with ease of
computations, numerical stability, performance.

Engineer - applies optimization method to real problems.
Concerned with reliability, robustness, efficiency,
diagnosis, and recovery from failure.

5

Optimization Literature

Engineering

1. Edgar, T.F., D.M. Himmelblau, and L. S. Lasdon, Optimization of Chemical
Processes, McGraw-Hill, 2001.

2. Papalambros, P. and D. Wilde, Principles of Optimal Design. Cambridge Press,
1988.

3. Reklaitis, G., A. Ravindran, and K. Ragsdell, Engineering Optimization, Wiley, 1983.

4. Biegler, L. T., I. E. Grossmann and A. Westerberg, Systematic Methods of Chemical
Process Design, Prentice Hall, 1997.

Numerical Analysis

1. Dennis, J.E. and R. Schnabel, Numerical Methods of Unconstrained Optimization,
Prentice-Hall, (1983), SIAM (1995)

2. Fletcher, R. Practical Methods of Optimization, Wiley, 1987.

3. Gill, P.E, W. Murray and M. Wright, Practical Optimization, Academic Press, 1981.

4. Nocedal, J. and S. Wright, Numerical Optimization, Springer, 2007

6

Scope of optimization
Provide systematic framework for searching among a specified

space of alternatives to identify an !optimal" design, i.e., as a
decision-making tool

Premise
Conceptual formulation of optimal product and process design

corresponds to a mathematical programming problem

!!

"

Motivation

MINLP ! NLP

7

x x Hybrid

x x Nonlinear

MPC

x Linear MPC

x x Real-time

optimization

x x x Supply Chain
x x x x Scheduling

x x Flowsheeting

x x x Equipment

Design

x x x x Reactors
x x Separations

x x x x x x MENS
x x x x x x HENS

SA/GA NLP LP,QP Global MINLP MILP

Optimization in Design, Operations and Control

8

Unconstrained Multivariable Optimization

Problem: Min f(x) (n variables)

Equivalent to: Max -f(x), x ! Rn

Nonsmooth Functions

- Direct Search Methods

- Statistical/Random Methods

Smooth Functions

- 1st Order Methods

- Newton Type Methods

- Conjugate Gradients

9

Example: Optimal Vessel Dimensions

Min TC

2! D

2
 + S C

4V

D
 = cost

"

$

%
&
'

d(cost)

dD
 = TC ! D -

s4VC
2

D
 = 0

D =
4V

!

SC

TC

"

$
%

1/ 3

 L =
4V

!

"

&
&
&

$

%

'
'
'

1/3

TC

SC

"

&
&
&
&

$

%

'
'
'
'

2/3

What is the optimal L/D ratio for a cylindrical vessel?

Constrained Problem

! ! ! ! ! !(1) !

Convert to Unconstrained (Eliminate L)! !

(2) !

! !

! !==> L/D = CT/CS

Note:

- !What if L cannot be eliminated in (1) explicitly? (strange shape)

- !What if D cannot be extracted from (2)?

!(cost correlation implicit)

L

D

V

10

Two Dimensional Contours of F(x)

Convex Function ! !Nonconvex Function Multimodal, Nonconvex

!Discontinuous ! !Nondifferentiable (convex)

!

"

11

Local vs. Global Solutions
Convexity Definitions

•!a set (region) X is convex, if and only if it satisfies:

 " y + (1-")z ! X

 for all !, 0 ! ! ! 1, for all points y and z in X.

•! f(x) is convex in domain X, if and only if it satisfies:

 f(" y + (1-") z) ! " f(y) + (1-")f(z)

 for any !, 0 ! ! ! 1, at all points y and z in X.

•!Find a local minimum point x* for f(x) for feasible region defined by
constraint functions: f(x*) ! f(x) for all x satisfying the constraints in
some neighborhood around x* (not for all x ! X)

•!Sufficient condition for a local solution to the NLP to be a global is
that f(x) is convex for x ! X.

•!Finding and verifying global solutions will not be considered here.

•!Requires a more expensive search (e.g. spatial branch and bound).

12

Linear Algebra - Background

Some Definitions

• !Scalars - Greek letters, !, ", #
• !Vectors - Roman Letters, lower case

• !Matrices - Roman Letters, upper case!

•! Matrix Multiplication:!

 C = A B if A $ %n x m, B $ %m x p and C $ %n x p, Cij = &k Aik Bkj

•! Transpose - if A $ %n x m, !

 interchange rows and columns --> AT$ %m x n

•! Symmetric Matrix - A $ %n x n (square matrix) and A = AT

•! Identity Matrix - I, square matrix with ones on diagonal !

 and zeroes elsewhere.

•! Determinant: "Inverse Volume" measure of a square matrix

det(A) = &i (-1)i+j Aij Aij for any j, or

det(A) = &j (-1) i+j Aij Aij for any i, where Aij is the determinant!

of an order n-1 matrix with row i and column j removed. !

det(I) = 1

!

•! Singular Matrix: det (A) = 0

13

!f =

"f /
1"x

"f /
2"x

.... ..

"f /
n"x

$

%

%

%

&

'

(

(

(

2! f(x) =

2" f

1
2"x

2" f

1"x 2"x

2" f

1"x n"x

2" f

n"x 1"x

2" f

n"x 2"x

2" f

n
2"x

$

%

&

&

&

&

'

(

)

)

)

)

2
! f

! x j!xi

2! f

j!x i!x

Gradient Vector - ('f(x)) !

Hessian Matrix ('2f(x) - Symmetric)

Note: =

Linear Algebra - Background

14

•! Some Identities for Determinant

det(A B) = det(A) det(B); !det (A) = det(AT)

det(!A) = !n det(A); !det(A) = (i)i(A)!

!

•! Eigenvalues: det(A-) I) = 0, Eigenvector: Av =) v

Characteristic values and directions of a matrix.

For nonsymmetric matrices eigenvalues can be complex, !

so we often use singular values, * =)(AT+)1/2 , 0-

•! Vector Norms

|| x ||p = {&i |xi|
p}1/p

(most common are p = 1, p = 2 (Euclidean) and p = . (max norm = maxi|xi|))

•! Matrix Norms

!||A|| = max ||A x||/||x|| over x (for p-norms)

!||A||1 - max column sum of A, maxj (&i |Aij|)

!||A||. - maximum row sum of A, maxi (&j |Aij|)
!||A||2 = [*max(+)] (spectral radius)

-||A||F = [&i &j (Aij)2]1/2
 (Frobenius norm)

-/(+) = ||A|| ||A-1|| (condition number) = *max/*min (using 2-norm)

Linear Algebra - Background

15

Find v and) where Avi =)i vi, i = i,n

Note: Av -)v = (A -)I) v = 0 or det (A -)I) = 0

For this relation) is an eigenvalue and v is an eigenvector of A.
!

If A is symmetric, all)i are real
!)i > 0, i = 1, n; A is positive definite

!)i < 0, i = 1, n; A is negative definite

!)i = 0, some i: A is singular!

Quadratic Form can be expressed in Canonical Form (Eigenvalue/Eigenvector)

! !xTAx 0 A V = V 1

! !V - eigenvector matrix (n x n)

! !1 - eigenvalue (diagonal) matrix = diag()i)

!

If A is symmetric, all)i are real and V can be chosen orthonormal (V-1 = VT). !
Thus, A = V 1 V-1 = V 1 VT!

For Quadratic Function: Q(x) = aTx + # xTAx!

Define:! z = VTx and Q(Vz) = (aTV) z + # zT (VTAV)z!
 = (aTV) z + # zT 1 z!
!

Minimum occurs at (if)i > 0)! x = -A-1a or !x = Vz = -V(1-1VTa)!

Linear Algebra - Eigenvalues

16

Positive (Negative) Curvature
Positive (Negative) Definite Hessian

Both eigenvalues are strictly positive (negative)

• !A is positive (negative) definite

• !Stationary points are minima (maxima)

x1"

x2"

"
z1"

z2"

(#1)
!1/2$

(#2)
!1/2$

17

Zero Curvature
Singular Hessian

One eigenvalue is zero, the other is strictly positive or negative

• !A is positive semidefinite or negative semidefinite

• !There is a ridge of stationary points (minima or maxima)

18

One eigenvalue is positive, the other is negative

• !Stationary point is a saddle point

• !A is indefinite

Note: these can also be viewed as two dimensional projections for higher dimensional problems

Indefinite Curvature
Indefinite Hessian

19

Eigenvalue Example

!

!

Min Q(x) =
1

1

"

$
%

&
'

T

x +
1

2
x
T

2 1

1 2

"

$

%

&
' x

 AV = V(with A =
2 1

1 2

"

$

%

&
'

V
T
AV = (=

1 0

0 3

"

$

%

&
' with V =

1/ 2 1/ 2

-1/ 2 1/ 2

"

$

%

&
'

•! All eigenvalues are positive

•! Minimum occurs at z* = -%-1VTa

!
"

#
$
%

&

'

'
=!

"

#
$
%

&

'
=

!
"

#
$
%

&

+'

+
==!

"

#
$
%

&

+

'
==

3/1

3/1
*

)23/(2

0
*

2/)(

2/)(

2/)(

2/)(

21

21

21

21

xz

xx

xx
Vzx

xx

xx
xVz

T

20

1. Convergence Theory

• !Global Convergence - will it converge to a local optimum (or stationary

!point) from a poor starting point?!

• !Local Convergence Rate - how fast will it converge close to this point? !

!

2. Benchmarks on Large Class of Test Problems

Representative Problem (Hughes, 1981)

"

Min f(x1, x2) = " exp(-&)

u = x1 - 0.8
v = x2 - (a1 + a2 u

2 (1- u)1/2 - a3 u)

" = -b1 + b2 u
2 (1+u)1/2 + b3 u

& = c1 v
2 (1 - c2 v)/(1+ c3 u

2)

"

a = [0.3, 0.6, 0.2]
b = [5, 26, 3]

c = [40, 1, 10]
x* = [0.7395, 0.3144] "f(x*) = -5.0893

!

"

Comparison of Optimization Methods

21

Three Dimensional Surface and Curvature for Representative Test Problem

"

Regions where minimum
eigenvalue is greater than:

[0, -10, -50, -100, -150, -200]

22

What conditions characterize an optimal solution?

x1

x2

x*

Contours of f(x)

Unconstrained Local Minimum!
Necessary Conditions

'f (x*) = 0

pT'2f (x*) p $ 0 for p$%n

(positive semi-definite)

Unconstrained Local Minimum!
Sufficient Conditions

'f (x*) = 0

pT'2f (x*) p > 0 for p$%n

(positive definite)

Since 'f(x*) = 0, f(x) is purely quadratic for x close to x*

()32

2

1
xxO)xx*)(x(f*)xx(*)xx(*)x(f*)x(f)x(f TT

!+!"!+!"+=

For smooth functions, why are contours around optimum elliptical?!
Taylor Series in n dimensions about x*:"

23

Taylor Series for f(x) about xk

!!

!Take derivative wrt x, set LHS % 0!

! "0 #'f(x) = 'f(xk) + '2f(xk) (x - xk) + O(||x - xk||2)

$((x - xk)) d = - ('2f(xk))-1 'f(xk)

!

•! f(x) is convex (concave) if for all x !*n, '2f(x) is positive (negative) semidefinite!

 i.e. minj)j , 0 (maxj)j & 0)

•! Method can fail if:

!- x0 far from optimum

!- '2f is singular at any point

!- f(x) is not smooth

•! Search direction, d, requires solution of linear equations.

•! Near solution: !

2

Newton's Method

2
**1
xxOxx

kk
!=!

+

24

0. !Guess x0, Evaluate f(x0).!

1. !At xk, evaluate 'f(xk).

!

2. !Evaluate Bk = '2f(xk) or an approximation.

!

3. !Solve: Bk d = -'f(xk)

!If convergence error is less than tolerance:

!e.g., ||'f(xk) || + , and ||d|| + , STOP, else go to 4.

!

4. !Find ! so that 0 < ! 3 1 and f(xk + " d) < f(xk) !!

 sufficiently (Each trial requires evaluation of f(x))

!

5. !xk+1 = xk + " d. Set k = k + 1 Go to 1.!

"

!

Basic Newton Algorithm - Line Search

25

Newton's Method - Convergence Path

Starting Points

[0.8, 0.2] needs steepest descent steps w/ line search up to 'O', takes 7 iterations to ||'f(x*)|| ! 10-6!

[0.35, 0.65] converges in four iterations with full steps to ||'f(x*)|| ! 10-6

26

•! Choice of Bk determines method.

- Steepest Descent: Bk = - I ""

- Newton: Bk = '2f(x)!!

•! With suitable Bk, performance may be good enough if f(xk + "d) !

 is sufficiently decreased (instead of minimized along line search !

 direction).!

•! Trust region extensions to Newton's method provide very strong !

 global convergence properties and very reliable algorithms.

•! Local rate of convergence depends on choice of Bk.

Newton#s Method - Notes

!

Newton"Quadratic Rate : lim
k#$

x
k+1
" x *

x
k
" x *

2
= K

Steepest descent " Linear Rate : lim
k#$

x
k+1
" x *

x
k
" x *

<1

Desired?" Superlinear Rate : lim
k#$

x
k+1
" x *

x
k
" x *

= 0

27

!

k+1

B =
k

B +
y -

k
B s() T

y + y y -
k

B s()
T

T
y s

 -
y -

k
B s()

T

s y
T
y

T
y s() T

y s()

!

k+1

B
k+1()

-1

 = H =
k

H +

T
ss
T
s y

 -

k
H y

T
y k
H

k
y H y

Motivation: !
• !Need Bk to be positive definite.

• !Avoid calculation of ' 2f.
• !Avoid solution of linear system for d = - (Bk)-1 'f(xk)

!

Strategy: !Define matrix updating formulas that give (Bk) symmetric, positive

definite and satisfy:

! "(Bk+1)(xk+1 - xk) = ('f k+1 – 'f k) (Secant relation)!

DFP Formula: (Davidon, Fletcher, Powell, 1958, 1964)

!where: !s = xk+1- xk
" " " "y = 'f (xk+1) - 'f (xk)!

Quasi-Newton Methods

28

!

k+1

B =
k

B +

T
yy
T
s y

 -

k
B s T

s
k

B
k

s B s

!

k+1

B()
"1

= k+1

H =
k

H +
s -

k
H y() T

s + s s -
k

H y()
T

T
y s

 -
y -

k
H s()

T

y s T
s

T
y s() T

y s()

BFGS Formula (Broyden, Fletcher, Goldfarb, Shanno, 1970-71)

Notes:

1)! Both formulas are derived under similar assumptions and have !

 symmetry

2) ! Both have superlinear convergence and terminate in n steps on

quadratic functions. They are identical if ! is minimized.
3) ! BFGS is more stable and performs better than DFP, in general.

4) ! For n 3 100, these are the best methods for general purpose

problems if second derivatives are not available.

Quasi-Newton Methods

29

Quasi-Newton Method - BFGS

Convergence Path

Starting Point
[0.2, 0.8] !starting from B0 = I, converges in 9 iterations to ||'f(x*)|| ! 10-6

!

30

Harwell (HSL)

IMSL

NAg - Unconstrained Optimization Codes

Netlib (www.netlib.org)

•!MINPACK

•!TOMS Algorithms, etc.

These sources contain various methods

•!Quasi-Newton

•!Gauss-Newton

•!Sparse Newton

•!Conjugate Gradient

Sources For Unconstrained Software

31

Problem: "Minx f(x)

" " "s.t. "g(x) + 0

" " " "h(x) = 0

where:

! !f(x) - scalar objective function

! " x - n vector of variables

! !g(x) - inequality constraints, m vector

! !h(x) - meq equality constraints.

Sufficient Condition for Global Optimum

- f(x) must be convex, and

- feasible region must be convex,

!i.e. g(x) are all convex

! ! h(x) are all linear

Except in special cases, there is no guarantee that a local optimum is global

if sufficient conditions are violated.!

Constrained Optimization

(Nonlinear Programming)

32

2
3

1

A

B

y

x

!

1x ,
1
y " 1R 1x # B - 1R ,

1
y # A - 1R

x
2
,

2
 y " 2R 2x # B - 2R ,

2
y # A - 2R

3,x
3
y " 3R 3x # B - 3R ,

3
y # A - 3R

$

%
&

'
&

!

1x - 2x()
2

 +
1
y -

2
y()

2

 " 1R + 2R()
2

1x - 3x()
2

 +
1
y -

3
y()

2

 " 1R + 3R()
2

2x - 3x()
2

 +
2
y -

3
y()

2

 " 2R + 3R()
2

$

% %

&

%
%

Example: Minimize Packing Dimensions

What is the smallest box for three round objects?

Variables: A, B, (x1, y1), (x2, y2), (x3, y3)

Fixed Parameters: R1, R2, R3
Objective: Minimize Perimeter = 2(A+B)

Constraints: Circles remain in box, can't overlap

Decisions: Sides of box, centers of circles.

no overlaps
! !in box!

x1, x2, x3, y1, y2, y3, A, B , 0

33

Mi n

Linear Progr am

Mi n

Linear Progr am

(Alter nate Opt im a)

Min

Min

Min

Convex Objective Functions

Linear Constraints

Mi n

Mi n

Mi n

Nonconvex Region

Mul ti ple O pti ma

Mi nMi n

Nonconvex Object ive

Mul ti ple O pti ma

Characterization of Constrained Optima

!

34

What conditions characterize an optimal solution?

Unconstrained Local Minimum!
Necessary Conditions

'f (x*) = 0

pT'2f (x*) p $ 0 for p$%n

(positive semi-definite)

Unconstrained Local Minimum!
Sufficient Conditions

'f (x*) = 0

pT'2f (x*) p > 0 for p$%n

(positive definite)

35

Optimal solution for inequality constrained problem

"Min !f(x)

! s.t!. g(x) & 0

Analogy: Ball rolling down valley pinned by fence

Note: Balance of forces ('f, 'g1)

36

Optimal solution for general constrained problem

Problem: !Min !f(x)

! ! ! s.t. !g(x) & 0

! ! ! !h(x) = 0

Analogy: Ball rolling on rail pinned by fences

Balance of forces: 'f, 'g1, 'h

37

Necessary First Order Karush Kuhn - Tucker Conditions!

$' L (x*, u, v) = 'f(x*) + 'g(x*) u + 'h(x*) v = 0

 (Balance of Forces)!

!u $ 0 (Inequalities act in only one direction)

!g (x*) ! 0, h (x*) = 0 (Feasibility)

"uj gj(x*) = 0 (Complementarity: either gj(x*) = 0 or uj = 0)

 u, v are "weights" for "forces," known as KKT multipliers, shadow !

!prices, dual variables!

!

!To guarantee that a local NLP solution satisfies KKT conditions, a constraint
qualification is required. E.g., the Linear Independence Constraint Qualification

(LICQ) requires active constraint gradients, ['gA(x*) 'h(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

!

Necessary (Sufficient) Second Order Conditions

- !Positive curvature in "constraint" directions.

- !pT' 2L (x*) p . 0 (pT' 2L (x*) p > 0)

!where p are the constrained directions: 'h(x*)Tp = 0

 for gi(x*)=0, 'gi(x*)Tp = 0, for ui > 0, 'gi(x*)Tp ! 0, for ui = 0

Optimality conditions for local optimum

38

Single Variable Example of KKT Conditions

-a a

f(x)

x

Min (x)2 "s.t. -a ! x ! a, a > 0

x* = 0 is seen by inspection!

!

Lagrange function :

L(x, u) = x2 + u1(x-a) + u2(-a-x)

!

First Order KKT conditions:

'L(x, u) = 2 x + u1 - u2 = 0

u1 (x-a) = 0 ""

 u2 (-a-x) = 0

 -a ! x ! a "u1, u2 $ 0!

Consider three cases:

• u1 $ 0, u2 = 0 !Upper bound is active, x = a, u1 = -2a, u2 = 0

•! u1 = 0, u2 $ 0 Lower bound is active, x = -a, u2 = -2a, u1 = 0

•! u1 = u2 = 0 " !Neither bound is active, u1 = 0, u2 = 0, x = 0

!

Second order conditions (x*, u1, u2 =0) "

" " 'xxL (x*, u*) = 2 "

" " pT'xxL (x*, u*) p = 2 (/x)2 > 0 ""

39

Single Variable Example
of KKT Conditions - Revisited

Min -(x)2"s.t. -a ! x ! a, a > 0

x* = ±a is seen by inspection!

!

Lagrange function :

L(x, u) = -x2 + u1(x-a) + u2(-a-x)

!

First Order KKT conditions:

'L(x, u) = -2x + u1 - u2 = 0

u1 (x-a) = 0 ""

 u2 (-a-x) = 0

 -a ! x ! a "u1, u2 $ 0!

Consider three cases:

• u1 $ 0, u2 = 0 !Upper bound is active, x = a, u1 = 2a, u2 = 0

•! u1 = 0, u2 $ 0 Lower bound is active, x = -a, u2 = 2a, u1 = 0

•! u1 = u2 = 0 " !Neither bound is active, u1 = 0, u2 = 0, x = 0

!

Second order conditions (x*, u1, u2 =0) "

" " 'xxL (x*, u*) = -2 "

" " pT'xxL (x*, u*) p = -2(/x)2 < 0 ""

a-a

f(x)

x

40

For x = a or x = -a, we require the allowable direction to satisfy the

active constraints exactly. Here, any point along the allowable

direction, x* must remain at its bound. !

!

For this problem, however, there are no nonzero allowable directions

that satisfy this condition. Consequently the solution x* is defined

entirely by the active constraint. The condition:

pT 'xxL (x*, u*, v*) p > 0 !

for the allowable directions, is vacuously satisfied - because there are

no allowable directions that satisfy 'gA(x*)T p = 0. Hence, sufficient

second order conditions are satisfied.

As we will see, sufficient second order conditions are satisfied by linear

programs as well.

Interpretation of Second Order Conditions

41

Role of KKT Multipliers

a-a

f(x)

x a + !a

Also known as:
• !Shadow Prices

• !Dual Variables

• !Lagrange Multipliers!

Suppose a in the constraint is increased to a + /a

f(x*) =- (a + /a)2

and

[f(x*, a + /a) - f(x*, a)]//a =- 2a - /a

df(x*)/da = -2a = -u1

42

Another Example: Constraint
Qualifications

0**

0 ..

21

3

12

2

1

==

!

"

xx

)(xx

xts

xMin

0)(,0,0

0,0,0-

0
11

)(30

0

1

3

1222

3

12

2112

2

1
2

1

=!"#!

="#

$%
&

'
(
)

*
%
&

'
(
)

*

!

!
+%
&

'
(
)

*

)(xxuu)(xx

xuux

u

ux

x1"

x2"

KKT conditions not satisfied at NLP solution

Because a CQ is not satisfied (e.g., LICQ)

43

Linear Programming:

!Min !cTx

! s.t. !Ax & b

! ! !Cx = d, x $ 0

Functions are all convex 0 global min.
Because of Linearity, can prove solution will !

always lie at vertex of feasible region.

x2

x
1

Simplex Method

!- !Start at vertex

!- !Move to adjacent vertex that offers most improvement
!- !Continue until no further improvement

Notes:
!1) !LP has wide uses in planning, blending and scheduling !

!2) !Canned programs widely available. !

"

Special Cases of Nonlinear Programming

44

Simplex Method

"Min "-2x1 - 3x2 " " "Min "-2x1 - 3x2

" s.t. " 2x1 + x2 ! 5 " (" s.t. 2x1 + x2 + x3 = 5

" " " x1, x2 $ 0 " " " "x1, x2, x3 $ 0

! ! ! ! ! ! ! !(add slack variable)

Now, define f = -2x1 - 3x2 $($ f + 2x1 + 3x2 = 0

Set x1, x2 = 0, x3 = 5 and form tableau

" "x1" "x2 "x3 "f "b "x1, x2 nonbasic

! !2 ! !1 !1 !0 !5 !x3 basic

! !2 ! !3 !0 !1 !0!

To decrease f, increase x2. How much? so x3 $ 0

" "x1" "x2 "x3 "f "b

! ! 2! !1 ! 1 !0 ! 5

! !-4! !0 !-3 !1 !-15

 f can no longer be decreased! Optimal!

Underlined terms are -(reduced gradients); nonbasic variables (x1, x3), basic variable x2!

Linear Programming Example

45

Problem: !Min !aTx + 1/2 xT B x

! ! ! ! A x & b

! ! ! ! C x = d

1) !Can be solved using LP-like techniques:

! !(Wolfe, 1959)

! !0 !Min !&j (zj+ + zj-)

! ! !s.t. !a + Bx + ATu + CTv = z+ - z-

! ! ! !Ax - b + s = 0

! ! ! !Cx - d = 0

! ! ! !u, s, z+, z- $ 0

! ! ! !{uj sj = 0}

!with complicating conditions.!

2) !If B is positive definite, QP solution is unique.

!If B is pos. semidefinite, optimum value is unique.

!

3) !Other methods for solving QP's (faster)

! !- Complementary Pivoting (Lemke)

! !- Range, Null Space methods (Gill, Murray).!

Quadratic Programming

46

i
µ =

1

T
 ir

t=1

T

! (t)

Definitions:

!xi - fraction or amount invested in security i

!ri (t) - (1 + rate of return) for investment i in year t.

!µi - average r(t) over T years, i.e.

Note: maximize average return, no accounting for risk.

Portfolio Planning Problem

. ,0

1 .t.

etcx

xs

xMax

i

i

i

i

ii

!

="

"µ

47

ijS{ } = ij
2! =

1

T
 ir (t) - iµ()

t =1

T

" jr (t) - jµ()

S =

 3 1 - 0.5

 1 2 0.4

-0.5 0.4 1

!

"

$

%

&

&

Definition of Risk - fluctuation of ri(t) over investment (or past) time period.
To minimize risk, minimize variance about portfolio mean (risk averse).

!

Variance/Covariance Matrix, S

Example: 3 investments

! ! ! !µj !

1. !IBM ! !1.3 !

2. !GM ! !1.2

3. !Gold ! !1.08

Portfolio Planning Problem

. ,0

1 .t.

etcx

Rx

xs

SxxMin

i

i

ii

i

i

T

!

!

=

"

"

µ

48

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
4
5 !OPTION LIMROW=0;

6 !OPTION LIMXOL=0;
7

8 !VARIABLES IBM, GM, GOLD, OBJQP, OBJLP;
9
10 !EQUATIONS E1,E2,QP,LP;

11
12 !LP.. OBJLP =E= 1.3*IBM + 1.2*GM + 1.08*GOLD;

13
14 !QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM - IBM*GOLD
15 !+ 2*GM**2 - 0.8*GM*GOLD + GOLD**2;

16
17 !E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G= 1.15;
18

19 !E2.. IBM + GM + GOLD =E= 1;
20

21 !IBM.LO = 0.;
22 !IBM.UP = 0.75;
23 !GM.LO = 0.;

24 !GM.UP = 0.75;
25 !GOLD.LO = 0.;

26 !GOLD.UP = 0.75;
27
28 !MODEL PORTQP/QP,E1,E2/;

29
30 !MODEL PORTLP/LP,E2/;

31
32 !SOLVE PORTLP USING LP MAXIMIZING OBJLP;
33

34! SOLVE PORTQP USING NLP MINIMIZING OBJQP;

Portfolio Planning Problem - GAMS

49

S O L VE S U M M A R Y

**** MODEL STATUS ! !1 OPTIMAL

**** OBJECTIVE VALUE ! !1.2750

RESOURCE USAGE, LIMIT !1.270 ! !1000.000

ITERATION COUNT, LIMIT !1 ! !1000

BDM - LP !VERSION 1.01

A. Brooke, A. Drud, and A. Meeraus,

Analytic Support Unit,

Development Research Department,

World Bank,

Washington D.C. 20433, U.S.A.

!

Estimate work space needed !- - ! 33 Kb

Work space allocated ! ! !- - !231 Kb

EXIT - - OPTIMAL SOLUTION FOUND.

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL

- - - - EQU LP ! . ! . ! ! . ! ! ! 1.000

- - - - EQU E2 !1.000 ! !1.000 ! !1.000 ! ! 1.200!

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL

- - - - VAR IBM ! 0.750 ! !0.750 ! ! 0.100

- - - - VAR GM ! . ! !0.250 ! !0.750 ! ! ! .

- - - - VAR GOLD ! . ! !.. ! !0.750 ! ! -0.120

- - - - VAR OBJLP ! -INF ! !1.275 ! !+INF ! ! ! .

**** REPORT SUMMARY : !0 NONOPT

! ! ! ! !0 INFEASIBLE

! ! ! ! !0 UNBOUNDED

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)

Model Statistics SOLVE PORTQP USING NLP FROM LINE 34

MODEL STATISTICS!

BLOCKS OF EQUATIONS ! 3 !SINGLE EQUATIONS ! !3!

BLOCKS OF VARIABLES ! 4 !SINGLE VARIABLES ! !4!

NON ZERO ELEMENTS !10 !NON LINEAR N-Z ! !3!

DERIVITIVE POOL ! ! 8 !CONSTANT POOL ! !3!

CODE LENGTH ! !95 !!

GENERATION TIME ! = 2.360 SECONDS!

EXECUTION TIME = 3.510 SECONDS ! ! ! !!

Portfolio Planning Problem - GAMS

50

S O L VE S U M M A R Y

MODEL !PORTLP ! !OBJECTIVE !OBJLP

TYPE! !LP ! ! !DIRECTION !MAXIMIZE

SOLVER !MINOS5 ! !FROM LINE !34

**** SOLVER STATUS ! !1 NORMAL COMPLETION

**** MODEL STATUS ! !2 LOCALLY OPTIMAL

**** OBJECTIVE VALUE ! !0.4210

RESOURCE USAGE, LIMIT !3.129 ! !1000.000

ITERATION COUNT, LIMIT !3 ! !1000

EVALUATION ERRORS !0 ! ! 0

M I N O S ! 5.3 !(Nov. 1990) ! !Ver: 225-DOS-02

B.A. Murtagh, University of New South Wales

 and

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright

Systems Optimization Laboratory, Stanford University.

!

EXIT - - OPTIMAL SOLUTION FOUND

MAJOR ITNS, LIMIT ! ! 1

FUNOBJ, FUNCON CALLS ! 8

SUPERBASICS ! ! ! 1

INTERPRETER USAGE ! !.21

NORM RG / NORM PI ! 3.732E-17

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL

- - - - EQU QP ! . ! ! ! . . ! ! ! 1.000

- - - - EQU E1 !1.150 ! !1.150 ! !+INF ! ! 1.216

- - - - EQU E2 !1.000 ! !1.000 ! !1.000 ! ! -0.556

! ! !LOWER ! !LEVEL ! !UPPER ! !MARGINAL

- - - - VAR IBM ! . ! !0.183 ! !0.750 ! ! ! .

- - - - VAR GM ! . ! !0.248 ! !0.750 ! ! EPS

- - - - VAR GOLD ! . ! !0.569 ! !0.750 ! ! ! .

- - - - VAR OBJLP ! -INF ! !1.421 ! !+INF ! ! ! .

**** REPORT SUMMARY : ! !0 NONOPT

! ! ! ! !0 INFEASIBLE

! ! ! ! !0 UNBOUNDED

! ! ! ! !0 ERRORS

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)

Model Statistics SOLVE PORTQP USING NLP FROM LINE 34

EXECUTION TIME = 1.090 SECONDS ! ! ! !

Portfolio Planning Problem - GAMS

51

Motivation: Build on unconstrained methods wherever possible.

Classification of Methods:

•!Reduced Gradient Methods - (with Restoration) GRG2, CONOPT

•!Reduced Gradient Methods - (without Restoration) MINOS

•!Successive Quadratic Programming - generic implementations

•!Penalty Functions - popular in 1970s, but fell into disfavor. Barrier

 Methods have been developed recently and are again popular.

•!Successive Linear Programming - only useful for "mostly linear"

 problems

We will concentrate on algorithms for first four classes.

Evaluation: Compare performance on "typical problem," cite experience

on process problems.

Algorithms for Constrained Problems

52

Representative Constrained Problem

(Hughes, 1981)

Min f(x1, x2) = ! exp(-")

g1 = (x2+0.1)2[x1
2+2(1-x2)(1-2x2)] - 0.16 & 0

g2 = (x1 - 0.3)2 + (x2 - 0.3)2 - 0.16 & 0

x* = [0.6335, 0.3465] !f(x*) = -4.8380

53

Min f(x) " " " " "Min "f(z)"

s.t." g(x) + s = 0 (add slack variable) " "`("s.t. c(z) = 0"

"h(x) = 0 " " " " " a ! z ! b"

"a ! x ! b, s $ 0 ! ! ! ! ! !
! !!

 Partition variables into: !!

zB - dependent or basic variables!

zN - nonbasic variables, fixed at a bound!

zS - independent or superbasic variables!

Reduced Gradient Method with Restoration

(GRG2/CONOPT)

!

Modified KKT Conditions

"f (z) +"c(z)# $% L + %U = 0

c(z) = 0

z
(i)

= zU
(i)

 or z
(i)

= zL
(i)

, i & N

%U
(i)

 , % L

(i)
 = 0, i ' N

54

•! Solve bound constrained problem in space of superbasic variables!

(apply gradient projection algorithm)!

•! Solve (e) to eliminate zB"

•! Use (a) and (b) to calculate reduced gradient wrt zS. "

•! Nonbasic variables zN (temporarily) fixed (d)!

•! Repartition based on signs of 4, if zs remain at bounds or if zB violate bounds-

Reduced Gradient Method with Restoration

(GRG2/CONOPT)

!

a) "S f (z) +"Sc(z)# = 0

b) "B f (z) +"Bc(z)# = 0

c) "N f (z) +"Nc(z)# $% L + %U = 0

d) z
(i)

= zU
(i)

 or z
(i)

= zL
(i)

, i & N

e) c(z) = 0' zB = zB (zS)

55

•!By remaining feasible always, c(z) = 0, a ! z ! b, one can apply an !

 unconstrained algorithm (quasi-Newton) using (df/dzS), using (b)"

"

•!Solve problem in reduced space of zS variables, using (e).

Definition of Reduced Gradient

!

df

dzS
=
"f

"zS
+
dzB

dzS

"f

"zB
Because c(z) = 0,we have :

dc =
"c

"zS

$
%

&

'
(

T

dzS +
"c

"zB

$
%

&

'
(

T

dzB = 0

dzB

dzS
=)

"c

"zS

$
%

&

'
(
"c

"zB

$
%

&

'
(

)1

=)* zS
c * zB

c[]
)1

This leads to :

df

dzS
=*S f (z))*Sc *Bc[]

)1
*B f (z) =*S f (z) +*Sc(z)+

56

- -

- -

If 'cT is (m x n); 'zSc
T is m x (n-m); 'zBcT is (m x m)

"

(df/dzS) is the change in f along constraint direction per unit change in zS

Example of Reduced Gradient

[]

[] () 2/322-432

Let

 2]- 2[4], 3[

2443 ..

2

1

1

1

1

1

21

1

21

2

2

1

+=!=

"

"
##!

"

"
=

==

=#=#

=+

!

!

!

xx
dx

df

z

f
cc

z

f

dz

df

x, zxz

xfc

xxts

xxMin

B

zz

SS

BS

TT

BS

57

Gradient Projection Method
(superbasic ! nonbasic variable partition)

Define the projection of an arbitrary point
x onto box feasible region.!

The ith component is given by!

Piecewise linear path x(t) starting at the
reference point x0 and obtained by projecting
steepest descent (or any search) direction at x0
onto the box region is given by!

where g is the reduced gradient, t is the
stepsize.!

Also, can adapt to (quasi-) Newton method.!

58

Sketch of GRG Algorithm

1.! Initialize problem and obtain a feasible point at z0

2.! At feasible point zk, partition variables z into zN, zB, zS

3.! Calculate reduced gradient, (df/dzS)

4.! Evaluate search direction for zS, d = B-1(df/dzS)

5.! Perform a line search.

•! Find !$(0,1] with zS := zS
k + " d

•! Solve for c(zS
k + " d, zB, zN) = 0

•! If f(zS
k + " d, zB, zN) < f(zS

k, zB, zN),

 set zS
k+1 =zS

k + " d, k:= k+1

6.! If ||(df/dzS)||<,, Stop. Else, go to 2. -

59

Reduced Gradient Method with Restoration

zS

zB

60

Reduced Gradient Method with Restoration

zS

zB

Fails, due to singularity in

basis matrix (dc/dzB)

61

Reduced Gradient Method with Restoration

zS

zB

Possible remedy: repartition basic
and superbasic variables to create
nonsingular basis matrix (dc/dzB)

62

1.! GRG2 has been implemented on PC's as GINO and is very reliable and

robust. It is also the optimization solver in MS EXCEL. !

2.! CONOPT is implemented in GAMS, AIMMS and AMPL

3.! GRG2 uses Q-N for small problems but can switch to conjugate

gradients if problem gets large. CONOPT uses exact second derivatives.!

4.! Convergence of c(zS, zB , zN) = 0 can get very expensive because 'c(z)

is calculated repeatedly.!

5.! Safeguards can be added so that restoration (step 5.) can be dropped

and efficiency increases.!

Representative Constrained Problem Starting Point [0.8, 0.2]

•! GINO Results - 14 iterations to ||'f(x*)|| & 10-6!

•! CONOPT Results - 7 iterations to ||'f(x*)|| & 10-6 from feasible point.!

GRG Algorithm Properties

63

Reduced Gradient Method without Restoration

zS

zB

64

Motivation: Efficient algorithms

are available that solve linearly

constrained optimization

problems (MINOS):!

! !Min f(x)

" "s.t."Ax ! b

" " "Cx = d

!

Extend to nonlinear problems,

through successive linearization!

!

Develop major iterations

(linearizations) and minor

iterations (GRG solutions) .!

Reduced Gradient Method without Restoration

(MINOS/Augmented)

Strategy: (Robinson, Murtagh & Saunders)

1. !Partition variables into basic, nonbasic

variables and superbasic variables..

2.! Linearize active constraints at zk "

Dkz = rk"

3.! Let 0 = f (z) + #Tc (z) + & (c(z)Tc(z))

(Augmented !Lagrange), !

4.! Solve linearly constrained problem:

! !Min "0 (z)

" "s.t. "Dz = r

" " "a ! z ! b

 !using reduced gradients to get zk+1

5. Set k=k+1, go to 2.!

6. !Algorithm terminates when no

movement between steps 2) and 4).!

65

1.! MINOS has been implemented very efficiently to take care of
linearity. It becomes LP Simplex method if problem is totally

linear. Also, very efficient matrix routines.

2.! No restoration takes place, nonlinear constraints are reflected in

0(z) during step 3). MINOS is more efficient than GRG.

3.! Major iterations (steps 3) - 4)) converge at a quadratic rate.!
4.! Reduced gradient methods are complicated, monolithic codes:

hard to integrate efficiently into modeling software.

!

Representative Constrained Problem – Starting Point [0.8, 0.2]

MINOS Results: 4 major iterations, 11 function calls !
 !to ||'f(x*)|| & 10-6

!

MINOS/Augmented Notes

66

Motivation: !

• !Take KKT conditions, expand in Taylor series about current point.

• !Take Newton step (QP) to determine next point.

!

Derivation – KKT Conditions

'xL (x*, u*, v*) = 'f(x*) + 'gA(x*) u* + 'h(x*) v* = 0

" " h(x*) = 0 "

" " gA(x*) = 0, where gA are the active constraints.

!

Newton - Step!

xx! L
A
g! ! h

A
g!

T 0 0

! h
T

0 0

"

$
$
$
$

%

&

'
'
'
'

(x

(u

(v

"

$
$
$

%

&

'
'
'
 = -

x! L k
x , ku , kv()

Ag k
x()

h kx()

"

$
$
$
$

%

&

'
'
'
'

Requirements:

•! 'xxL must be calculated and should be $regular#

•!correct active set gA

•!good estimates of uk, vk

Successive Quadratic Programming (SQP)

67

1. !Wilson (1963)

 - !active set can be determined by solving QP:

" "Min "'f(xk)
Td + 1/2 dT 'xx L(xk, uk, vk) d

" " d

" "s.t. "g(xk) + 'g(xk)
T d ! 0

" " " "h(xk) + 'h(xk)
T d = 0

"

2. !Han (1976), (1977), Powell (1977), (1978)

 - !approximate 'xxL using a positive definite quasi-Newton update (BFGS)

 - !use a line search to converge from poor starting points.!

Notes:

 - !Similar methods were derived using penalty (not Lagrange) functions.

 - !Method converges quickly; very few function evaluations.

 - !Not well suited to large problems (full space update used). !

 For n > 100, say, use reduced space methods (e.g. MINOS).!

SQP Chronology

68

What about 'xxL?

• !need to get second derivatives for f(x), g(x), h(x).

• !need to estimate multipliers, uk, vk; 'xxL may not be positive !

 semidefinite

0!Approximate 'xxL (xk, uk, vk) by Bk, a symmetric positive !

 definite matrix.

BFGS Formula !s = xk+1 - xk

" " "y = 'L(xk+1, uk+1, vk+1) - 'L(xk, uk+1, vk+1)

• second derivatives approximated by change in gradients!
• positive definite Bk ensures unique QP solution

Elements of SQP – Hessian Approximation

!

k+1

B =
k

B +

T
yy
T
s y

 -

k
B s T

s
k

B
k

s B s

69

How do we obtain search directions?

• !Form QP and let QP determine constraint activity

• !At each iteration, k, solve:

! !Min "'f(xk) Td + 1/2 dT Bkd

" " d

" "s.t. "g(xk) + 'g(xk) T d ! 0

" " "h(xk) + 'h(xk) T d = 0

"

Convergence from poor starting points

• As with Newton's method, choose ! (stepsize) to ensure progress !

 toward optimum: xk+1 = xk + " d.

• ! is chosen by making sure a merit function is decreased at each !

 iteration.

!Exact Penalty Function

!0(x) = f(x) + µ [1 max (0, gj(x)) + 1 |hj (x)|]

" " µ > maxj {| uj |, | vj |}

!Augmented Lagrange Function

!0(x) = f(x) + uTg(x) + vTh(x)

" " "+ 2/2 {1 (hj (x))2 + 1 max (0, gj (x))2}!

Elements of SQP – Search Directions

70

Fast Local Convergence

B = 'xxL ! ! !Quadratic

'xxL is p.d and B is Q-N ! !1 step Superlinear

B is Q-N update, 'xxL not p.d !2 step Superlinear

!

Enforce Global Convergence

Ensure decrease of merit function by taking ! & 1

Trust region adaptations provide a stronger guarantee of global

convergence - but harder to implement.

Newton-Like Properties for SQP

71

0. !Guess x0, Set B0 = I (Identity). Evaluate f(x0), g(x0) and h(x0).

1. !At xk, evaluate 'f(xk), 'g(xk), 'h(xk).

2. !If k > 0, update Bk using the BFGS Formula.

3. !Solve: "Mind 'f(xk)Td + 1/2 dTBkd

" " "s.t. "g(xk) + 'g(xk)Td + 0

" " " "h(xk) + 'h(xk)Td = 0

!If KKT error less than tolerance: ||'L(x*)|| 3 5, ||h(x*)|| 3 5,

-||g(x*)+|| 3 5. STOP, else go to 4.

4. !Find ! so that 0 < ! 3 1 and 0(xk + "d) < 0(xk) sufficiently !

 (Each trial requires evaluation of f(x), g(x) and h(x)).

5. !xk+1 = xk + " d. Set k = k + 1 Go to 2.!

Basic SQP Algorithm

72

Nonsmooth Functions - Reformulate

Ill-conditioning - Proper scaling

Poor Starting Points – Trust Regions can help

Inconsistent Constraint Linearizations

- !Can lead to infeasible QP's

x2

x1

Min "x2

s.t. 1 + x1 - (x2)
2 ! 0

" 1 - x1 - (x2)
2 ! 0

" x2 $ -1/2

Problems with SQP

73

SQP Test Problem

1.21.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

Min !x2

s.t. !-x2 + 2 x1
2 - x1

3 & 0

 -x2 + 2 (1-x1)
2 - (1-x1)

3 & 0

 x* = [0.5, 0.375].

74

SQP Test Problem – First Iteration

1.21.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

Start from the origin (x0 = [0, 0]T) with B0 = I, form: !

Min " d2 + 1/2 (d1
2 + d2

2)

s.t. "d2 $ 0 " " "

" "d1 + d2 $ 1

" "d = [1, 0]T. with µ1 = 0 and µ2 = 1.

75

1.21.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

From x1 = [0.5, 0]T with B1 = I "

(no update from BFGS possible), form: !

Min " d2 + 1/2 (d1
2 + d2

2)

s.t." "-1.25 d1 - d2 + 0.375 ! 0

 1.25 d1 - d2 + 0.375 ! 0

d = [0, 0.375]T with µ1 = 0.5 and µ2 = 0.5

" "x* = [0.5, 0.375]T is optimal

SQP Test Problem – Second Iteration

76

Representative Constrained Problem

SQP Convergence Path

Starting Point [0.8, 0.2] - starting from B0 = I and staying in bounds !!

and linearized constraints; converges in 8 iterations to ||'f(x*)|| ! 10-6

77

Barrier Methods for Large-Scale

Nonlinear Programming

0

0)(s.t

)(min

!

=

"#

x

xc

xf
nx

Original Formulation

0)(s.t

ln)()(min
1

=

!= "
=

#$

xc

xxfx
n

i

i
x n

µ%µBarrier Approach

Can generalize for

a ! x ! b

0!As µ " 0, x*(µ) ! x* Fiacco and McCormick (1968)

78

Solution of the Barrier Problem

0!Newton Directions (KKT System)

0)(

0

0)()(

=

=!

=!+"

xc

eXv

vxAxf

µ

#

0!Solve

!
!
!

"

#

$
$
$

%

&

'

'+(

'=

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

& '

eXv

c

vAf

d

d

d

XV

A

IAW x

T

0

00

µ

)

*

)

0! Reducing the System

xv
VdXveXd
11 !!

!!= µ

!
"

#
$
%

&'
(=!

"

#
$
%

&
!
"

#
$
%

&)+
+

c

d

A

AW
x

T

µ*

+

0
VX
1!

="

IPOPT Code – www.coin-or.org

),,x(LW),x(cA

)x(diagX...],,,[e

xx

T

!"#=#=

==

 1 1 1

79

Global Convergence of Newton-based
Barrier Solvers

 Merit Function

Exact Penalty: P(x, 2) = f(x) + 2 ||c(x)||

Aug#d Lagrangian: L*(x, #, 2) = f(x) + #Tc(x) + 2 ||c(x)||2

Assess Search Direction (e.g., from IPOPT)

Line Search – choose stepsize " to give sufficient decrease of merit function
using a $step to the boundary# rule with 6 ~0.99.

•! How do we balance 3 (x) and c(x) with 2?

•! Is this approach globally convergent? Will it still be fast?

)(

0)1(

0)1(

],,0(for

1

1

1

kkk

kvkk

kxk

xkk

vdvv

xdx

dxx

!!"!!

#"

#"

"""

$+=

>$%+=

>$%+

+=&

++

+

+

80

Global Convergence Failure
(Wächter and B., 2000)

0 ,

01)(

0
2

1
 ..

)(

32

2

2

1

31

!

=""

=""

xx

xx

xxts

xfMin

x1

x2

0

0)()(

>+

=+

x

k

k

x

Tk

dx

xcdxA

!

Newton-type line search $stalls#

even though descent directions

exist

Remedies:

•!Composite Step Trust Region
(Byrd et al.)

•!Filter Line Search Methods

81

Line Search Filter Method

Store (7k, 8k) at allowed iterates

Allow progress if trial point is
acceptable to filter with 8 margin

If switching condition

is satisfied, only an Armijo line
search is required on 7k

If insufficient progress on stepsize,
evoke restoration phase to reduce 8.

Global convergence and superlinear
local convergence proved (with
second order correction)

22,][][>>!"# bad
b

k

aT

k
$%&'

7(x)

8(x) = ||c(x)||

82

Implementation Details

Modify KKT (full space) matrix if singular

-

-

-

•! 91 - Correct inertia to guarantee descent direction

•! 92 - Deal with rank deficient Ak

KKT matrix factored by MA27

Feasibility restoration phase

Apply Exact Penalty Formulation

Exploit same structure/algorithm to reduce infeasibility

!
"

#
$
%

&

'

+(+

IA

AW

T

k

kkk

2

1

)

)

ukl

Qk

xxx

xxxcMin

!!

"+
2

1 ||||||)(||

83

IPOPT Algorithm – Features

Line Search Strategies for
Globalization

- l2 exact penalty merit function

- augmented Lagrangian merit function

- Filter method (adapted and extended
from Fletcher and Leyffer)

Hessian Calculation

- BFGS (full/LM and reduced space)

- SR1 (full/LM and reduced space)

- Exact full Hessian (direct)

- Exact reduced Hessian (direct)

- Preconditioned CG

Algorithmic Properties
Globally, superlinearly

convergent (Wächter and B.,
2005)

Easily tailored to different

problem structures

Freely Available

CPL License and COIN-OR

distribution: http://www.coin-
or.org

IPOPT 3.1 recently rewritten

in C++

Solved on thousands of test

problems and applications

84

IPOPT Comparison on 954 Test Problems

!"!!!!!!!!!!!!!!!#!!!!!!!!!!!!!!!!$!!!!!!!!!!!!!!!!%!!!!!!!!!!!!!!!"&!!!!!!!!!!!!!!'#!!!!!!!!!!!!&$!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !(!!!!

P
e
rc

e
n
t
s
o
lv

e
d
 w

it
h
in

 S
*(

m
in

.
C

P
U

 t
im

e
)

100

80

60

40

20

0

85

Recommendations for Constrained Optimization

!

1. !Best current algorithms

•! GRG 2/CONOPT

•! MINOS

•! SQP!
•! IPOPT

2. !GRG 2 (or CONOPT) is generally slower, but is robust. Use with highly

nonlinear functions. Solver in Excel!

3. !For small problems (n & 100) with nonlinear constraints, use SQP.

4.! For large problems (n $ 100) with mostly linear constraints, use MINOS.
==> Difficulty with many nonlinearities

Small, Nonlinear Problems - SQP solves QP's, not LCNLP's, fewer function calls.
Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition.

Works efficiently in reduced space if function calls are cheap!
Exploit Both Features – IPOPT takes advantages of few function evaluations and large-

scale linear algebra, but requires exact second derivatives

Fewer Function

Evaluations

Tailored Linear

Algebra

86

SQP Routines

HSL, NaG and IMSL (NLPQL) Routines

NPSOL – Stanford Systems Optimization Lab

SNOPT – Stanford Systems Optimization Lab (rSQP discussed later)

IPOPT – http://www.coin-or.org

GAMS Programs

CONOPT - Generalized Reduced Gradient method with restoration

MINOS - Generalized Reduced Gradient method without restoration
A student version of GAMS is now available from the CACHE office. The cost for this package

including Process Design Case Students, GAMS: A User's Guide, and GAMS - The Solver Manuals,

and a CD-ROM is $65 per CACHE supporting departments, and $100 per non-CACHE supporting

departments and individuals. To order please complete standard order form and fax or mail to

CACHE Corporation. More information can be found on http://www.che.utexas.edu/cache/gams.html

"

MS Excel

Solver uses Generalized Reduced Gradient method with restoration!

Available Software for Constrained
Optimization

87

1) !Avoid overflows and undefined terms, (do not divide, take logs, etc.)
!e.g. !x + y - ln z = 0 " !x + y - u = 0

! ! ! ! !exp u - z = 0
2) !If constraints must always be enforced, make sure they are linear or bounds.

!e.g. !v(xy - z2)1/2 = 3 !" !vu = 3
! ! ! ! ! !u2 - (xy - z2) = 0, u $ 0

3) !Exploit linear constraints as much as possible, e.g. mass balance

! !xi L + yi V = F zi ! li + vi = fi

" " " " L – 4 li = 0"

4) !Use bounds and constraints to enforce characteristic solutions.

! e.g. !a ! x ! b, g (x) ! 0
! to isolate correct root of h (x) = 0."

5)! Exploit global properties when possibility exists. Convex (linear equations?)!
 Linear Program? Quadratic Program? Geometric Program?!

6) !Exploit problem structure when possible.

!e.g. !Min "[Tx - 3Ty]
" "s.t. "xT + y - T2 y = 5

" " "4x - 5Ty + Tx = 7
" " "0 ! T ! 1

 ! !(If T is fixed 0 solve LP) 0 put T in outer optimization loop.!

Rules for Formulating Nonlinear Programs

88

State of Nature and Problem Premises

Restrictions: Physical, Legal

Economic, Political, etc.
Desired Objective: Yield,

Economic, Capacity, etc.

Decisions

Process Model Equations

Constraints Objective Function

Additional Variables

Process Optimization

Problem Definition and Formulation

Mathematical Modeling and Algorithmic Solution

89

Hierarchy of Nonlinear Programming
Formulations and Model Intrusion

CLOSED

OPEN

Decision Variables

101 102 103

Black Box

Direct Sensitivities

Multi-level Parallelism

SAND Tailored

Adjoint Sens & SAND Adjoint

SAND Full Space Formulation

100

Compute

Efficiency

90

Large Scale NLP Algorithms
Motivation: Improvement of Successive Quadratic Programming
as Cornerstone Algorithm

! process optimization for design, control and operations

Evolution of NLP Solvers:

1981-87: Flowsheet optimization
 over 100 variables and constraints

1988-98: Static Real-time optimization
 over 100 000 variables and constraints
2000 - : Simultaneous dynamic optimization
 over 1 000 000 variables and constraints

SQP rSQP IPOPT

rSQP++

Current: Tailor structure, architecture and problems

IPOPT 3.x

91

In Out

Modular Simulation Mode

Physical Relation to Process
"

- Intuitive to Process Engineer

- Unit equations solved internally

- tailor-made procedures.

•!Convergence Procedures - for simple flowsheets, often identified!

 from flowsheet structure

•!Convergence "mimics" startup.

•!Debugging flowsheets on "physical" grounds

Flowsheet Optimization Problems - Introduction

92

C

1

3

2
4

Design Specifications

!Specify # trays reflux ratio, but would like to specify

!overhead comp. ==> Control loop -Solve Iteratively

•!Frequent block evaluation can be expensive!

•!Slow algorithms applied to flowsheet loops.!

•!NLP methods are good at breaking loops

Flowsheet Optimization Problems - Features

Nested Recycles Hard to Handle

Best Convergence Procedure?!

93

Chronology in Process Optimization

! ! ! ! ! !Sim. Time Equiv.

1. Early Work - Black Box Approaches !

!Friedman and Pinder (1972) ! ! !75-150

!Gaddy and co-workers (1977) ! ! !300

2. Transition - more accurate gradients

!Parker and Hughes (1981)! ! ! !64

!Biegler and Hughes (1981) ! ! !13

3. Infeasible Path Strategy for Modular Simulators

!Biegler and Hughes (1982) ! ! !<10

!Chen and Stadtherr (1985)

!Kaijaluoto et al. (1985)

! !and many more

4. Equation Based Process Optimization

!Westerberg et al. (1983) ! ! ! !<5

!Shewchuk (1985)! ! ! ! ! 2

!DMO, NOVA, RTOPT, etc. (1990s)! !1-2!

Process optimization should be as cheap and easy as process simulation

94

Aspen Custom Modeler (ACM)

Aspen/Plus

gProms

Hysim/Hysys

Massbal

Optisim

Pro/II

ProSim

ROMeo

VTPLAN

Process Simulators with Optimization
Capabilities (using SQP)

95

4

3 2

1

5

6

h (y) = 0

w(y) y

f(x, y(x))

x

Simulation and Optimization of Flowsheets

Min f(x), s.t. g(x) ! 0

For single degree of freedom:

• !work in space defined by curve below.
• !requires repeated (expensive) recycle convergence

"

96

Expanded Region with Feasible Path

"

97

!

"Black Box" Optimization Approach

• Vertical steps are expensive (flowsheet convergence)

• Generally no connection between x and y.
• Can have "noisy" derivatives for gradient optimization.

98

SQP - Infeasible Path Approach

• solve and optimize simultaneously in x and y

• extended Newton method

99

Architecture

 - "Replace convergence with optimization block

 - "Problem definition needed (in-line FORTRAN)

 - "Executive, preprocessor, modules intact.!

Examples

1. !Single Unit and Acyclic Optimization

 - !Distillation columns & sequences

!

2. !"Conventional" Process Optimization !

 - Monochlorobenzene process!

 - NH3 synthesis

!

3. !Complicated Recycles & Control Loops

 - !Cavett problem

 - !Variations of above

Optimization Capability for Modular Simulators
(FLOWTRAN, Aspen/Plus, Pro/II, HySys)

100

S06
HC1

A-1
ABSORBER

15 Trays

(3 Theoret ical Stages)

32 psia

P

S04
Fe ed

80
o
F

37 psia

T

270
o

F

S01 S02

Steam

360
o

F

H-1

U = 100

Maximize

Profit

Fe ed F low Rates

LB Moles/Hr

HC1 10
Benzene 40
MCB 50

S07

S08

S05

S09

HC1

T-1

TREATER

 F-1
FLASH

S03

S10

25

ps ia

S12

S13
S15

P-1

C

120
0

F

T

MCB

S14

U = 100 Cooling

Water

80
o

F

S11

Benzene,

0.1 Lb Mole/Hr

of MC B

D-1
DISTILLATION

30 Trays

(20 Theoreti cal Stages)

Steam
360

o
F

12,000

Btu/hr- ft
2

90
o
F

H-2
U = 100

Water
80

o
F

PHYSICAL PROPERTY OPTIONS"

Cavett Vapor Pressure!

Redlich-Kwong Vapor Fugacity!

Corrected Liquid Fugacity!

Ideal Solution Activity Coefficient!

OPT (SCOPT) OPTIMIZER"

Optimal Solution Found After 4 Iterations!

Kuhn-Tucker Error ! 0.29616E-05!

Allowable Kuhn-Tucker Error 0.19826E-04!

Objective Function -0.98259!

!

!

Optimization Variables"

32.006 0.38578 200.00 !120.00!

Tear Variables"

0.10601E-19 13.064 79.229 120.00 50.000!

Tear Variable Errors (Calculated Minus Assumed)!

-0.10601E-19 0.72209E-06!

-0.36563E-04 0.00000E+00 !0.00000E+00!

-Results of infeasible path optimization!

-Simultaneous optimization and convergence of tear streams.

Optimization of Monochlorobenzene Process

101

H
2

N2

Pr

Tr

To

T Tf f

!

Prod uc t

Hydrogen and Nitrogen feed are mixed, compressed, and combined

with a recycle stream and heated to reactor temperature. Reaction

occurs in a multibed reactor (modeled here as an equilibrium reactor)

to partially convert the stream to ammonia. The reactor effluent is

cooled and product is separated using two flash tanks with intercooling.

Liquid from the second stage is flashed at low pressure to yield high

purity NH3 product. Vapor from the two stage flash forms the recycle

and is recompressed.

Ammonia Process Optimization

!Hydrogen Feed Nitrogen Feed

N2 ! 5.2% ! 99.8%

H2 !94.0% ! ---

CH4 !0.79 % ! 0.02%

Ar ! --- ! 0.01% !

102

Optimization Problem"

"

Max !{Total Profit @ 15% over five years}

! ! ! !

s.t.! !• 105 tons NH3/yr.

! !• Pressure Balance

! !• No Liquid in Compressors

! !• 1.8 & H2/N2 & 3.5!

 • Treact & 1000o F

! !• NH3 purged & 4.5 lb mol/hr

 • NH3 Product Purity $ 99.9 %

 • Tear Equations

Performance Characterstics"

• 5 SQP iterations.

• 2.2 base point simulations.
• objective function improves by

$20.66 x 106 to $24.93 x 106.

• difficult to converge flowsheet !
 at starting point

Item! Optimum Starting point

Objective Function($106) 24.9286 20.659
1. Inlet temp. reactor (oF) 400 400
2. Inlet temp. 1st flash (oF) 65 65
3. Inlet temp. 2nd flash (oF) 35 35
4. Inlet temp. rec. comp. (oF) 80.52 107
5. Purge fraction (%) 0.0085 0.01
6. Reactor Press. (psia) 2163.5 2000
7. Feed 1 (lb mol/hr) 2629.7 2632.0
8. Feed 2 (lb mol/hr) 691.78 691.4

Ammonia Process Optimization

103

Recognizing True Solution

• !KKT conditions and Reduced Gradients determine true solution

• !Derivative Errors will lead to wrong solutions!!

Performance of Algorithms

Constrained NLP algorithms are gradient based !

 (SQP, Conopt, GRG2, MINOS, etc.)

Global and Superlinear convergence theory assumes accurate gradients!

!

Worst Case Example (Carter, 1991)!

Newton#s Method generates an ascent direction and fails for any , !!

How accurate should gradients be for optimization?

)(

)()()(

)(]11[

/1/1

/1/1

)(

0

1

00

000

xgAd

Oxfxg

xxfx

A

AxxxfMin

T

T

!!=

+"=

="=

#
$

%
&
'

(

+!

!+
=

=

)

)

))))

)))) -g0"

dactual"

d id
ea

l"

0
f!"

2)/1()(!" =A

104

Implementation of Analytic Derivatives

Module Equations

c(v, x, s, p, y) = 0

Sensitivity

Equations

x y

parameters, p exit variables, s

dy/dx
ds/dx
dy/dp
ds/dp

Automatic Differentiation Tools

JAKE-F, limited to a subset of FORTRAN (Hillstrom, 1982)
DAPRE, which has been developed for use with the NAG library (Pryce, Davis, 1987)

ADOL-C, implemented using operator overloading features of C++ (Griewank, 1990)
ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code .

TAPENADE, web-based source transformation for FORTRAN code

Relative effort needed to calculate gradients is not n+1 but about 3 to 5

(Wolfe, Griewank)

105

S1 S2

S3

S7

S4
S5

S6

P

Ratio

M ax S3(A) *S3(B) - S3(A) - S3(C) + S3(D) - (S 3(E))
2 2 3 1/2

M ix er
Flas h

1 2
0

100

200

GRG

SQP

r SQP

Nu merical Exact

C
P

U
 S

e
c
o

n
d

s
(V

S
 3

2
0

0
)

Flash Recycle Optimization

(2 decisions + 7 tear variables)

"

1 2
0

2000

4000

6000

8000

GRG

SQP

r SQP

Nu merical Exact

C
P

U
 S

e
c
o

n
d

s
(V

S
 3

2
0

0
)

Reac tor

Hi P

Flas h

Lo P

Flas h

Ammonia Process Optimization

(9 decisions and 6 tear variables)

106

Min f(z) Min 'f(zk)T d + 1/2 d T Wk d

s.t. c(z)=0 s.t. c(zk) + (5k)T d = 0

 zL ! z ! zU zL ! zk + d ! zU

Characteristics

• Many equations and variables (! 100 000)

• Many bounds and inequalities (! 100 000)

Few degrees of freedom (10 - 100)

Steady state flowsheet optimization!

Real-time optimization

Parameter estimation!

Many degrees of freedom ($ 1000)

Dynamic optimization (optimal control, MPC)

State estimation and data reconciliation

Large-Scale SQP

107

• !Take advantage of sparsity of A='c(x)

• !project W into space of active (or equality constraints)

• !curvature (second derivative) information only needed in space of degrees of !

 freedom

• !second derivatives can be applied or approximated with positive curvature !

 (e.g., BFGS)

• !use dual space QP solvers!

+ easy to implement with existing sparse solvers, QP methods and line search !

 techniques

+ exploits 'natural assignment' of dependent and decision variables (some !

 decomposition steps are 'free')

+ does not require second derivatives

!

- reduced space matrices are dense

- may be dependent on variable partitioning

- can be very expensive for many degrees of freedom

- can be expensive if many QP bounds!

Few degrees of freedom => reduced space SQP (rSQP)

108

"

Reduced space SQP (rSQP)

Range and Null Space Decomposition

!
"

#
$
%

&'
(=!

"

#
$
%

&
!
"

#
$
%

&

+)(

)(

0 k

k

Tk

kk

xc

xfd

A

AW

)

Assume no active bounds, QP problem with n variables and m
constraints becomes:

•! Define reduced space basis, Zk! *n x (n-m) with (Ak)TZk = 0

•! Define basis for remaining space Yk! *n x m, [Yk Zk]!*n x n

 is nonsingular.

•! Let d = Yk dY + Zk dZ to rewrite:

[] [] []
!
"

#
$
%

&'

!
!
"

#

$
$
%

&
(=

!
!

"

#

$
$

%

&

!
"

#
$
%

&
!
"

#
$
%

&

!
!
"

#

$
$
%

&

+

)x(c

)x(f

I

ZY
d

d

I

ZY

A

AW

I

ZY
k

kTkk

Z

Ykk

Tk

kkTkk

0

0

0

0

00

0 !!!!!!

)

109

Reduced space SQP (rSQP)
Range and Null Space Decomposition

•! (ATY) dY =-c(xk) is square, dY determined from bottom row.!

•! Cancel YTWY and YTWZ; (unimportant as dZ, dY --> 0)

•! (YTA) # = -YT'f(xk), # can be determined by first order estimate!

•! Calculate or approximate w= ZTWY dY, solve ZTWZ dZ =-ZT'f(xk) - w

•! Compute total step: d = Y dY + Z dZ!

!
!
!

"

#

$
$
$

%

&

'

'
(=

!
!

"

#

$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

+)x(c

)x(fZ

)x(fY

d

d

YA

ZWZYWZ

AYZWYYWY

k

kTk

kTk

Z

Y

kTk

kkTkkkTk

kTkkkTkkkTk

)00

0

0- 0-

110

Range and Null Space Decomposition

• !SQP step (d) operates in a higher dimension

• !Satisfy constraints using range space to get dY

• !Solve small QP in null space to get dZ

• !In general, same convergence properties as SQP.!

Reduced space SQP (rSQP) Interpretation

dY

dZ

111

1. Apply QR factorization to A. Leads to dense but well-conditioned Y and Z.

2. Partition variables into decisions u and dependents v. Create

orthogonal Y and Z with embedded identity matrices (ATZ = 0, YTZ=0).!

3. Coordinate Basis - same Z as above, YT = [0 I]"

• !Bases use gradient information already calculated.

• !Adapt decomposition to QP step

• !Theoretically same rate of convergence as original SQP.

• !Coordinate basis can be sensitive to choice of u and v. Orthogonal is not.

• !Need consistent initial point and nonsingular C; automatic generation

Choice of Decomposition Bases

[] !
"

#
$
%

&
=!

"

#
$
%

&
=

00

R
ZY

R
QA

[] []

!
"

#
$
%

&
=!

"

#
$
%

&

'
=

=((=

'

'
I

CN
Y

NC

I
Z

CNccA

TT

T

v

T

u

T

1

112

1.! Choose starting point x0.

2.! At iteration k, evaluate functions f(xk), c(xk) and their gradients.

3. ! Calculate bases Y and Z.

4.! Solve for step dY in Range space from !

" " "(ATY) dY =-c(xk) !

5.! Update projected Hessian Bk ~ ZTWZ (e.g. with BFGS), wk (e.g., zero)

6.! Solve small QP for step dZ in Null space.!

7.! If error is less than tolerance stop. Else!

8.! Solve for multipliers using (YTA) # = -YT'f(xk)

9.! Calculate total step d = Y dY + Z dZ.

10.! Find step size " and calculate new point, xk+1 = xk + " d!

13. Continue from step 2 with k = k+1.!

rSQP Algorithm

UZY

k

L

Z

kT

ZZ

TkkT

xZdYdxxts

dBddwxfZMin

!++!

++"

 ..

2/1))((

113

rSQP Results: Computational Results for

General Nonlinear Problems
Vasantharajan et al (1990)

114

rSQP Results: Computational Results

for Process Problems
Vasantharajan et al (1990)

115

Coupled Distillation Example - 5000 Equations

Decision Variables - boilup rate, reflux ratio!

!Method CPU Time Annual Savings Comments

1. ! !SQP* !2 hr ! negligible ! Base Case

2. ! !rSQP !15 min. ! $ 42,000 ! Base Case

3. ! !rSQP !15 min. ! $ 84,000 ! Higher Feed Tray Location

4. ! !rSQP !15 min. ! $ 84,000 ! Column 2 Overhead to Storage

5. ! !rSQP !15 min ! $107,000 ! Cases 3 and 4 together!

18

10

1

QVK
Q
VK

Comparison of SQP and rSQP

116

!"#$% &!'" (() *"+%'(!&, '

)&-'.!"/ /*!"' '/ ".#!#%&!

!
"
#$
%&
'
(

)
&
*+
,$
"
&
-
.

!"0)"

&1)

!"(&!,"!

+#.2% 2#

-
/0
-
1,
,

'!
%*
2
2#
"

3$4

5$4

$6

, 17"8').9

(*")'9#/

)192%'

+#.2% 2#

&
3
'4

"
3
#"
0

'2
"
*!
!
#"

5
#3
6
2&

+
*7
#
"

5
*3

• square parameter case to fit the model to operating data. !
• optimization to determine best operating conditions

Existing process, optimization on-line at regular intervals: 17 hydrocarbon
components, 8 heat exchangers, absorber/stripper (30 trays), debutanizer (20
trays), C3/C4 splitter (20 trays) and deisobutanizer (33 trays).

Real-time Optimization with rSQP
Sunoco Hydrocracker Fractionation Plant

(Bailey et al, 1993)

117

Model consists of 2836 equality constraints and only ten independent variables. It
is also reasonably sparse and contains 24123 nonzero Jacobian elements.

P = z
i
C
i

G

i!G

" + z
i
C
i

E

i!E

" + z
i
C
i

P
m

m=1

NP

" # U

Cases Considered:

1. Normal Base Case Operation

2. Simulate fouling by reducing the heat exchange coefficients for the debutanizer

3. Simulate fouling by reducing the heat exchange coefficients for splitter !

 feed/bottoms exchangers

4. Increase price for propane

5. Increase base price for gasoline together with an increase in the octane credit

Optimization Case Study Characteristics

118

119

Nonlinear Optimization Engines

Evolution of NLP Solvers:

! process optimization for design, control and operations

#80s: Flowsheet optimization
 over 100 variables and constraints
$90s: Static Real-time optimization (RTO)
 over 100 000 variables and constraints
#00s: Simultaneous dynamic optimization
 over 1 000 000 variables and constraints

SQP rSQP IPOPT

120

Many degrees of freedom => full space IPOPT

• !work in full space of all variables

• !second derivatives useful for objective and constraints

• !use specialized large-scale Newton solver!

+ W='xxL(x,#) and A='c(x) sparse, often structured

+ fast if many degrees of freedom present

+ no variable partitioning required!

- second derivatives strongly desired

- W is indefinite, requires complex stabilization

- requires specialized large-scale linear algebra

!
"

#
$
%

&'
(=!

"

#
$
%

&
!
"

#
$
%

&)+

+)(

)(

0 k

k

Tk

kk

xc

xd

A

AW *

+

121

GAS STATIONS

Final Product tanks

Supply tanks

Intermediate tanks

Gasoline Blending Here

Gasoline Blending

OIL TANKS

FINAL PRODUCT TRUCKS

122

Blending Problem & Model Formulation

!

!

Final Product tanks (k) Intermediate tanks (j) Supply tanks (i)

ijtf , jktf ,

jtv ,

itq ,

iq

jtq ,
.. ktq ,

..

kv

ktf ,
..

f & v ------ flowrates and tank volumes

q ------ tank qualities

Model Formulation in AMPL

max
 ,

min

max
 ,

min

0
,,,,

,,,1,1,,,,

0
,,

,,1,,
 s.t.

)

t
,

(, max

jvjtvjv

kqktqkq

j
jkt

f
jt

q
kt

f
kt

q

jt
v
jt

q
jt

v
jt

q

i
ijt

f
it

q

k
jkt

f
jt

q

j
jkt

fktf

jt
v

jt
v

i
ijt

f

k
jkt

f

i
i
c

kt
f

k
k
c itf

!!

!!

="

=
++

+"

="

=
+

+"

#"#

#

##

#

##

#

123

F1

F2

F3

P1

B1

B2

F1

F2

F3

P2

P1

B1

B2

B3

 Haverly, C. 1978 (HM) Audet & Hansen 1998 (AHM)

Small Multi-day Blending Models

Single Qualities

124

Honeywell Blending Model – Multiple Days

48 Qualities

125

Summary of Results – Dolan-Moré plot

Performance profile (iteration count)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1000000 10000000

!

"

IPOPT

LOQO

KNITRO

SNOPT

MINOS

LANCELOT

126

Comparison of NLP Solvers: Data Reconciliation

0.01

0.1

1

10

100

0 200 400 600

Degrees of Freedom

C
P

U
 T

im
e
 (

s
,

n
o

rm
.)

LANCELOT

MINOS

SNOPT

KNITRO

LOQO

IPOPT

0

200

400

600

800

1000

0 200 400 600

Degrees of Freedom

It
e
ra

ti
o

n
s

LANCELOT

MINOS

SNOPT

KNITRO

LOQO

IPOPT

127

Comparison of NLP solvers
(latest Mittelmann study)

117 Large-scale Test Problems

500 - 250 000 variables, 0 – 250 000 constraints

Mittelmann NLP benchmark (10-26-2008)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

log(2)*minimum CPU time

fr
ac

ti
o

n
 s

o
lv

ed
 w

it
h

in

IPOPT

KNITRO

LOQO

SNOPT

CONOPT

 Limits Fail

IPOPT 7 2

KNITRO 7 0

LOQO 23 4

SNOPT 56 11

CONOPT 55 11

128

Typical NLP algorithms and software

SQP - NPSOL, VF02AD, NLPQL, fmincon

reduced SQP - SNOPT, rSQP, MUSCOD, DMO, LSSOL"

Reduced Grad. rest. - GRG2, GINO, SOLVER, CONOPT

Reduced Grad no rest. - MINOS

Second derivatives and barrier - IPOPT, KNITRO, LOQO

Interesting hybrids -

•!FSQP/cFSQP - SQP and constraint elimination

•!LANCELOT (Augmented Lagrangian w/ Gradient Projection)

129

At nominal conditions, p0

!

 Min f(x, p0)
 s.t. c(x, p0) = 0

 a(p0) ! x ! b(p0)

!

How is the optimum affected at other conditions, p % p0?

•! Model parameters, prices, costs

•! Variability in external conditions

•! Model structure

•! How sensitive is the optimum to parametric uncertainties?

•! Can this be analyzed easily?

Sensitivity Analysis for Nonlinear Programming

130

x1

x2

z1

z2

Saddle

Point

x*

- Nonstrict local minimum: If nonnegative, find eigenvectors for zero

eigenvalues, " regions of nonunique solutions

- Saddle point: If any are eigenvalues are negative, move along

directions of corresponding eigenvectors and restart optimization.

Second Order Optimality Conditions:

Reduced Hessian needs to be positive semi-definite

131

IPOPT Factorization Byproducts:
Tools for Postoptimality and Uniqueness

Modify KKT (full space) matrix if nonsingular

-

-

-

•! 91 - Correct inertia to guarantee descent direction

•! 92 - Deal with rank deficient Ak

KKT matrix factored by indefinite symmetric factorization

•!Solution with 91, 92 =0 " sufficient second order conditions

•!Eigenvalues of reduced Hessian all positive – unique
minimizer and multipliers

•!Else:

–! Reduced Hessian available through sensitivity calculations
–! Find eigenvalues to determine nature of stationary point

!
"

#
$
%

&

'

+(+

IA

AIW

T

k

kkk

2

1

)

)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have
been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete
the image and then insert it again.

132

NLP Sensitivity

Parametric Programming

NLP Sensitivity ! Rely upon Existence and Differentiability of Path

 ! Main Idea: Obtain and find by Taylor Series Expansion

Optimality Conditions

Solution Triplet

133

NLP Sensitivity Properties (Fiacco, 1983)

Assume sufficient differentiability, LICQ, SSOC, SC:

 Intermediate IP solution (s(µ)-s*) = O(µ)"

 Finite neighborhood around p0 and µ=0 with same
 active set

 exists and is unique

134

NLP Sensitivity

Optimality Conditions of

Obtaining

! Already Factored at Solution

! Sensitivity Calculation from Single Backsolve

! Approximate Solution Retains Active Set

KKT Matrix IPOPT

 Apply Implicit Function Theorem to around

135

Sensitivity for Flash Recycle Optimization

(2 decisions, 7 tear variables)

S1 S2

S3

S7

S4
S5

S6

P

Ratio

M ax S3(A) *S3(B) - S3(A) - S3(C) + S3(D) - (S 3(E))
2 2 3 1/2

M ix er
Flas h

•!Second order sufficiency test:
•!Dimension of reduced Hessian = 1

•!Positive eigenvalue

•!Sensitivity to simultaneous change in feed rate

 and upper bound on purge ratio

136

Reac tor

Hi P

Flas h

Lo P

Flas h

17

17.5

18

18.5

19

19.5

20

O
b
je

ct
iv

e
F

u
n
ct

io
n

0.
00

1

0.
01 0.
1

Relative perturbation change

Sensitivities vs. Re-optimized Pts

Actual

QP2

QP1

Sensitivity

Ammonia Process Optimization

(9 decisions, 8 tear variables)

•!Second order sufficiency test:
•!Dimension of reduced Hessian = 4

•!Eigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5]
•!Sensitivity to simultaneous change in feed rate

and upper bound on reactor conversion

137

Multi-Scenario Optimization
Coordination

Case 1 Case 2 Case 3 Case 4 Case N

1.! Design plant to deal with different operating scenarios (over time or with

uncertainty)

2. Can solve overall problem simultaneously

•! large and expensive

•! polynomial increase with number of cases

•! must be made efficient through specialized decomposition

3. Solve also each case independently as an optimization problem (inner

problem with fixed design)

•! overall coordination step (outer optimization problem for design)

•! require sensitivity from each inner optimization case with design

 variables as external parameters

Design Under Uncertain Model Parameters

and Variable Inputs

E[P, "] : expected value of an objective function
h : process model equations

g : process model inequalities
y : state variables (x, T, p, etc)

d : design variables (equipment sizes, etc)
#p : uncertain model parameters

#v : variable inputs ! = [!p
T

 !v
T]

z : control/operating variables (actuators, flows, etc)
 (may be fixed or a function of (some) #)

 (single or two stage formulations)

]0),,,(

,0),,,(..

),,,,([min

!

=

"#

$

$

$$

yzdg

yzdhts

yzdPE

Multi-scenario Models for Uncertainty

]0),,,(

,0),,,(..

),,,,([
zd,

!

=

"#

$

$

$$

yzdg

yzdhts

yzdPEMin

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway,
Perkins and Barton (1991), Srinivasan, Bonvin, Visser and Palanki (2002),

Walsh and Perkins (1994, 1996)

Multi-scenario Models for Uncertainty

0),,,(

0),,,(..

),,,()(0

!

=

+"

jjj

jjj

jjj

j

j

yzdg

yzdhts

yzdfdfMin

#

#

#$

z, d

y(8)

Model

8i

yi

Model

8i

yi

Model

8i

yi

Model

8i

yi

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway,
Perkins and Barton (1991), Srinivasan, Bonvin, Visser and Palanki (2002),

Walsh and Perkins (1994, 1996)

Multi-scenario Models for Variability

Some References: Grossmann and coworkers (1983-1991), Ierapetritou,
Acevedo and Pistikopoulos (1996), Pistikopoulos and coworkers (1995-2001)

]0),),(,(

,0),),(,(..

),,),(,([
)z(d,

!

=

"#

$$

$$

$$$
$

yzdg

yzdhts

yzdPEMin

Multi-scenario Models for Variability

0),,,(

0),,,(..

),,,()(0

!

=

+"

jjjj

jjjj

jjjj

j

j

yzdg

yzdhts

yzdfdfMin

#

#

#$

Some References: Grossmann and coworkers (1983-1991), Ierapetritou,
Acevedo and Pistikopoulos (1996), Pistikopoulos and coworkers (1995-2001)

d

z(8), y(8)

Model

8i

zi,yi

Model

8i

Model

8i

Model

8i

zi,yi zi,yi zi,yi

Multi-scenario Models for Both

]0),),(,(

,0),),(,(..

),,),(,([
)(zd,

!

=

"#

$$

$$

$$$
$

yzdg

yzdhts

yzdPEMin

v

v

v
v

Some References: Ostrovsky, Volin, Achenie (2003), Rooney, B. (2003)

Multi-scenario Models for Both

Some References: Ostrovsky, Volin, Achenie (2003), Rooney, B. (2003)

d

z(8v), y(8)

Model

8k, 8i

zk,yik

Model Model Model

zk,yik zk,yik zk,yik

8k, 8i 8k, 8i 8k, 8i

0),,,,(

0),,,,(..

),,,,()(

,,

,,

,,

,

0

=

=

+!

ipkvikkik

ipkvikkik

ipkvikkik

ki

ik

yzdg

yzdhts

yzdfdfMin

""

""

""#

Example: Williams-Otto Process
(Rooney, B., 2003)

GCP

EPBC

CBA

a

a

a

3

2

1

!+

+!+

!+

GCP

EPBC

CBA

a

a

a

3

2

1

!+

+!+

!+

Uncertainty and Variability: Williams-Otto Process
(Rooney, B., 2003)

30

32

34

36

38

40

42

0 0.05 0.1

Level of Unc./Var. (!)

O
b

je
c

ti
v

e

Uncertainty

Variability

Both

Solving Multi-scenario Problems:

Interior Point Method

0 ,0),,,(

0),,,(..

),,,()(0

!=+

=

+"

jjjjjj

jjjj

jjjj

j

j

ssyzdg

yzdhts

yzdfdfMin

#

#

#$

0, ,0),(..

),()(0

!=

+"

jjj

jj

j

j

xpxpcts

xpfpfMin #

0),(..

lnln),()(
,,

0

=

!
"
#

$
%
&

+'+ (((

jj

lj

l

lj

l

jjj

j

j

xpcts

pxxpfpfMin µ)

],[)](),([0 pxpx
iii
!"! µµµ

Newton Step for IPOPT

!
"

#
$
%

&

'

''
= T

ip

xpx

i
c

cL
w ii

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

'=

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

p

N

p

N

p

T

N

TTT

NN

r

r

r

r

r

u

u

u

u

u

Kwwww

wK

wK

wK

wK

......

...

......

3

2

1

3

2

1

321

33

22

11

!
!
"

#

$
$
%

&

'

'+'
=

(

0),(

),())((1

,

Tkk

iix

kk

iix

k

i

k

i

k

xx

i
pxc

pxcVXL
K

i

iii

!
!
"

#

$
$
%

&

'

'+'
=

(

0

)(1

,

T

p

p

k

p

kk

pp

p
c

cVPL
K

!
"

#
$
%

&

'

'
=

i

i

i

x
u

(!
"

#
$
%

&

'

'
=

(

p
u
p

Schur Complement Decomposition Algorithm

piiii

i

ii

T

ipp

i

ii

T

ipp

uwruK.

rKwruwKwK.

!"=!

"=!#
#
$

%
&
&
'

(
")) ""

 2

 1
11

Key Steps

1.

IPOPT
Line Search

& reduction of µ-

2.

Computational cost is linear in number of periods
Trivial to parallelize

Evaluate functions and derivatives

150

Nonlinear Optimization Engines

Evolution of NLP Solvers:

! process optimization for design, control and operations

#80s: Flowsheet optimization
 over 100 variables and constraints
$90s: Static Real-time optimization (RTO)
 over 100 000 variables and constraints
#00s: Simultaneous dynamic optimization
 over 1 000 000 variables and constraints

SQP rSQP IPOPT

Object Oriented Codes to tailor structure, architecture to problems

IPOPT 3.x

Min f0(d) + 1i fi(d, xi)

s.t. hi(xi, d) = 0, i = 1,… N

 gi(xi, d) ! 0, i = 1,… N

"r(d) ! 0

Variables:

x: state (z) and control (u) variables in each operating period

d: design variables (e. g. equipment parameters) used!

9i: substitute for d in each period and add 9i = d

Multi-scenario Design Model

Composite NLP!

Min 1i (fi(6i, xi) + f0(6i)/N)

s.t. hi(xi, 6i) = 0, i = 1,… N

 gi(xi, 6i) +si = 0, i = 1,… N"

 0 ! si, d – 6i=0, i = 1,… N

"r(d) ! 0"

Internal Decomposition

Implementation

•! Water Network Base Problem

–! 36,000 variables

–! 600 common variables

•! Testing

–! Vary # of scenarios

–! Vary # of common variables

NLP

Interface
NLP Algorithm

Multi-scenario
NL P

Linear Algebra

Interface

Default

Linear Algebra

Block-Bordered

Linear Solver

1 2 3 4 5
Composite NLPs

153

Parallel Schur-Complement
Scalability

Multi-scenario Optimization

•! Single Optimization over many
scenarios, performed on parallel
cluster

Water Network Case Study

•! 1 basic model

–! Nominal design optimization

•! 32 possible uncertainty scenarios

–! Form individual blocks

Determine Injection time profiles as
common variables

Characteristics

•! 36,000 variables per scenario

•! 600 common variables

154

Optimization Algorithms
-Unconstrained Newton and Quasi Newton Methods

-KKT Conditions and Specialized Methods

-Reduced Gradient Methods (GRG2, MINOS)

-Successive Quadratic Programming (SQP)

-Reduced Hessian SQP
-Interior Point NLP (IPOPT)

Process Optimization Applications

-Modular Flowsheet Optimization

-Equation Oriented Models and Optimization
-Realtime Process Optimization

-Blending with many degrees of freedom

Further Applications
-Sensitivity Analysis for NLP Solutions

-Multi-Scenario Optimization Problems

Summary and Conclusions

