Errata for "Nonlinear Programming: Concepts, Algorithms and Applications to Chemical Engineering"

- p. 28, line 11: change " $f(x)=x^{4} \cos (1 / x)$ " to " $f(x)=x^{4}(2+\cos (1 / x))$ "
- pp. 27-30, various places: change " $p^{T} \nabla^{2} f\left(x^{*}+\tau p\right)^{T} p<0$ " to " $p^{T} \nabla^{2} f\left(x^{*}+\tau p\right) p<0$ " and " $p^{T} \nabla^{2} f\left(x^{*}+t p\right)^{T} p<0$ " to " $p^{T} \nabla^{2} f\left(x^{*}+t p\right) p<0$ "
- p. 29, line 26: change " $\frac{t^{2}}{2} p^{T} \nabla^{2} f(x+\tau p)^{T} p<0$ " to " $\frac{t^{2}}{2} p^{T} \nabla^{2} f\left(x^{*}+\tau p\right) p<0$ "
- p. 35, lines 22, 24: change " $\nabla^{2} f\left(x^{k}+t\left(x^{k}-x^{*}\right)\right)$ " to " $\nabla^{2} f\left(x^{k}+t\left(x^{*}-x^{k}\right)\right)$ "
- p. 45, change Equation (3.23) to: $u^{k}=\frac{B^{k} s^{k}}{\left[\left(s^{k}\right)^{T} B^{k} s^{k}\right]^{1 / 2}}$, and $v^{k}=\frac{y^{k}}{\left(\left(y^{k}\right)^{T} s^{k}\right)^{1 / 2}}$.
- p. 48, line 13: change "if $(1-\eta)>\zeta$ " to "if $(1-\eta)<\zeta$ "
- p. 49 , line -3 : change " $\left.\kappa\left(B^{k}\right)\right)$ " to " $\kappa\left(B^{k}\right)$ "
- p. 64, last three lines: change " g " to " g_{i} "
- p. 71, First line of Equation (4.12) should read: $p^{T} \nabla_{x x} L\left(x^{*}, u^{*}, v^{*}\right) p \geq 0$,
- p. 72 , Equation (4.24) should read: $=\left[\begin{array}{cc}2+\frac{1}{\left(x_{1}^{*}\right)^{2}} & 1-u^{*} \\ 1-u^{*} & 3+\frac{1}{\left(x_{2}^{*}\right)^{2}}\end{array}\right]=\left[\begin{array}{cc}2.5 & 0.068 \\ 0.068 & 3.125\end{array}\right]$
- p. 78, line 9: change to " $h_{i}\left(x^{k}\right)=t^{k} \nabla h_{i}\left(x^{*}\right)^{T} d=0$ "
- p. 80, line 23: change to "We now assume that $d^{T} \nabla_{x x} L\left(x^{*}, u^{*}, v^{*}\right) d<0$ "
- p. 83, Equation (4.66) should read: $=\left[\begin{array}{cc}2+\frac{1}{\left(x_{x}^{*}\right)^{2}} & 1-u^{*} \\ 1-u^{*} & 3+\frac{1}{\left(x_{2}^{*}\right)^{2}}\end{array}\right]=\left[\begin{array}{cc}2.3093 & 0.4315 \\ 0.4315 & 3.2021\end{array}\right]$
- p. 83, last line, change to $\left(Q^{N}\right)^{T} \nabla_{x x} L\left(x^{*}, u^{*}, v^{*}\right) Q^{N}=2.4272$
- p. 86, in (4.75), change "min" to "max"
- p. 92, in (5.2), change " $\nabla h\left(x^{*}\right)^{T} v^{*}$ " to " $\nabla h\left(x^{*}\right) v^{*}$."
- p. 93, line 18: change $\left\|\nabla L\left(x^{k}, v^{k}\right)\right\|>\epsilon_{2}$ to $\max \left(\left\|\nabla L\left(x^{k}, v^{k}\right)\right\|,\left\|h\left(x^{k}\right)\right\|\right)>\epsilon_{2}$.
- p. 93, line 19: change "Evaluate $\nabla f\left(x^{k}\right)$ " to "Evaluate $h\left(x^{k}\right), \nabla f\left(x^{k}\right)$ "
- pp. 104-109: change d_{x} to d_{x}^{k} in (5.41)-(5.43) and (5.51), (5.53), (5.54).
- p. 108: change " $x^{k+2 "}$ to " $x^{k}+d_{x}^{k}+d_{x}^{k+1 "}$ in (5.52).
- p. 110, line 16: change "trail point" to "trial point"
- p. 116, in (5.70) and after (5.72), change " $\left(Z^{k}\right)^{T} f\left(x^{k}\right)$ " to " $\left(Z^{k}\right)^{T} \nabla f\left(x^{k}\right)$ "
- p. 118, line 19: change to "The Hessian $W(x, v)$ or its approximation"
- p. 129, change \bar{d} to \bar{d}_{x} in (5.111).
- p. 140, line 19; p. 178, line 25: change $[0,0.1]$ to $[0,0.1,0,0]^{T}$
- p. 140, line 30; p. 178, line 25: change $[0,0]$ to $[0,0,0,0]^{T}$
- p. 158, second part of (6.65) should read "liminf $\operatorname{inc\infty }\left\|\nabla \varphi_{\mu}\left(x^{k}\right)+\nabla c\left(x^{k}\right) v^{k}\right\|=0$."
- p. 160, line 6: change to " $\varphi_{\mu}(x)$ is bounded below and x is bounded above and below."
- p. 160, line 14: change to "boundedness assumption for φ_{μ} and x,"
- p. 166, Equation (6.81) should read: $\epsilon^{k}=\min \left[\left\|z^{k}-\mathcal{P}\left(z^{k}-\nabla f\left(z^{k}\right)\right)\right\|, \min _{i}\left(z_{U,(i)}-z_{L,(i)}\right) / 2\right]$
- p. 189, lines 27-28, change to:

$$
\left.g\left(x^{0}\right)=\nabla f\left(x^{0}\right)+\frac{1}{2} \Delta(\epsilon+1 / \epsilon)\right)[11]^{T}=(2 \epsilon \beta+\Delta(\epsilon+1 / \epsilon) / 2)[11]^{T}
$$

where second term is the truncation error from the perturbation $\Delta^{1 / 2} \ldots$

- p. 216, line 16: replace "(8.5g)" by "(8.5d)-(8.5g)"
- p. 222: in (8.8) change $\left[\frac{\partial f}{\partial z} \lambda-\frac{d \lambda}{d t}+\frac{\partial g_{E}}{\partial z} \nu_{E}+\frac{\partial g_{I}}{\partial z} \nu_{I}\right]^{T} \delta z(t)$ to $\left[\frac{\partial f}{\partial z} \lambda+\frac{d \lambda}{d t}+\frac{\partial g_{E}}{\partial z} \nu_{E}+\frac{\partial g_{I}}{\partial z} \nu_{I}\right]^{T} \delta z(t)$
- p. 225 , line 1: change $k=k_{20} / k_{10}$ to $k=k_{20} /\left(k_{10}^{\beta}\right)$
- pp. 235-236: replace (8.39h), (8.40e) and (8.41e) by $1=\sum_{i=1}^{N C} x_{i}$
- p. 236, line 23: replace $\sum_{i=1}^{N C}\left(K_{i}(T, P)-1\right) \frac{d x_{i}}{d t}=0$ by $\sum_{i=1}^{N C} \frac{d x_{i}}{d t}=0$.
- p. 236 , line 25 , p. 237 (8.41f): replace by $\sum_{i=1}^{N C}\left[F(t)\left(z_{i}(t)-x_{i}(t)\right)-V(t)\left(y_{i}(t)-x_{i}(t)\right)\right] / M(t)=$ 0
- p. 238, change second line of (8.44) to
$"=\lambda_{1} z_{2}(t)+\lambda_{2} u(t)+1+\nu_{I} u(t)+\nu_{U}\left(u(t)-u_{U}\right)+\nu_{L}\left(u_{L}-u(t)\right) "$
- p. 242, change line 4 to: $-k_{3} b\left(t_{f}\right)=H(0)=J(0) u(0)-\lambda_{2} k_{3} b(0)=J(0) u(0)<0$
- p. 243 , line 15: change "for $k_{1}=1$," to "for $a_{0}=1, k_{1}=1$,"
- p. 261: line 19: change equation $\nabla_{p} \Psi^{T}=\frac{\partial \Psi^{T}}{\partial z} S\left(t_{f}\right)+\frac{\partial \psi^{T}}{\partial_{\mathbf{p}}}$
to $\nabla_{p} \Psi=S\left(t_{f}\right)^{T} \frac{\partial \Psi}{\partial z}+R\left(t_{f}\right)^{T} \frac{\partial \Psi}{\partial y}+\frac{\partial \Psi}{\partial p}$
- p. 263: in (9.26) change $\left[\frac{\partial f}{\partial z} \lambda-\frac{d \lambda}{d t}+\frac{\partial g}{\partial z} \nu\right]^{T} \delta z(t)$ to $\left[\frac{\partial f}{\partial z} \lambda+\frac{d \lambda}{d t}+\frac{\partial g}{\partial z} \nu\right]^{T} \delta z(t)$
- p. 268: Modify equation (9.42) and above "rewritten as:

$$
\frac{d \psi}{d p^{l}}=\frac{\partial \psi}{\partial p^{l}}+\int_{t_{l-1}}^{t_{l}}\left[\frac{\partial f}{\partial p^{l}} \lambda+\frac{\partial g}{\partial p^{l}} \nu\right] d t . .^{\prime \prime}
$$

to: "rewritten for the objective function φ as:

$$
\frac{d \varphi}{d p^{l}}=\frac{\partial \varphi}{\partial p^{l}}+\int_{t_{l-1}}^{t_{l}}\left[\frac{\partial f}{\partial p^{l}} \lambda+\frac{\partial g}{\partial p^{l}} \nu\right] d t .^{\prime \prime}
$$

- p. 268: Add $h_{l} \geq 0$ to end of (9.43e)
- p. 270: above (9.47), change: "The corresponding integrals for the decision variables, are given by" to "The corresponding integrals for the derivatives of the objective function ($\varphi=-b\left(N_{T}\right)$), with respect to decision variables, are given by"
- From last paragraph on p. 289 to (10.6), change to: "Equivalently, the time derivative of the state in element i can be represented as a Lagrange polynomial with K interpolation points, i.e.,

$$
\frac{d z^{K}(t)}{d \tau}=\sum_{j=1}^{K} \bar{\ell}_{j}(\tau) \dot{z}_{i j}
$$

where $\dot{z}_{i j}$ represents $\frac{d z^{K}\left(t_{i j}\right)}{d \tau}$ and $\bar{\ell}_{j}(\tau)=\prod_{k=1, \neq j}^{K} \frac{\left(\tau-\tau_{k}\right)}{\left(\tau_{j}-\tau_{k}\right)}$. For element i this leads to the Runge-Kutta basis representation for the differential state:

$$
\begin{equation*}
z^{K}(t)=z_{i-1}+h_{i} \sum_{j=1}^{K} \Omega_{j}(\tau) \dot{z}_{i j} \tag{10.5}
\end{equation*}
$$

where z_{i-1} is a coefficient that represents the differential state at the beginning of element i and $\Omega_{j}(\tau)$ is a polynomial of order K, satisfying

$$
\Omega_{j}(\tau)=\int_{0}^{\tau} \bar{\ell}_{j}\left(\tau^{\prime}\right) d \tau^{\prime}, \quad t \in\left[t_{i-1}, t_{i}\right], \quad \tau \in[0,1]
$$

To determine the polynomial coefficients that approximate the solution of the DAE, we substitute the polynomial into (10.2) and enforce the resulting algebraic equations at the interpolation points τ_{k}. This leads to the following collocation equations:

$$
\begin{equation*}
\frac{d z^{K}\left(t_{i k}\right)}{d t}=f\left(z^{K}\left(t_{i k}\right), t_{i k}\right), k=1, \ldots, K \tag{10.6}
\end{equation*}
$$

- p. 291-292, change (10.13) to $P_{K}^{(\alpha, \beta)}=\sum_{j=0}^{K}(\tau-1)^{j} \gamma_{j}$ with $\gamma_{j}=\frac{(\alpha+K)!(\alpha+\beta+K+j)!}{(\alpha+j)!(\alpha+\beta+K)!(K-j)!j!}, j=$ $0, \ldots K$.
- p. 296 , lines 11,12 : change " $T(t)$ " to " $T_{i}(t)$ "
- p. 296, line -4 : change "is obtained automatically, as algebraic variables are implicit functions of continuous differential variables." to "can be determined directly from the continuous differential variables at t_{i}."
- p. 297, lines 6,7 and in (10.21b): change " $t_{n c}$ " to " $t_{i, n c}$ "
- p. 342, change (11.41a), (11.41b) from:

$$
\begin{aligned}
& \bar{G}_{i}^{i g}(T, P)+R T \ln \left(f_{i}^{L}\right)+\left\{\sum_{i=1}^{N C}\left(l_{i} \frac{\partial \bar{G}_{i}^{L}}{\partial l_{i}}+v_{i} \frac{\partial \bar{G}_{i}^{V}}{\partial l_{i}}\right)\right\}-\alpha_{L}-\gamma_{i}=0 \\
& \bar{G}_{i}^{i g}(T, P)+R T \ln \left(f_{i}^{V}\right)+\left\{\sum_{i=1}^{N C}\left(l_{i} \frac{\partial \bar{G}_{i}^{L}}{\partial v_{i}}+v_{i} \frac{\partial \bar{G}_{i}^{V}}{\partial v_{i}}\right)\right\}-\alpha_{V}-\gamma_{i}=0
\end{aligned}
$$

to

$$
\begin{aligned}
& \bar{G}_{i}^{i g}(T, P)+R T \ln \left(f_{i}^{L}\right)+\left\{\sum_{j=1}^{N C}\left(l_{j} \frac{\partial \bar{G}_{j}^{L}}{\partial l_{i}}+v_{j} \frac{\partial \bar{G}_{j}^{V}}{\partial l_{i}}\right)\right\}-\alpha_{L}-\gamma_{i}=0 \\
& \bar{G}_{i}^{i g}(T, P)+R T \ln \left(f_{i}^{V}\right)+\left\{\sum_{j=1}^{N C}\left(l_{j} \frac{\partial \bar{G}_{j}^{L}}{\partial v_{i}}+v_{j} \frac{\partial \bar{G}_{j}^{V}}{\partial v_{i}}\right)\right\}-\alpha_{V}-\gamma_{i}=0
\end{aligned}
$$

- p. 342, in (11.42b) change $\beta=1-s_{L}+s_{V}$ to $-s_{L} \leq \beta-1 \leq s_{V}$.

Thanks to Bruno Calfa, Wei-feng Chen, Alex Dowling, Yi-dong Lang, Rodrigo Lopez Negrete and Karthik Marimuthu for corrections.

