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Abstract

This dissertation addresses some of the theoretical and practical issues in optimized oper-

ations in the process industry. The current state-of-art is to decompose the optimization

into the so-called two-layered structure, including real time optimization (RTO) and ad-

vanced control. Due to model discrepancy and inconsistent time scales in different layers,

this structure may render suboptimal solutions. Therefore, the dynamic real time opti-

mization (D-RTO) or economically-oriented nonlinear model predictive control (NMPC)

that directly optimizes the economic performance based on first-principle dynamic models

of processes has become an emerging technology. However, the integration of the first-

principle dynamic models is likely to introduce large scale optimization problems, which

need to be solved online. The associated computational delay may be cumbersome for the

online applications.

We first derive a first-principle dynamic model for an industrial air separation unit (ASU).

The recently developed advanced step method is used to solve both set-point tracking and

economically-oriented NMPC online. It shows that set-point tracking NMPC based on the

first-principle model has superior performance against that with linear data-driven model.

In addition, the economically-oriented NMPC generates around 6% cost reduction com-

pared to set-point tracking NMPC. Moreover the advanced step method reduces the online

computational delay by two orders of magnitude.

Then we deal with a realistic set-point tracking control scenario that requires achieving

offset-free behavior in the presence of plant-model mismatch. Moreover, a state estimator

is used to reconstruct the plant states from outputs. We propose two formulations using
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NMPC and moving horizon estimation (MHE) and we show both approaches are offset-

free at steady state. Moreover, the analysis can be extended to NMPC coupled with other

nonlinear observers. This strategy is implemented on the ASU process.

After that, we study the robust stability of output-feedback NMPC in the presence of plant-

model mismatch. The Extended Kalman Filter (EKF), which is a widely-used technology

in industry is chosen as the state estimator. First we analyze the stability of the estimation

error and a separation-principle-like result indicates that the stability result is the same as

the closed-loop case. We further study the impact of this estimation error on the robust

stability of the NMPC.

Finally, nominal stability is analyzed for the D-RTO, i.e. economically-oriented NMPC,

for cyclic processes. Moreover, two economically-oriented NMPC formulations with guar-

anteed nominal stability are proposed. They ensure the system converges to the optimal

cyclic steady state.
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Chapter 1

Introduction

In this chapter, we present the overall context and objectives of the research problem in

this dissertation. The current challenges in optimized operation in the process industry are

addressed by the so-called hierarchical sctructure. Special focus is given to dynamic real-

time optimization or economically-oriented nonlinear model predictive control. Finally

background information and terminology used in this dissertation are introduced.

1.1 Current Practices in Hierarchical Operation

The operation of a chemical process involves a large number of decisions which are nor-

mally distributed into the so-called hierarchy planning and operations structure as shown

in Fig. 1.1. This structure has been summarized in many text books [75, 73]. The planning

layer focuses on economic forecast and providing production goals. It addresses questions

like what products to make, which feed-stocks to buy and how much to produce and to buy,

respectively. It predicts the economical disturbance such as product demands and prices

of feed-stocks to optimize the future policy of production. The time horizon in the plan-

ning layer is rather long, typically in months or weeks. Scheduling addresses the timing

of actions and events necessary to execute the chosen plan. It answers the questions like

how to arrange the manufacturing sequence and when to start a certain process. The major

focus here is the feasibility of the operation. The time span in the scheduling is typically
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1.1 CURRENT PRACTICES IN HIERARCHICAL OPERATION

in weeks or days. In addition, the planning and scheduling entities also provide parameters

of the cost functions (for example prices of products, raw materials, energy costs) and con-

straints (for example amount of raw material, production time). Currently, the planning and

scheduling calculations are obtained systematically using various mixed integer program-

ming formulations [16]. To avoid computational complexity, this layer treats the process as

a black-box model by using rough estimates of its operation.

Planning & 
Scheduling

Real Time Optimization

Process Control

Figure 1.1: Illustration of the hierarchical operation.

These business decisions are communicated to the two-layered process operation level con-

sisting of real-time optimization (RTO) and advanced control. This two-layered structure

is illustrated in Fig. 1.2. RTO is concerned with implementing business decisions and pro-

duction schedules in real time based on a first-principle steady state model of the plant. It

optimizes the profit of the plant and seeks additional profit based on real-time data recon-

ciliation and parameter estimation. The reconciled plant data are used to compute a new

CHAPTER 1. INTRODUCTION

2



1.1 CURRENT PRACTICES IN HIERARCHICAL OPERATION

set of model parameters so that the model represents the plant as accurately as possible

at the current operating point. Then the set-point is progressively refined using the new

model parameters to optimize an economic cost function while satisfying the constraints.

Since the optimization is performed online, RTO provides a mechanism to react to changes

and reject long term (days or hours) disturbances. RTO is normally solved using Nonlinear

Programming (NLP). With advances in computer power and NLP algorithm, current RTO

technology can solve problems with 1 million variables and generate multi-million dollar

annual profits [14]. Nevertheless, RTO does not manipulate any dynamic degrees of free-

dom in the process. It assumes that the lower-level advanced controller is able to adjust the

inputs to keep the process at the desired set-points at all times.

Set-Point

Controls

MPC
Min: Difference from the Set-Point
s.t. Dynamic Data-Driven

Real-Time Optimization
Max: Current Profit

s.t. Steady-State First-Principle 

Scheduling Scheme

Measurement

State

Parameter

State estimation

Parameter estimation

Figure 1.2: Illustration of RTO and advanced control structure.

These set-points are filtered by a supervisory system that usually includes the plant op-

erators; and forwarded to the advanced control layer. Up to the 1970s, the dominating

industrial practice was to use PID controllers. The PID controller is able to keep its out-
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1.1 CURRENT PRACTICES IN HIERARCHICAL OPERATION

put at the desired set-point and reject short-term disturbances. However, it is difficult to

tune and decouple the PID controller for multi-input-multi-output (MIMO) systems. The

current dominant practice in the process industry is to use model predictive control (MPC)

[89, 82] as the advanced controller. It uses a dynamic model of the process to predict the

future dynamic behavior over a time horizon (hours or minutes). Therefore, it is possible

to compute the optimal control actions to minimize transition time and the deviation of the

output from the target. It is termed as set-point tracking MPC in this dissertation. The

main advantages of the set-point tracking MPC are that it handles MIMO system naturally

using model prediction and it is able to impose constraints. In addition, since MPC is based

on the feedback idea, state estimation which reconstructs the plant state from the output is

necessary for the implementation of MPC.

Currently, most set-point tracking MPC controllers still use dynamic input-output data-

driven models identified from process step responses. This leads to a crucial limitation that

the set-points calculated from RTO are often inconsistent and unreachable when viewed

from the dynamic layer. This is because of the discrepancies between the models used

for steady-state optimization and dynamic regulation. It has been pointed out by many

researchers [33, 102] that the models in different layers are inconsistent. In particular,

the steady-state gains are different. In addition, RTO does not fully utilize the degrees of

freedom in the dynamic layer which may yield suboptimal set-point. The two layers have

different time scales so that the optimization in RTO layer is inevitably delayed [27]. More-

over, if the process is operated over a wide range of conditions, a fixed model identified at a

steady-state is usually not sufficient to have the predictability to cover the operating range.

Recently, nonlinear model predictive control (NMPC), which is based on the first-principle

dynamic model of a process, has been applied widely and generated many economic bene-

fits, especially for processes with frequent transitions [8]. However, it also brings important

CHAPTER 1. INTRODUCTION
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computational issues. The data-driven dynamic models are usually manageable compu-

tationally since they are posed in a relatively small state space, while the first-principle

dynamic models usually involve differential algebraic equations (DAE) that describe the

momentum of processes. It has been shown that the computational complexity associated

with online solving the DAE-constraint optimization problems may deteriorate the perfor-

mance or destroy the stability of NMPC [35, 100].

On the other hand, the process dynamics controlled by the set-point tracking (N)MPC do

not have the economical information in the objective function as in the conventional two-

layered structure. Hence it may not be economically optimal for the controller to minimize

the transition time in some cases [93].

1.2 D-RTO or Economically-Oriented NMPC

Motivated by these observations, the concept of a dynamic real time optimization (D-RTO)

is introduced [40, 58]. This strategy is illustrated in Fig. 1.3. Instead of decomposing

the optimization into steady state optimization and dynamic regulation, D-RTO directly

optimizes the economical performance of a process over a prediction horizon and calcu-

lates the control actions. This formulation is essentially solving an NMPC problem with

an economically-oriented objective function based on first-principle dynamic models. It

is termed economically-oriented NMPC throughout this dissertation. Here the economi-

cal objective is translated into process control objectives, which is the goal of a control

structure synthesis first stated by Morari et al. [83]. As a result, the two-layered structure

is merged into a centralized decision-making and control layer. Therefore the problems

associated with the two-layered operation structure discussed in Section 1.1 disappear.

In the last few years, many researchers have contributed to refine the D-RTO or economically-
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D-RTO/ 
Economically-Oriented 

NMPC
Max: Predicted Profit in Future 

s.t. Dynamic First-
Principle Models

Measurement

State &
Parameter

Data Reconciliation/ 
State  & Parameter

Estimation

Scheduling Scheme

Figure 1.3: Illustration of D-RTO or Economically-Oriented NMPC.

oriented NMPC formulations to improve the economical performance. Zanin et al. [113]

proposed a formulation and solution strategy and implemented them on a fluidized bed

catalytic cracker. Adetola and Guay [1] proposed an MPC design approach that integrates

RTO and MPC together. Angeli and Rawlings [4] proposed a receding horizon controller

to optimize constrained nonlinear plants. Würth et al. [111] proposed an infinite-horizon

formulation for economically-oriented NMPC. Moreover, Krstić and Wang [64] addressed

the closed-loop stability of the general extremum seeking approach with economic per-

formance. Diehl et al. [30] also analyzed the nominal stability property of a general

economically-oriented NMPC formulation assuming strong duality.
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1.3 Research Problem Statement

Although both the current state-of-art two-layered structure (shown in Fig. 1.2) and the

emerging centralized D-RTO or economically-oriented NMPC (shown in Fig. 1.3) have

been heavily studied in the literature, there are still many open issues. In particular theoret-

ical questions like stability and offset-free properties need to be addressed. Moreover, the

usage of first-principle dynamic models introduces computational complexity associated

with the optimization which may be cumbersome for online applications.

The objective of this dissertation is to identify some of the theoretical issues related to both

operation schemes, and propose strategies to improve their performance. Moreover, the

recently developed advanced step algorithm [115] is incorporated into proposed strategies

to reduce the online computational delay. The specific tasks we focus on are set-point

tracking NMPC in the two-layered structure, state and parameter estimation and centralized

economically-oriented NMPC or D-RTO formulations.

1.4 Thesis Outline

This dissertation is organized as the following.

Chapter 2 presents NMPC formulations, notations and basic definitions and serves as a

literature review for the following chapters.

Chapter 3 discusses the solution strategies for DAE-constrained dynamic optimization

problems. A simultaneous method, orthogonal collocation on finite elements, is used in

this dissertation, which will convert the optimization problem to a large scale Nonlinear

Programming (NLP). IPOPT algorithm is used to solve this NLP. Moreover, two moving-

horizon-based applications, NMPC and moving horizon estimation (MHE) are introduced
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and the sensitivity-based advanced step algorithm is formulated for both the NMPC (asN-

MPC) and MHE (asMHE) to reduce the online computational delay.

Chapter 4 presents simulation studies using the asNMPC to control a large scale air sep-

aration unit. Both set-point tracking NMPC and economically-oriented NMPC are used.

For the economically-oriented NMPC controller, a moving-horizon-based ARIMA mod-

eling strategy is proposed to forecast the future real-time price information from a utility

company. Moreover, multi-scenario formulation is introduced to deal with uncertainties

in electricity price information. In all the simulations, advanced step algorithm is used to

reduce the online computational delay.

Chapter 5 deals with more realistic control scenarios where the plant state is not fully mea-

sured and critical control performances need to be retained in the presence of plant-model

mismatch. Two formulations such as state-output disturbance and parameter estimation

based on MHE are proposed. Both of them can be shown to yield offset-free behavior.

Chapter 6 studies the robust stability of the set-point tracking NMPC with an observer in

the presence of plant-model mismatch. The Extended Kalman Filter (EKF) is chosen as

the observer due to its popularity in industry. Given observability, we analyze the dynamic

behavior of the estimation error, and we further show the impact of this error on the robust

stability property of NMPC.

Chapter 7 demonstrates the nominal stability of the economically-oriented NMPC or D-

RTO, based on the assumption that all the states are measured. Since the commonly used

Lyapunov framework to analyze the stability can not be applied directly to the economically-

oriented NMPC, we introduce a transformed system for which a Lyapunov function is easy

to find. Moreover, two formulations of economically-oriented NMPC with guaranteed

nominal stability are proposed.
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1.4 THESIS OUTLINE

Chapter 8 concludes the dissertation and presents recommendations for future work.
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Chapter 2

Literature Review

In this chapter, we introduce the MPC problem formulation and review previous work that

appears in the literature. In particular, we focus on real time NMPC strategies, stability

of set-point tracking NMPC and economically-oriented NMPC. Moreover, some notations

used in this dissertation are defined.

2.1 MPC Problem Formulation

We consider a general discrete time nonlinear system as the plant

xk+1 = f (xk,uk), xk ∈ X, uk ∈ U, (2.1)

where xk ∈ Rnx and uk ∈ Rnu are the plant state and control action at time step k.

Given the the plant model (2.1), a general MPC formulation can be described as the fol-

lowing

min
N−1

∑
i=0

l(zi,vi)

s.t zi+1 = f̄ (zi,vi), i = 0, . . . ,N−1

z0 = xk,

zi ∈ X, vi ∈ U (2.2)
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Current
Time step k

FuturePast

xk

uk

Set Point xs

Figure 2.1: Illustration of Model Predictive Control.

where N is the horizon length, xk is the initial condition which is the plant state at time step

k. To differentiate from the actual plant state x and control u, we use z and v as the predicted

state and control in the MPC formulation. f̄ (·, ·) is the model equation representing the

plant (2.1), which is usually a linear function (Azi +Bvi) in industrial MPC applications.

l(·, ·) is the objective function. For the set-point tracking NMPC, l(·, ·) is a quadratic term

(|zi− xs|2) that minimizes the difference between the predicted state and the set-point.

The MPC controller is implemented in a moving horizon framework as shown in Fig. 2.1.

At current time step k, the plant state xk is used as the initial condition and the optimization

problem (2.2) is solved on a horizon N. However, only the first calculated control action is

implemented, i.e. uk = v0. At the next time step k+ 1, we move the time frame one step

ahead and the problem (2.2) is solved with the new plant state xk+1 as the initial condition.

As a result, this requires the MPC controller to obtain a solution as fast as possible.

Depending on different modeling and solution strategies, there are many variations of lin-

ear MPC. For instance, engineers at Shell Oil developed the so-called dynamic matrix con-
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trol (DMC) [27] that uses linear step response models and a quadratic objective function.

DMC solves the optimization problem (2.2) without constraints as the solution to a least-

squares problem. Furthermore, Shell engineers developed QDMC [37] by posing the DMC

problem as a quadratic programming (QP) problem in which constraints appear explicitly.

Then in the following years, more and more variations of the MPC controllers [76, 112]

were proposed to improve the performance of the original DMC controller. Some of the

formulations are based on linear impulse response models. More detailed review can be

found in [89].

Generally, linear MPC uses a small linear data-driven model to represent the plant. Thus it

has the advantage of solving a small optimization problem, which can be done fast enough

at each time step in order to be implemented in the moving horizon framework. On the

other hand, linear MPC also suffers from drawbacks such as plant-model mismatch so that

the model is only valid around an operating point.

In this dissertation, we are interested in NMPC controllers that directly use the first-principle

dynamic model of the plant, i.e. f̄ (·, ·) = f (·, ·) in the formulation (2.2). It has the advan-

tages that the model is valid over a wide range of operating conditions and can be extended

to the D-RTO as discussed in Chapter 1.

2.2 Real Time NMPC Strategies

As mentioned in Chapter 1, performance deterioration of NMPC and stability loss due

to computationally delays have been noted by [100, 35]. To address this issue, real time

NMPC strategies such as neighboring extremals, explicit schemes, Newton-type controllers

and NLP sensitivity-based controllers have been studied.
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Neighboring extremals [23] solve a full solution of the optimal control problem off-line

using indirect methods and perform a full iteration online to find the approximated optimal

solution. As a result, it inherits the disadvantages associated with the indirect method which

are briefly summarized in Chapter 3.

Explicit schemes [10] compute the control sets off-line by enumerating all the possible

states or their approximations. Then online control actions are chosen from these sets based

on where the state lies. These methods have been applied on the fast systems where the state

space is relatively small [38, 10], but posing difficulties when applied to large scale systems

due to the exponential growth in computational complexity of off-line enumeration.

The Newton-type controller was proposed by Li and Biegler [70] and has been developed

by many other researchers [31, 29, 86]. It performs a single full Newton step of NMPC (2.2)

online to allow a quick return of control action. The Newton-type controllers have shown

good performance to reject the fast disturbance quickly. However, since the full Newton-

step is just a linearization at steady state, it can not guarantee to work in the presence of

strong nonlinearity, varying operating point or even large disturbance.

NLP sensitivity-based controllers [115, 57, 24] aim to overcome the drawbacks posed by

the Newton-type controllers. Similar to the neighboring extremals scheme, the control

action is approximated around a continuously updated reference solution. However, the

NLP sensitivity-based controllers use direct methods to solve the optimal control problem.

The advantages of the direct method are briefly discussed in Chapter 3. In particular, Zavala

and Biegler [115] proposed an NLP sensitivity-based NMPC named advanced step NMPC

(asNMPC), which is used throughout this dissertation. It solves the optimization problem

(2.2) between sampling times k−1 and k to constantly update the reference trajectory and

calculates the control action by a single Newton step at time step k to obtain fast solution.

As a result, it significantly reduces the computational delay online. In our experience,
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the computational delay is reduced by at least two orders of magnitude using asNMPC

which is reported in Chapter 4. The detailed asNMPC algorithm is discussed in Chapter 3.

Moreover, it has been shown that asNMPC inherits the same nominal stability as NMPC

and suffers a little loss of robustness due to the introduced NLP sensitivity error [115].

2.3 Stability of set-point tracking NMPC

One of the key questions in NMPC is whether the NMPC formulation leads to stability

of the closed-loop system. The finite-horizon formulation is of particular interest because

it is computationally manageable. The stability of system without disturbances is called

nominal stability, while the stability of system in the presence of disturbance is termed

robust stability. In this section, we first present the notations and basic definitions used in

the stability analysis in this dissertation and summarize the existing results in the literature

for both nominal and robust stability. In addition, one can also find the detailed discussion

in the overview papers [78, 72], and a new NMPC book [95].

2.3.1 Notations and Basic Definitions

Let R,R≥0, Z and Z≥0 denote real, non-negative real, integer and non-negative integer

numbers, respectively. Given n ∈ Z≥0, an arbitrary norm of a vector x ∈ Rn is denoted as

|x|. Given a positive semidefinite matrix W , the weighted norm of x is given by |x|W :=
√

xTWx. Given a signal w∈Rn, then at time step k ∈Z≥0 it is denoted by wk and the signal

sequence is denoted by {wk} , {w1,w2, . . . ,wk}. For a given sequence {wk}, we denote

‖w‖k , sup0≤ j≤k{|w j|}, j ∈ Z≥0. In the sequel, the index k is sometimes dropped if the

cardinality of the sequence is inferred from the context. A function f : R→ R is said to be
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C 1 function if its derivative f ′(·) exists and is continuous. A function τ : R≥0→ R≥0 is of

class K (or a K -function) if it is continuous, strictly monotone increasing and τ(0) = 0. A

function τ : R≥0→R≥0 is of class K∞ if it is a K -function and τ(s)→+∞ as s→+∞. A

function τ : R≥0×Z≥0→R≥0 is of class K L if, for fixed k ∈ Z≥0, τ(·,k) is of class K ,

and for each fixed s ∈R≥0, τ(s, ·) is decreasing and τ(s,k)→ 0 as k→+∞. Consider τ1(·)

and τ2(·) as K -functions, then τ1 ◦ τ2(·) , τ1(τ2(·)) denotes the function composition,

besides τ
j

1(·) denotes the j-th composition of τ1(·). Given compact sets A⊂Ra and B⊂Rb,

function f (x,y) : Ra×Rb→ Rc is said to be uniformly continuous in x for all x ∈ A and

y ∈ B if for all ε > 0, a δ (ε)> 0 exists such that | f (x1,y)− f (x2,y)| ≤ ε for all x1, x2 ∈ A

with |x1− x2| ≤ δ (ε) and for all y ∈ B.

Lemma 1 [92] The space of K -functions is closed under addition, composition and pos-

itive scalar multiplication.

Lemma 2 [72] If f (x,y) : Ra×Rb → Rc is a uniformly continuous function in both x ∈

A⊂ Ra and y ∈ B⊂ Rb, then there exist K -functions τ1(·) and τ2(·) such that

| f (x1,y1)− f (x2,y2)| ≤ τ1(|x1− x2|)+ τ2(|y1− y2|),

∀x1, x2 ∈ A, y1 y2 ∈ B.

Definition 1 Consider an autonomous system where xk is the state

xk+1 = f (xk), (2.3)

System (2.3) is said to be locally nominally stable if there exists a positive constant e1 and

a K L -function β (·, ·) such that

|x j| ≤ β (|x0|, j)
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for all initial states |x0| ≤ e1.

Similarly for an autonomous system where dk is a disturbance signal

xk+1 = f (xk,dk). (2.4)

System (2.4) is said to be locally Input-to-State Stable (ISS) if there exists a positive con-

stant e2, a K L -function β (·, ·) and a K -function γ(·) such that

|x j| ≤ β (|x0|, j)+ γ(‖d‖ j−1)

for all initial states |x0| ≤ e2.

Moreover, for an autonomous system where dk and wk are two disturbances

xk+1 = f (xk,dk,wk), (2.5)

System (2.5) is said to be locally ISpS if there exist constants e3 and e4, a K L -function

β (·, ·) and a K -function γ such that

|x j| ≤ β (|x0|, j)+ γ(‖d‖ j−1)+ e4

for all initial states |x0| ≤ e3, and disturbances d ∈Ωd and w ∈Ωw.

Definition 2 A function V (·) is called a Lyapunov function for system (2.3), if there exist

sets X and K∞-functions τ1, τ2, τ3 such that

τ1(|x|) ≤ V (x)≤ τ2(|x|), ∀x ∈ X

4V (x,d) = V ( f (x,d))−V (x)≤−τ3(|x|),

∀x ∈ X. (2.6)
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A function V (·) is called an ISS-Lyapunov function for system (2.4), if there exist sets X,

Ωd and K∞-functions τ4, τ5, τ6 and K -function σ1 such that

τ4(|x|) ≤ V (x)≤ τ5(|x|), ∀x ∈ X

4V (x,d) = V ( f (x,d))−V (x)≤−τ6(|x|)+σ1(|d|),

∀x ∈ X, ∀d ∈Ωd. (2.7)

A function V (·) is called an ISpS-Lyapunov function for system (2.5) with respect to d, if

there exist sets X, Ωd , Ωw and K∞-functions τ7, τ8, τ9, K -function σ2 and constants e5,

e6 ∈ R≥0 such that

τ7(x) ≤ V (x)≤ τ8(x)+ e5, ∀x ∈ X

4V (x,d,w) = V ( f (x,d,w))−V (x)≤−τ9(|x|)+σ2(|d|)+ e6,

∀x ∈ X, ∀d ∈Ωd, ∀w ∈Ωw (2.8)

Lemma 3 [74, 72] If system (2.3) admits a Lyapunov function in X, then it is nominally

stable in X. If system (2.4) admits an ISS-Lyapunov function in X with respect to d, then it

is ISS in X. If system (2.5) admits an ISpS-Lyapunov function in X with respect to d, then

it is ISpS in X.

Definition 3 A set Γ ∈ X is a robust positively invariant (RPI) set for system (2.4) if

f (x,d) ∈ Γ, for all x ∈ Γ and all d ∈Ωd .

A similar RPI set can be defined for system (2.5).

2.3.2 Nominal Stability

The stability of NMPC for constrained nonlinear systems necessitates the use of Lyapunov

stability theory. In this framework, the nominal stability of a closed-loop system is proved
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if one can find a Lyapunov function for the system as stated in Definition 2 and Lemma 3.

The Lyapunov function has to satisfy three conditions: 1) the Lyapunov function is upper-

bounded by a K -function of the plant state; 2) the Lyapunov function is lower-bounded

by a K -function of the plant state; 3) the Lyapunov function is decreasing with respect to

time. Keerthi and Gilbert [61] first employed the cost function as a Lyapunov function for

establishing stability of NMPC. Thereafter, the cost function is almost universally chosen

as the Lyapunov function for stability analysis [78]. Strategies to guarantee the nominal

stability are summarized in the following:

Infinite-horizon NMPC: The most intuitive way to achieve stability is to use infinite-

horizon cost [61]. In the nominal case, feasibility at one sampling time also implies fea-

sibility and optimality at next sampling time. Hence, the control and state trajectories

computed in the NMPC problem at any sampling time are in fact the closed-loop trajecto-

ries. This indicates the closed-loop stability is satisfied. The detailed proof can be found in

[61].

Finite-horizon NMPC with terminal equality constraint: Keerthi and Gilbert [61] fur-

ther showed that in the nominal case, the infinite-horizon NMPC can be approximated by

a finite-horizon formulation with a terminal equality constraint as in the formulation (2.9).

Compared to the formulation (2.2), the terminal equality constraint basically ensures that

at the end of the finite horizon, the closed-loop system approaches the same steady state as

in the infinite-horizon.
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min
N−1

∑
i=0
|zi− xs|2Q + |vi+1− vi|2R

s.t zi+1 = f (zi,vi), i = 0, . . . ,N−1

z0 = xk, zN = xs,

zi ∈ X, vi ∈ U, (2.9)

where xs is the set-point, and zN = xs is the terminal equality constraint. Since we are con-

sidering set-point tracking NMPC with first-principle dynamic model, the plant dynamic

f (·, ·) is directly used as the model equation and the objective function is chosen to be the

quadratic term in the following.

Finite-horizon NMPC with terminal cost: Bitmead et al. [17] proposed to add a terminal

cost function which is the algebraic Riccati equation at the end of the finite-horizon as

shown in (2.10). Therefore, the cost function over the infinite horizon can be approximated

by the finite horizon formulation. Thus the closed-loop stability is retained.

min
N−1

∑
i=0

(|zi− xs|2Q + |vi+1− vi|2R)+F(zN)

s.t zi+1 = f (zi,vi), i = 0, . . . ,N−1

z0 = xk,

zi ∈ X, vi ∈ U, (2.10)

where F(zN) is the terminal cost function.

Finite-horizon NMPC with terminal inequality constraint: NMPC formulation (2.11)

introduces a terminal constraint set at the end of the horizon to the general formulation

(2.2). The finite-horizon NMPC is to steer the plant to the constraint set XN . Inside XN , a
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local stabilizing controller is used [81, 101]. This idea to guarantee the closed-loop stability

is termed the dual mode controller.

min
N−1

∑
i=0
|zi− xs|2Q + |vi+1− vi|2R

s.t zi+1 = f (zi,vi), i = 0, . . . ,N−1

z0 = xk, zN ∈ XN

zi ∈ X, vi ∈ U. (2.11)

Quasi-infinite horizon NMPC: Chen and Allgöwer [25] proposed the so-called quasi-

infinite horizon NMPC (2.12) which incorporates both the terminal cost function and ter-

minal inequality constraint into the finite-horizon formulation. The terminal inequality set

is the maximal output admissible set and the terminal cost is the upper bound of the infinite

cost. With guaranteed closed-loop stability, most recent NMPC formulations belong to this

category.

min
N−1

∑
i=0

(|zi− xs|2Q + |vi+1− vi|2R)+F(zN)

s.t zi+1 = f (zi,vi), i = 0, . . . ,N−1

z0 = xk, zN ∈ XN

zi ∈ X, vi ∈ U. (2.12)

CHAPTER 2. LITERATURE REVIEW

20



2.3 STABILITY OF SET-POINT TRACKING NMPC

2.3.3 Robust Stability

To consider plant-model mismatch or disturbance, we use the plant equation (2.13) with an

uncertainty parameter.

xk+1 = f (xk,uk,θk), (2.13)

where θk ∈ Ωθ ⊂ Rnθ is the uncertainty parameter, and Ωθ is a compact set. Note θk

here is a general form of plant-model mismatch including the additive disturbance which

is widely-used in the literature.

In this case, robust stability of the closed-loop system needs to be considered. To some

extent, the closed-loop system has inherent robustness, which means that nominal NMPC

remains stable even without directly considering the disturbances. However, there are also

examples that the nominal NMPC does not have any robust margin at all [39].

The problem to assure recursive feasibility and constraint satisfaction is more involved in

the robust stability analysis. There are many different approaches to analyze the robust

stability, such as ISS framework (discussed in Definition 2 and Lemma 3), robust stability

margin, ultimately bounded evolution and asymptotic gain property. Limon et al [72] have

shown that ISS framework can be used as a unifying robust stability framework.

Utilizing invariant set theory coupled with ISS-Lyapunov stability framework, Magni and

Scattolini [74] have shown that if further assumptions are satisfied (continuous differentia-

bility for control and cost function), the NMPC control law is inverse optimal. Then by

virtue of the inverse optimality, nominal NMPC inherits the same robust stability. This

result is also summarized by Limon et al. [72].

The design of NMPC algorithms with robust stability is not mature yet. It was first proposed

in the H∞ context [66, 77] to solve a min-max optimization problem where the cost function

is maximized with respect to the admissible disturbance sequence, and minimized with
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respect to the control as shown in the formulation (2.14). Moreover tube-based robust

NMPC design strategies which calculate the control actions based on different uncertainty

regions have been widely studied as well [71, 91, 22, 69]. However, both of these strategies

suffer from extensive computational burden.

minvi,zi maxθi

N−1

∑
i=0

l(zi,vi)

s.t zi+1 = f (zi,vi,θi), i = 0, . . . ,N−1

z0 = xk,

zi ∈ X, vi ∈ U, θi ∈Ωθ . (2.14)

2.4 Stability of Economically-Oriented NMPC

Although it is economically beneficial to use D-RTO or economically-oriented NMPC to

directly optimize the economical performance of a process, theoretical studies regarding

the stability issues are still lacking. This is in vast contrast to the mature body of stability

of the set-point tracking NMPC summarized in Section 2.3. This is mainly because it is

difficult to show the cost function satisfies the conditions in Definition 2 as a Lyapunov

function.

Recently, some work emerged in the literature to deal with special cases of economically-

oriented NMPC. For example, Rawlings et al. [94] proposed an MPC controller with eco-

nomical objective terms that handles unreachable set-points better than the conventional

set-point tracking MPC. Although the stability property of the controller is demonstrated,

the analysis is not within the Lyapunov stability framework. Diehl et al. [30] showed

stability of a general economically-oriented formulation by establishing a Lyapunov func-
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tion. Nevertheless, the analysis is based on the assumption that the system satisfies strong

duality, which indicates the optimal operating point is at a steady state. This assumption

excludes economically-oriented NMPC scenario for a class of system with cyclic behavior.

Moreover, while the strong duality assumption is true for linear systems with convex con-

straints and strictly convex costs, it is difficult to show that a nonlinear system satisfies this

property.

2.5 Concluding Remarks

In this chapter, we present the NMPC problem formulation, notations and basic definitions

used throughout this dissertation. Then, we review previous work relevant to this disserta-

tion. The review focuses on the area of real time NMPC strategies and stability analysis of

NMPC. It also serves as a centralized literature study for the following chapters, especially

Chapters 3, 6 and 7.
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Chapter 3

Solution Strategy

In this chapter, we discuss the strategy we adapt to solve large scale optimization prob-

lems constrained by differential and algebraic equations (DAEs). It leads to the NMPC

formulations discussed in Chapter 2. For applications like nonlinear model predictive con-

trol (NMPC) and moving horizon estimation (MHE), solving the DAE-constrained opti-

mization online may introduce large computational delays. To overcome this difficulty,

NLP sensitivity that approximates the rigorous solution online is introduced. In addition,

sensitivity-based advanced step algorithms for NMPC and MHE are discussed.
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3.1 Approaches to DAE-Constrained Optimization

In this chapter, we consider a general DAE-constrained optimization problem (3.1), which

includes the continuous-time counterpart of the NMPC problem (2.2).

min
u(t),zd(t),za(t) φ(zd(t f )) (3.1a)

s.t.
dzd(t)

dt
= fd(zd(t),za(t),u(t), p) (3.1b)

0 = fa(zd(t),za(t),u(t), p) (3.1c)

zd(0) = z0 (3.1d)

zL
d ≤ zd(t)≤ zU

d (3.1e)

zL
a ≤ za(t)≤ zU

a (3.1f)

uL ≤ u(t)≤ uU (3.1g)

0≤ t ≤ t f , (3.1h)

where zd ∈Rnd is a vector of differential or state variables, za ∈Rna is a vector of algebraic

variables, u ∈ Rnu is a vector of control variables, p ∈ Rnp is a vector of parameters in the

optimization problem, fd(·) is a vector of differential equations, fa(·) is a vector of alge-

braic equations and z0 is the initial condition for the differential variables. The objective

function is chosen to be the Mayer form. Nevertheless, any integral or Bolza form function

can be reformulated to the Mayer form.

There are many strategies to solve the DAE-constrained optimization problem (3.1). Fig.

3.1 shows different approaches with their advantages and disadvantages. The indirect

method or variational methods apply optimize then discretize strategy and solve the op-

timization problem (3.1) based on Pontryagins Maximum Principle [23]. Although the

indirect methods have solid theoretical foundations, they are generally inefficient for large

scale problems or systems with inequality constraints. On the other hand, the direct method
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use discretize then optimize strategy and directly cast the problem (3.1) as a nonlinear pro-

gramming (NLP) problem. Therefore, these methods tend to be more general and com-

putationally efficient. Based on different approaches to handle the continuous-time DAE

system, the direct approach can be further classified as sequential approach or single shoot-

ing, multiple shooting and collocation based method. In the single shooting method, only

the control variable is discretized and the optimization is performed with respect to the

discretized control variables. Given initial conditions and a set of optimized control vari-

ables, the DAE model is integrated using an inner loop DAE solver [106, 107]. Gradients

are calculated either from direct sensitivity equations or adjoint sensitivity equations. Al-

though it is easy to implement, the single shooting method can not guarantee to handle

open loop unstable system and path constraints are only enforced approximately [6, 15].

Multiple shooting was developed to handle unstable DAE systems and impose inequal-

ity constraints. In this approach, the control variables are treated the same way as in the

sequential method, but the DAE model is integrated in small elements of the entire time

domain [19]. Finally collocation based methods fully discretize the state and control pro-

file [12, 14]. Typically the discretization is performed by using orthogonal collocation on

finite elements due to its accuracy and numerical stability properties [59]. It corresponds

to a particular Runge-Kutta method. This leads to large scale NLP problems, but it allows

the NLP solvers to exploit the sparsity and structure property of DAE system. In addition,

this approach requires no DAE integrators, as the DAE system is only solved once at the

optimal point [15, 14]. Detailed discussion of the advantages and disadvantage of the above

mentioned methods can be found in [15, 14]. In this dissertation, a simultaneous method

with Radau collocation points is used. One can find its derivation and stability property in

[59, 14].

Without further discussion, DAE-constrained optimization problems and simulation exam-

ples throughout this dissertation are discretized using orthogonal collocation with Radau
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DAE Optimization Problem

Multiple Shooting     

+Embeds DAE Solvers/Sensitivity
- Dense Sensitivity Blocks

+Handles instabilities

Single Shooting
+Small NLP 
- No instabilities

Discretize 
controls

Collocation

Large/Sparse NLP, Cheap Jacobian & Hession 

Direct NLP solution
Efficient for constrained problems

Simultaneous Approach

-Larger NLPs

Provide initial states in periods 
discretize control 

Indirect/Variational

- Inefficient for large, constrained 
problems

Discretize states 
and controls

Figure 3.1: Strategies for DAE-constrained optimization problem.

collocation points, unless otherwise noted. This method approximates the control and state

variables as piecewise polynomial functions over finite elements, t0 < t1 < · · · < tNe = t f .

The element length is hi = ti− ti−1. Here we represent the state and control profiles by

Lagrange interpolation polynomials in each element, as:

t = ti−1 +hiτ

zd(t)≈ ∑
Nc
j=0 Ω j(τ)z

i, j
d

}
t ∈ [ti−1, ti], τ ∈ [0,1] (3.2)

where

Ω j(τ) =
Nc

∏
k=0,k 6= j

τ− τk

τ j− τk
, (3.3)

Nc is the number of collocation points. zi, j
d is the state value of collocation point j in finite

element i. Note that these polynomials are of order of Nc and satisfy

Ω j(τi) =

{
1, τi = τ j

0, τi 6= τ j.
(3.4)
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With this, the approximated control and algebraic profiles are represented by the Lagrange

interpolation over the interval t ∈ [ti−1, ti]:

u(t) =
Nc

∑
j=1

Ω̄ j(τ)ui, j

za(t) =
Nc

∑
j=1

Ω̄ j(τ)zi, j
a , (3.5)

where

Ω̄ j(τ) =
Nc

∏
k=1,k 6= j

τ− τk

τ j− τk
. (3.6)

Similarly, zi, j
a and ui, j are algebraic and control variables of collocation point j in finite

element i, respectively. The differential and algebraic equations are written as:

Nc

∑
k=0

Ω̇k(τ j)z
i,k
d = hi fd(z

i, j
d ,zi, j

a ,ui, j, p)

0 = fa(z
i, j
d ,zi, j

a ,ui, j, p), i = 1, . . . ,Ne, j = 1, . . . ,Nc, (3.7)

where Ω̇k(τ) = dΩk(τ)/dτ .

As a result, after full discretization the DAE-constrained optimization problem (3.1) can be
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approximated by the following NLP,

min

ui, j,zi, j
d ,zi, j

a φ(zd(t f )) (3.8a)

s.t.
Nc

∑
k=0

Ω̇k(τ j)z
i,k
d = hi fd(z

i, j
d ,zi, j

a ,ui, j, p) (3.8b)

0 = fa(z
i, j
d ,zi, j

a ,ui, j, p) (3.8c)

z1,0
d = z0, zd(t f ) =

Nc

∑
j=0

Ω j(1)z
Ne, j
d (3.8d)

zL
d ≤ zi, j

d ≤ zU
d (3.8e)

zL
a ≤ zi, j

a ≤ zU
a (3.8f)

uL ≤ ui, j ≤ uU (3.8g)

i = 1, . . . ,Ne, j = 1, . . . ,Nc, (3.8h)

zk+1, j
d =

Nc

∑
j=0

Ω j(1)z
k, j
d ,k = 1, . . .Ne−1, (3.8i)

where, the last equation ensures the continuity between the neighboring finite elements.

Using the method discussed above, we are able to approximate a continuous-time system by

a discrete-time formulation. Hence we directly consider the discrete-time model equation

(2.1) and NMPC formulations such as (2.2), (2.9), (2.10), (2.11), (2.12) and (2.14) in this

dissertation.
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3.2 Ipopt Algorithm and NLP Sensitivity

In this section, the discretized optimization problem (3.8) is simplified as a general para-

metric NLP problem of the form,

min
w(p)

f (w(p), p) (3.9a)

s.t. c(w(p), p) = 0, w(p)≥ 0 (3.9b)

with a fixed parameter vector p. Notice the implicit dependence of the problem variables

on the particular value of the parameter. In the context of NMPC and MHE, this parameter

can be denoted as the initial conditions and updated measurements, respectively.

NLP solvers based on interior-point method are a good choice to solve large scale and

sparse NLPs. In particular, the solvers LOQO, Knitro and IPOPT are widely used alterna-

tives. In this work, IPOPT [109] which was developed in our group is chosen as the NLP

solver. IPOPT handles the bound constraints implicitly through logarithmic barrier terms

added to the objective function,

min
w(p)

ϕ(w(p), p) = f (w(p), p)−µl

n

∑
i=1

ln(w(i)(p)) (3.10a)

s.t. c(w(p), p) = 0 (3.10b)

where µl > 0 is a barrier parameter. Symbol w(i)(p) denotes the ith component of vector

w(p). The solution of the barrier problem (3.10)) converges to the solution of the original

NLP (3.9) as the sequence of barrier parameters µl tends to zero.

To solve each barrier problem for µl , IPOPT applies Newton’s method to the KKT condi-

tions of system (3.10). This results in the following large-scale linear system solved at each
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iteration j:
H j A j −I

AT
j 0 0

Vj 0 Z j



4w

4λ

4ν

=−


∇ f (w j(p), p)+A jλ (p) j−ν(p) j

c(w j(p), p)

Z jVje−µle

 (3.11)

where λ and ν are the Lagrange multipliers for the equality constraints and bounds, re-

spectively. In addition, Z := diag(w(p)), V := diag(ν(p)), H := H(w(p), p), is the Hes-

sian of the Lagrange function L = f (w(p), p)+ c(w(p), p)T λ (p)−ν(p)T w(p), and A :=

A(w(p), p) is the constraint Jacobian. It is important to emphasize that the most expensive

step at each iteration in the algorithm is the factorization of the KKT matrix in the left hand

side of equation (3.11). Depending on the size and structure of the problem, this factoriza-

tion step can take a significant amount of computational time. Here we provide the IPOPT

solver with exact Hessian and Jacobian information through the modeling platform AMPL.

This accelerates the local convergence of Newton’s method and facilitates to solve NLPs

with many degrees of freedom efficiently.

The IPOPT sensitivity algorithm [115, 116] is used to further reduce the computational

delay associated with solving the large scale NLP problem. Assume that we count with the

solution of NLP (3.9) for a given nominal parameter vector p = p0. At this solution, the

KKT system (3.11) can be expressed in condensed form as,

K∗(p0)∆s = ϕ(s∗(p0), p0) (3.12)

where s∗(p0)
T = [w∗(p0)

T ,λ ∗(p0)
T ,ν∗(p0)

T ] is the optimal triplet vector while ϕ(·, ·) and

K∗(·) are the KKT conditions and KKT matrix in (3.11) evaluated at this solution, respec-

tively.

Assume that the objective and constraints in NLP (3.9) are at least twice continuously dif-

ferentiable in p and that a given nominal solution s∗(p0) satisfies the linear independence
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constraint qualification (LICQ) [85, 14], the sufficient second order conditions (SSOC)

[85, 14] and strict complementary slackness [85, 14]. If the parameter vector p0 enters lin-

early in the objective function and constraints (e.g., as the initial conditions in the dynamic

optimization problem), it is possible to show [34, 115] that replacing the nominal parameter

p0 for the perturbed parameter p in (3.12) leads to the first order step ∆s = s̃(p)− s∗(p0).

Here, s̃(p) is an approximation to the true optimal solution s∗(p) satisfying,

|s̃(p)− s∗(p)| ≤ L|p− p0|2 (3.13)

where L is a positive Lipschitz constant. The above result has important practical implica-

tions since the factorization of the KKT matrix in (3.12) is already available as a natural

outcome of the NLP solver. As a consequence, the second order approximate solution

can be obtained through a single backsolve which can be performed at least an order of

magnitude faster than the solution of the full NLP problem.

3.3 Advanced Step NMPC

Given the plant dynamics (2.1), we directly consider the NMPC formulation with the first-

principle dynamic model as follows.

min
N−1

∑
i=0

l(zi,vi)

s.t zi+1 = f (zi,vi), i = 0, . . . ,N−1

z0 = xk,

zi ∈ X, vi ∈ U (3.14)

where N is the horizon length, xk is the initial condition which is the plant state at time

step k. To differentiate from the actual plant state x and control u, we use z and v as the

predicted state and control in the NMPC formulation. l(·, ·) is the objective function.
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As discussed in Chapter 2, the NMPC controller is implemented in a moving horizon frame-

work [95, 89, 82]. At current time step k, the plant state xk is used as the initial condition

and the optimization problem (3.14) is solved on a horizon N. However, only the first calcu-

lated control action is implemented, i.e. uk = v0. At the next time step, the problem (3.14)

is solved with the new plant state as the initial condition. Clearly, NMPC is a time critical

application that needs to implement the control action as fast as possible. Performance de-

terioration of NMPC due to computational delays has been reported [100]. Moreover, it has

been analyzed [35] that the computational delay may destroy the stability of the controller.

However, as larger and more sophisticated process models are considered, the computa-

tional complexity becomes an issue. Motivated by these observations, Zavala and Biegler

[115] proposed the so-called advanced step NMPC algorithm (asNMPC). The controller

is based on a separation principle between background and inexpensive on-line computa-

tional tasks [32]. The controller exploits the predictive capabilities of the rigorous dynamic

model to predict the future state of the plant and solve a predicted problem in background

(between sampling times). Once the true state is revealed at the next sampling time, the

controller responds to the inherent model errors and/or external disturbances through a fast

on-line correction of the predicted solution.

The algorithm can be summarized as:

1. Background calculation: Having xk and uk at time step k, predict the future state

of the system zk+1 using the dynamic model. Assuming the computations can be

completed within one sampling time, solve the NLP (3.9) based on (3.14) with p0 =

zk+1.

2. On-line update: At time step k+1, obtain the true state xk+1. Set p = xk+1 and

use (3.12) to get the fast updated solution. Extract the control action uk+1 from the

approximate solution vector and inject to the plant.
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3. Iterate: Set k← k+1 and go to background.

The asNMPC controller presents an attractive alternative to approximate the performance

of a hypothetical ideal NMPC strategy that provides optimal instantaneous feedback at each

sampling time (i.e. no computational delay). Using NLP sensitivity theory, it is possible

to bound the approximation error of the asNMPC controller in a rigorous manner [34]. In

addition, the controller enjoys the same nominal stability properties of the ideal NMPC,

and its robust stability margins can be bounded by the uncertainty description implicit in

the perturbation |xk− zk| [115].

3.4 Advanced Step MHE

State estimation uses limited input and output information to infer the state of the process.

It is required for the NMPC controller as the estimated state serves as the initial condition

in the NMPC calculation. Moving horizon estimation (MHE) is an optimization-based

method with the advantage to handle constraints on the state easily.

To study the state estimation problem, we introduce the nonlinear output mapping into the

plant dynamics (2.1) as the following.

xk+1 = f (xk,uk), xk ∈ X, uk ∈ U,

yk = h(xk), (3.15)

where yk ∈ Rny is the output, and h(·) : Rnx → Rny is a nonlinear output mapping function.

At time step k, with the measured output sequence yk−Ne , yk−Ne+1, . . . , yk, the MHE prob-
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lem is formulated as

min
Ne

∑
j=0

(ζ T
k−Ne+ jΠyζk−Ne+ j)+(x̂k−Ne− x̄k−Ne)

T
Π0(x̂k−Ne− x̄k−Ne) (3.16a)

s.t. x̂k−Ne+ j+1 = f (x̂k−Ne+ j,uk−Ne+ j) (3.16b)

ŷk−Ne+ j = h(x̂k−Ne+ j) (3.16c)

ζk−Ne+ j = yk−Ne+ j− ŷk−Ne+ j (3.16d)

x̂k−Ne+ j ∈ X, j = 0, . . . ,Ne, (3.16e)

where Ne is the estimation horizon length, Πy, Π0 are symmetric positive definite tuning

matrices, x̂k and ŷk are the estimated state and output values. Particularly, Π0 is also termed

as the arrival cost, which has important implications on the stability of the MHE [92]. In

addition, x̄k is the estimated value of the state variable at time step k and x̄k−Ne is the most

likely prior value of xk−Ne . After the MHE problem is solved at time step k, we choose

x̂k−Ne+1 as the prior value x̄k−Ne+1 for the arrival cost at time step k+1.

Similar to the NMPC controller, MHE is the state estimation algorithm based on moving

horizon framework. Hence, a crucial limitation of the MHE is that it requires solving com-

putationally expensive optimization problems online. Moreover, the solution time of the

MHE affects the stability and performance of NMPC, since MHE provides the state esti-

mates required by the controller. Similar to the asNMPC, Zavala et al. [116] proposed the

advanced step MHE (asMHE) on the basis of NLP sensitivity. The algorithm is summa-

rized as:

1. Background calculation: Having x̂k and uk, compute the disturbance-free extrapo-

lation of the state x̃k+1 and the corresponding output ỹk+1. Solve an extended MHE

problem (3.16) with horizon Ne+1 and output sequence yk−Ne , yk−Ne+1, . . . ,yk, ỹk+1.

Let p0 = ỹk+1 (in (3.9)) and hold the KKT matrix at the solution.
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2. On-line update: Obtain the true measurement yk+1. Set p = yk+1 and compute the

fast approximation solution using equation (3.12). Extract the estimated state x̂k+1.

3. Iterate: Set k← k+1 and go to background.

3.5 Concluding Remarks

In this chapter, we have summarized advantages and disadvantages of different approaches

to DAE-constrained optimization. A simultaneous method, orthogonal collocation on finite

elements is used in this dissertation. Thus, the DAE-constrained optimization problem is

converted into large scale and sparse NLPs. IPOPT algorithm is used to solve the large

scale NLPs. Moreover, the concept of NLP-sensitivity is introduced to provide fast ap-

proximation of the solution. Finally two moving-horizon-based applications, NMPC and

MHE, are described. In addition, sensitivity-based advanced step algorithm is formulated

for both NMPC and MHE to reduce the computational delay online.
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Chapter 4

Advanced Step NMPC for Air

Separation Unit

In this chapter, we utilize the methods discussed in the previous chapter to control a large

scale air separation unit (ASU). First, simulation study of the set-point tracking NMPC

is shown and better performance against linear MPC is observed. Then, economically-

oriented NMPC which takes advantage of the varying electricity price is studied and around

6% cost reduction is achieved. Moreover, multi-scenario formulation is introduced to deal

with uncertainties in electricity price information. In these simulations, asNMPC algorithm

reduces the online computational delay by two orders of magnitude.

4.1 Introduction

Air separation units (ASUs) are cryogenic distillation systems that produce high purity

nitrogen, oxygen and argon. Due to the high demand of these commodity materials, the

ASU has become a crucial technology in many processes including next generation power

plants. These units involve single or multiple energy-intensive cryogenic columns running

at extremely low temperatures (−170 to −195 °C). As a consequence, the required degree

of energy integration in these systems is quite high, which makes them difficult to operate.

In addition, as the electricity price fluctuates significantly, the operating conditions of the
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ASUs need to be switched frequently. As expected, there is significant economic interest

in reducing the operating costs of ASUs through advanced process control technology.

So far, the dominating control practice in ASU processes has been to adapt traditional

regulatory controllers to maintain good performance. Today’s trend has shifted towards

multivariable control strategies such as MPC [98, 108]. Despite the success of linear MPC

strategies, it is clear that their applicability to dynamic processes operating over wide op-

erating regions would be strongly affected by the limited predictive capabilities of linear

input-output empirical models. In the last few years, there has been an increasing interest

to apply NMPC with rigorous dynamic models in ASU processes. Chen et al. [26] have

addressed the on-line computational expense of NMPC through the development of models

of reduced complexity based on compartmentalization concepts.

In addition, one difficulty that energy-intensive plants like ASU face during operation is

the fluctuating power price at which utility company supplies to the plants. The electricity

is not readily stored and must be used or wasted after it is produced. In order to maintain

stable operation of the electricity grid, power plants must ramp up and down frequently in

order to match generating capacity to current demand. Therefore, the power price is often

subject to high fluctuations, which may significantly increase the total operational cast for

energy-intensive plants. Ierapetritou [54] proposed a scheduling scheme for ASU plant

considering the fluctuating power price. However, the ASU is represented by a simplified

empirical model and no dynamics are considered.

To simplify the simulation study, we assume all the states are measurable in this chapter.

Therefore no state estimator is needed. We study both set-point tracking and economical

NMPC controllers with state-feedback for an ASU process. In particular, the economically-

oriented NMPC directly minimizes the operational cost by considering the fluctuated power

price. Moreover, both the controllers are designed based on the detailed first-principle
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dynamic model of the ASU to cope with a wide operating range. Finally, the asNMPC

algorithm is used to reduce the computational delay.

4.2 Air Separation Unit Model

We consider an air separation unit that produces nitrogen with at least 99.9% purity, and

oxygen with at least 96% purity. The impurity associated with the oxygen is argon. The

specifics of the ASU process under study were reported in [18, 110]. Here, ambient air

is compressed in a large multistage compressor with intercooling followed by removal of

water, carbon dioxide and hydrocarbons and by cooling in a multistream heat exchanger.

As sketched in Figure 4.1, this air feed mixture of oxygen, nitrogen and argon is then split

into two substreams. The first stream consists of pure air entering the bottom of the high

pressure column (MA) and the second one consists of expanded air entering the 20th tray

of the low pressure column (EA). Crude nitrogen gas (GN) from the main heat exchanger

is also added to the 25th tray of the high pressure column. The high pressure column

(bottom) contains 40 trays and operates at 5-6 bars, while the low pressure column (top)

operates at 1-1.5 bars and also contains 40 trays. The reboiler of the low pressure column is

integrated with the condenser of the high pressure column. The main products of the high

pressure column are pure nitrogen (PNI) (> 99.99%) and crude liquid oxygen (∼ 50%).

The crude oxygen stream is fed into the 19th tray of the low pressure column. In addition,

an intermediate side stream from the 15th tray of the high pressure column (LN) is fed to

the top of the low pressure column. A high purity separation is achieved in the low pressure

column, leading to nitrogen gas with ∼ 99% purity and oxygen (POX) with ∼ 97% purity

as products.

Mathematical modeling of dynamic distillation columns is a well studied area [13, 18,
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Figure 4.1: Simplified flowsheet of ASU studied.
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32, 63, 90, 98]. Here, a detailed ASU model is derived under the following simplifying

assumptions:

• Negligible vapor holdups on each tray, as the dynamics of the vapor phase are much

faster than that of liquid phase.

• Ideal vapor phases.

• Well-mixed entering streams.

• Constant pressure drop on each tray.

• Equilibrium stage model.

The ASU model is represented by tray-by-tray equations consisting of mass balances (over-

all and component balances of nitrogen, oxygen and argon), energy balances, phase equi-

librium, hydraulic and summation equations.

Overall Mass Balance
dMi

dt
= Li−1 +Vi+1−Li−Vi +Fi (4.1)

where i is the index of each tray, starting from the top of the column. Mi is the liquid mole

holdup ([mol]) on tray i, Li and Vi are liquid and vapor molar flow rates, respectively and

Fi is the molar feed ([mol
min ]). If there is no feed to tray i, then Fi = 0. In this case, the only

nonzero values of Fi are those corresponding to expanded air (EA, U1), pure air (MA, U2),

liquid nitrogen (LN, U3), crude gas nitrogen (GN, U4) and crude oxygen stream as shown

in Figure 4.1.

Component Balances

d(Mixi, j)

dt
= Li−1xi−1, j +Vi+1yi+1, j−Lixi, j−Viyi, j +Fix

f
i, j (4.2)
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where j ∈COMP is the index of each component, xi, j and yi, j are component mole fractions

in the liquid and vapor phases, x f
i, j are the mole fractions of the feed. Alternatively, we can

rewrite equation (4.2) using equation (4.1) as follows:

Mi
dxi, j

dt
= Li−1(xi−1, j− xi, j)+Vi+1(yi+1, j− xi, j)−Vi(yi, j− xi, j)+Fi(x

f
i, j− xi, j) (4.3)

Energy Balance

d(MihL
i )

dt
= Li−1hL

i−1 +Vi+1hV
i+1−LihL

i −VihV
i +Fih

f
i (4.4)

where hL
i = f hl(Ti,Pi) and hV

i = f hv(Ti,Pi) are liquid and vapor enthalpies in [ kJ
mol ], and h f

i

is the feed enthalpy. Expressions and data to compute hV
i and hL

i can be found in a number

of standard references. For this study, we use the information in [96]. Using equation (4.1),

the energy balance (4.4) can be rewritten as:

Mi
dhL

i
dt

= Li−1(hL
i−1−hL

i )+Vi+1(hV
i+1−hL

i )−Vi(hV
i −hL

i )+Fi(h
f
i −hl

i) (4.5)

Summation Equation

1 = ∑
j∈COMP

yi, j (4.6)

Hydraulic Equation

Li = kdMi (4.7)

where kd = 0.5 min−1 is a tuning constant determined from empirical data.

Vapor-Liquid Equilibrium

yi, j pi = γi, jxi, j psat
i, j (4.8)

where pi is the total pressure on tray i, and psat
i, j = f p(Ti) is the saturation pressure of pure

component j on tray i. Expressions to compute psat
i, j can be found in a number of standard
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references. For this study, we used the information in [96]. Symbol γi, j denotes the liquid

activity coefficient describing the non-ideal vapor-liquid equilibrium calculated from,

γi,N2 = exp[
AN2,O2x2

i,O2
+AN2,Arx2

i,Ar +(AN2,O2 +AN2,Ar−AO2,Ar)xi,O2xi,Ar

RTi
] (4.9a)

γi,O2 = exp[
AN2,O2x2

i,N2
+AO2,Arx2

i,Ar +(AN2,O2 +AO2,Ar−AN2,Ar)xi,N2xi,Ar

RTi
] (4.9b)

γi,Ar = exp[
AN2,Arx2

i,N2
+AO2,Arx2

i,O2
+(AN2,Ar +AO2,Ar−AN2,O2)xi,N2xi,O2

RTi
] (4.9c)

Here R is the ideal gas constant and the coefficients A j,k account for the liquid phase inter-

actions between components j and k. These can be calculated using the Margules equations

as reported in [13].

Equations (4.1), (4.3), (4.5)- (4.9) lead to a Differential Algebraic Equation (DAE) system,

with the differential variables Mi, xi, j and hL
i . Eliminating the dynamics of the vapor phase

reduces the stiffness of the model but makes the DAE system index 2. In other words,

we found that the algebraic variable Vi cannot be explicitly recovered from the algebraic

equations.

Solving the index 2 DAE system is often difficult as consistent initial conditions need to be

determined. In order to avoid this, the system was reduced to index 1 by differentiating the

summation equation (4.6) with respect to time:

0 = ∑
j∈COMP

dyi, j

dt
= ∑

j∈COMP

[
dKi, j

dt
xi, j +Ki, j

dxi, j

dt

]
(4.10)

where we define Ki, j = γi, j psat
i, j /pi to simplify the notation. As a result, Ki, j is a function of

temperature Ti and component concentration in each tray xi, j. Applying the chain rule to

(4.10), we obtain:

0 = ∑
j∈COMP

xi, j

[
∂Ki, j

∂Ti

dTi

dt
+ ∑

k∈COMP

∂Ki, j

∂xi,k

dxi, j

dt

]
+ ∑

j∈COMP
Ki, j

dxi, j

dt
(4.11)

CHAPTER 4. ADVANCED STEP NMPC FOR AIR SEPARATION UNIT

43



4.3 SET-POINT TRACKING NMPC

By combining equations (4.11) and (4.3) and introducing the dummy variables x̄i, j and T̄i,

we obtain:

x̄i, j :=
dxi, j

dt
=

Li−1(xi−1, j− xi, j)+Vi+1(yi+1, j− xi, j)−Vi(yi, j− xi, j)+Fi(x
f
i, j− xi, j)

Mi
(4.12)

T̄i :=
dTi

dt
=−

∑ j∈COMP

[
xi, j ∑k∈COMP(

∂Ki, j
∂xi,k

x̄i,k)+Ki, jx̄i,k

]
∑ j∈COMP xi, j∂Ki, j/∂Ti

(4.13)

Note that by changing the left hand side of the the energy balance (4.5) we can rewrite this

as an algebraic equation in terms of the dummy variables:

Mi(
∂hL

i
∂Ti

T̄i+ ∑
j∈COMP

∂hL
i

∂xi, j
x̄i, j)=Li−1(hL

i−1−hL
i )+Vi+1(hV

i+1−hL
i )−Vi(hV

i −hL
i )+Fi(h

f
i −hl

i)

(4.14)

The reformulated index 1 DAE system now consists of equations (4.1), (4.3), (4.6)-(4.12),

(4.13) - (4.14) for each tray and component. The ASU model contains 320 differential

equations and 1200 algebraic equations with Mi and xi, j as differential variables.

4.3 Set-Point Tracking NMPC

In this section, we evaluate the performance of the set-point tracking asNMPC controller

for the ASU with changing production demands. To design the controller, we choose the

molar flow rate of pure oxygen (POX-Y1) and the molar flow rate of pure nitrogen (PNI-Y2)

as output variables. The objective is to force the outputs to follow their set-points while

satisfying purity requirements.

Current ASU technology allows product composition to be measured directly. Moreover,

nonlinear transformation of these measurements are commonly used for linear MPC con-
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trollers. We prefer to use the tray temperatures because they are a cheap, continuous in-

direct composition measurement common to distillation control, and we can also choose

more sensitive intermediate tray temperatures that can add more robustness to the con-

troller. In this study, temperatures at several sensitive trays are chosen as output variables.

In particular, we choose the temperature at 30th tray in the low pressure column (Tl30-

Y3), and temperature at the 15th tray in the high pressure column (Th15-Y4). Four stream

flow rates are considered as manipulated variables. This includes the expanded air feed

(EA-U1), main air feed (MA-U2), reflux liquid nitrogen (LN-U3) and crude gas nitrogen

(GN-U4). All set-points (Yset and Ure f ) and reference values for the manipulated variables

were determined through steady-state simulations with AspenPlus.

In this section, the NMPC (3.14) is formulated as the set-point tracking formulation. As a

result, the quadratic form

MinUi

k+N

∑
k

(
(Yi−Yset)

T Y ((Yi−Yset)+(Ui−Ure f )
T U (Ui−Ure f )

)
(4.15)

is used as the objective function. Here Yi is a vector of controlled variables, Ui is a vector

of manipulated variables and Yset and Ure f are the set-points and reference values for the

output and manipulated variables, respectively. The symbols Y and U denote diagonal

weighting matrices. The diagonal element in U corresponding to each manipulated vari-

able is set to 1× 10−5 except the one corresponding to EA-U1, which is set to 1× 10−4.

The diagonal elements in Y corresponding to Tl30 and Th15 are set to 3× 10−2 while

the elements corresponding to POX and PNI are 1× 10−4. N is the prediction horizon

length with a total length of 100 minutes distributed over 20 finite elements. The control

horizon is chosen to be the same as the prediction horizon and the sampling time is set

to 5 minutes. After full discretization of the dynamic optimization problem using Radau

collocation points on finite elements as discussed in Chapter 3, the resulting NLP contains

117,140 variables and 116,900 constraints. However, the NLP is very sparse with up to 5
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nonzero entries per row in the Jacobian, and 4 nonzero entries per row in the Hessian.

In this section, we consider two case studies to demonstrate the performance of the pro-

posed asNMPC controller. The first case considers ramp changes of the production rate

set-point. Here, we contrast the performance of asNMPC controller against that of a MPC

controller that uses a fixed linearized dynamic process model. The linear model is iden-

tified using matlab system identification tool box from a set of step response data. With

this, we demonstrate that, despite the error introduced by NLP sensitivity approximations,

the asNMPC controller can still handle the nonlinear process dynamics over a wide range

of operating conditions. The second case considers step changes of the production rate

set-point in the presence of random disturbances. Here, we compare the performance of

asNMPC with that of an hypothetical or ideal NMPC controller (without computational

delay).

4.3.1 Ramping change of Set-Point

In this scenario, the ASU starts from a nominal steady-state computed from simulation.

The oxygen and nitrogen production rate set-points (and associated reference values for the

manipulated variables) are reduced by 30% through a ramp change from t = 30 to t = 60

minutes. After this, they undergo a ramp increase from t = 1000 to t = 1030 back to their

original values. For this simulation, we assume that the model is perfect and no unmeasured

disturbances are present. A total of 400 moving horizon optimization problems was solved.

We set the initial barrier parameter in equation (3.10) to µ = 10−7 in order to promote fast

convergence of the solver. The solver took 5 to 8 iterations and 120 to 220 CPU seconds

to converge with a tight tolerance of 1×10−6. All simulations were performed on an Intel

DuoCore 2.4GHz personal computer. Based on these computational times, it is clear that

a conventional implementation of NMPC would introduce a feedback delay of almost 4
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minutes. The asNMPC controller brings the online computational time down to around 1

CPU second, corresponding to the time required to perform a single backsolve with the

fixed KKT matrix. This online computational time is over 100 times less than the full

solution of the NLP.

The closed-loop profiles for the first case study are shown in Fig. 4.2 and 4.3. Note that the

asNMPC controller is able to track the production rate ramps well while maintaining the

tray temperatures close to their set-points (compare the dashed and dot-dashed lines). To

illustrate the benefits of the NMPC controller and its nonlinear dynamic model, we consid-

ered the same controller but with a linear dynamic model. Here the linear process model is

derived by identifying the data generated by dynamic simulation of the rigorous nonlinear

model using MATLAB. The linear Multiple Input Multiple Output (MIMO) model is then

obtained by combining all the Multiple Input Single Output (MISO) ARX models between

inputs and outputs. Each ARX model is chosen with a structure that achieves the small-

est Akaike Information Criteria (AIC) [21]. In order to assess the impact of the nonlinear

model within the NMPC controller, the prediction horizon and sampling times are also set

to 100 minutes and 5 minutes, respectively.

From Fig. 4.2 and 4.3 note that the asNMPC controller keeps the controlled variables close

to their set-points. On the other hand, the controller with the linear model presents large

deviations while asNMPC recovers quickly. This is mainly due to the fact that the asNMPC

controller can still handle the nonlinear process dynamics due to the background update of

the KKT matrix at each time step.
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Figure 4.2: Controlled variables for case one. The dot-dashed line is the set-point, the solid

line is the linear controller profile and the dashed line is the asNMPC profile.
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Figure 4.3: Manipulated variables for case one. The dot-dashed line is the reference value,

the solid line is the linear controller profile and the dashed line is the asNMPC profile.
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4.3.2 Step Change of Set-Point

The first case demonstrates that asNMPC with a rigorous nonlinear model is expected to

have better performance over a wide range than a controller based on a fixed linear model.

In the second case study, the set-points of the controlled variables undergo a more aggres-

sive step change. The profiles are presented in Fig. 4.4 and 4.5. At t = 30, the set-points

and reference values are instantaneously reduced by 30%, and later increased back to their

original values at t = 1000. In addition, a 5% random disturbance is added to the molar

holdups to test the robustness of the controllers. A total of 400 moving horizon problems

was solved. For the same barrier parameter µ and tolerance levels, IPOPT takes up to 10

iterations and 240 CPU seconds to converge the NLPs. The time required for the on-line

calculation of the asNMPC controller was still around 1 second. In addition, it is worth

mentioning that our linear controller with the same tuning parameters tends to be unstable

for this case.

In this case study, we also compare the performance of the asNMPC controller with that

of the hypothetical ideal NMPC controller. As shown in Fig. 4.4 and 4.5, the asNMPC

controller is able to reject the random disturbances during both transients. Moreover, note

from Fig. 4.6 that the product purities are satisfied during the entire time frame even though

they are controlled indirectly through the tray temperatures. Compared to the product pu-

rities, the temperature profiles seem to show larger deviations due to the more aggressive

step change. Finally, it is clear that the asNMPC controller yields very good sensitivity

approximations despite relatively large disturbances.
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Figure 4.4: Controlled variables for case two. The dot-dashed line is the set-point, the thin

solid line is the ideal NMPC profile and the dashed line is the asNMPC profile.
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Figure 4.5: Manipulated variables for case two. The dot-dashed line is the reference value,

the thin solid line is the ideal NMPC profile and the dashed line is the asNMPC profile.
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Figure 4.6: Product purities of case two. The thin solid line is the ideal NMPC profile and

the dashed line is the asNMPC profile.
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4.4 Economically-Oriented NMPC

The air separation unit is an energy intensive application because the ambient air needs

to be cooled to extremely low temperature (−170°C to −195 °C). Since the raw material,

ambient air is free, the major operational cost is the energy consumed to cool the air. On

the other hand, the energy price is often subject to high fluctuations throughout the time

of a day. This creates an opportunity to minimize the average utility cost by changing

the operating conditions of the ASU. In this case, it is difficult to apply the two-layered

optimization structure because the electricity price may change at a high frequency (ev-

ery hour). Thus, in this section, we use the economically-oriented NMPC that directly

minimizes the operational cost to take the advantage of the varying electricity price.

4.4.1 Electricity Pricing Scheme

The price of electricity depends on many different factors such as time of day, location and

so on. It is mainly because, the electricity is not readily stored and has to be used or wasted

after its production. As a result, utility companies resort to complex pricing schemes to

allocate resources, which have been reported by Baumrucker and Biegler [9] and Ierapetri-

tou et al. [54]. They include fixed rate structure and time of day pricing schemes [9] which

are mainly for individual households. In this section, we consider more complicated day

ahead pricing and real-time pricing schemes which are mainly for industrial sectors.

• Day ahead pricing is a strategy that changes the electricity price every hour. Util-

ity companies estimate the production cost and the energy demand for the next day

to come up with the energy price they charge. It is usually published 24 hours in

advance. It is similar to the commodities futures contract price.
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• Real time pricing also changes the electricity price hourly, but the price is determined

by the real time market. This is similar to the spot market price.

Fig. 4.7 shows the day ahead price and real time price of the day 3/23/2010 from Ameren,

a utility company serving St. Louis area. The price information is found on the website

(https://www2.ameren.com/RetailEnergy/realtimeprices.aspx). We see that the day ahead

prices change smoothly, while the real time prices vary drastically and even a negative price

occurs for a two-hour period.
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Figure 4.7: Day ahead price and real time price from Ameren.
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4.4.2 Economical NMPC with Day Ahead Pricing for ASU

In this section, the NMPC (3.14) is formulated to minimize the operational cost of the ASU.

Thus,

MinUi

k+N

∑
k
(U(1)i +U(2)i)× elei + regi. (4.16)

is used as the objective function. Here U(1) and U(2) correspond to the two air feed

flowrate EA and MA in Fig. 4.1, respectively. Since majority of energy is used to com-

press the air, we consider the operational cost is proportional to the two inlet air flows

multiplied by the varying electricity price. elei is the electricity price at time step i.

regi.= (Yi−Yset)
T Y ((Yi−Yset)+(Ui−Ure f )

T U (Ui−Ure f ) is a regularization term which

is the same as used in the set-point tracking formulation (4.15) in the previous section. This

regularization term is used to improve the problem formulation. Without it, the optimiza-

tion problem is likely to be ill-conditioned and can not guarantee a unique solution. In

order to adjust to the hourly varying electricity price, the horizon length N is changed to

120 minutes distributed over 20 finite elements. Consequently, the sampling time is 6 min-

utes. After full discretization, the resulting NLP contains 117,140 variables and 116,900

constraints.

In this scenario, we assume that the day ahead pricing scheme is used. Fig. 4.8 shows

a 48-hour period electricity price from Ameren (3/23/2010-3/24/2010), which is used in

the economical NMPC formulation. It is observed that the price in the day ahead pricing

scheme has a very similar shape with a 24-hour period.

For this simulation, the nominal ASU model is used and there is no disturbance. A total of

480 moving horizon problems are solved and the closed-loop plant responses are presented

in Fig. 4.9 and 4.10. The change of inlet air flowrate MA and EA follows the inverse

trend of the electricity price change. They are decreasing when the electricity price is
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Figure 4.8: Day ahead price for 2 days from Ameren.

high and increasing when the electricity price is low. More specifically, the economically-

oriented NMPC with the objective function (4.16) renders an operational cost ( (EA +

MA)× ele price ) of $12,511 over this 48-hour period, while the operational cost of the

set-point tracking NMPC (4.15) with a fixed set-point yields $13,042. Hence it generates

4.25% cost reduction by using the economically-oriented NMPC.

To solve the ideal NMPC problems, the solver IPOPT took between 8 to 18 iterations and

180 to 380 CPU seconds to converge. On the other hand, the asNMPC algorithm reduces

the computational delay to less than 1 CPU second. Therefore, the computational delay is

reduced by more than 300 times. Nevertheless, the asNMPC controller yields exactly the

same result with the ideal NMPC controller because there is no plant-model mismatch in

this scenario and the sensitivity error is 0. This simulation is performed on an Intel Core

i7 2.8GHz personal computer. The reason for the computational time varying dramatically

is that the optimal solution may have huge changes based on the change of the electricity
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Figure 4.9: Manipulated variables in the day ahead pricing scheme.
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Figure 4.10: Output variables in the day ahead pricing scheme.
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price. Unlike the set-point tracking NMPC, IPOPT needs to take longer time to find the

optimal solution at each time step.

4.4.3 Economical NMPC with Real Time Pricing for ASU

In this scenario, we assume that the real time pricing scheme is used. In this scheme, the

price information is only available at the end of every hour. However, the NMPC formu-

lation (4.16) needs the future price for prediction. As a result, we develop a forecasting

model to predict the future price based on the past real time price information. From Fig.

4.11 note that although the real time price fluctuates drastically, it still follows the similar

trend with 24-hour period. Hence, we utilize an Autoregressive Integrated Moving Average

(ARIMA) model [21], which is a commonly-used model for time series analysis to forecast

the future real time price.

To develop the ARIMA model in this study, we use an add-on Microsoft Excel tool XL-

STAT which can be found on the website www.xlstat.com. It is indicated that the ARIMA(2,1,1)

model has the best balance of model complexity and predicability. Fig. 4.11 shows the pre-

diction result based on historical data on a 96-hour period. Moreover, a new real time price

information is available for us at every hour, so we use the moving horizon framework to

update the ARIMA(2,1,1) model at every hour to make use the newly available informa-

tion. After solving the moving horizon problem to update ARIMA model 24 times, we

obtain the predicted real time price over 24-hour period as shown in Fig. 4.12. Based on

the predicted price, a Monte Carlo simulation with 25 samples is performed to simulate the

true real time price, which is shown as the red-dashed line in Fig. 4.12. We assume the

result from the Monte Carlo simulation can approximate the true real time price. Therefore

it is used to evaluate the proposed economical NMPC formulation.
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Figure 4.11: Predicted real time price based on 96-hour historical data.

CHAPTER 4. ADVANCED STEP NMPC FOR AIR SEPARATION UNIT

60



4.4 ECONOMICALLY-ORIENTED NMPC

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

Time of day

P
ric

e[
$K

w
/h

]

 

 
predicted price
monte carlo

Figure 4.12: Predicted real time price for 24 hours using the updated ARIMA models

within moving horizon framework.
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The economical NMPC is set to be the same as in the day ahead scenario in section 4.4.2,

with the only difference that the elei is the predicted price from ARIMA model. A total of

240 moving horizon problems are solved and the closed-loop plant responses are presented

in Fig. 4.13 and 4.14. In this case, operational cost ( (EA + MA)× ele price ) of the

economical NMPC is $5,939 over the 24-hour period, while the operational cost of the

set-point tracking NMPC (4.15) with a fixed set-point yield $6,306.6. Hence it generates

6.19% cost reduction by using the economically-oriented NMPC in the real time pricing

scheme. In addition, it is observed that the asNMPC controller has the same performance

with the ideal NMPC.
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Figure 4.13: Manipulated variables in the real time pricing scheme.
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Figure 4.14: Output variables in the real time pricing scheme.

4.4.4 Multi-Scenario formulation to Deal with Uncertainty

Note from Fig. 4.11 that there is a confidence interval associated with the predicted real

time price. The predicted real time price with 80% confidence region on the 24-hour period

is shown in Fig. 4.15.

To deal with the uncertainty in the predicted price and achieve better performance, we

propose a multi-scenario formulation [46].

min
Se

∑
s=1

ws

[
N−1

∑
i=0

(U(1)i,s +U(2)i,s)× elei,s + regi,s

]
s.t zi+1,s = f (zi,s,vi,s), i = 0, . . . ,N−1, s = 1, . . . ,Se

z0,s = xk, 0 = v0,s− v0,1

zi,s ∈ X, vi,s ∈ U, (4.17)

where Se is the number of scenarios and ws is the statistic weight associated with each
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Figure 4.15: Predicted real time price with 80% confidence region for 24 hours

scenario. The uncertain electricity prices in the objective function are spread into different

scenarios. In each scenario, the control action is determined to minimize the cost function.

In order to ensure that the calculated control action is feasible for all the scenarios, the

constraint 0 = v0,s− v0,1 forces that the first control action to be the same in all scenarios

which is implemented into the plant.

In this simulation, three different pricing scenarios are used, including the predicted price

with weight w1 = 0.6, the upper and lower bound of the predicted price with weights w2 =

w3 = 0.2. The regularization term in each scenario is chosen to be the same as that used

in the day ahead pricing scenario. A total of 240 moving horizon problems are solved and

the closed-loop plant responses are presented in Fig. 4.16 and 4.17. The operational cost

over the 24-hour period is $5,912 for this multi-scenario formulation, an additional $27

cost reduction compare to the single scenario formulation in the section 4.4.3, which has

only the expected values. Note that this is a preliminary simulation result, more analysis
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regarding the statistical performance is left for our future work.
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Figure 4.16: Manipulated variables with the multi-scenario formulation.

After full discretization, the multi-scenario optimization problem with three scenarios leads

to a NLP contains 351,396 variables and 350,700 constraints. For each NLP problem,

IPOPT took 15-30 CPU minutes for the background calculation, while sensitivity update

took around 1.5 CPU seconds. Hence the online computation time is reduced by at least

1000 times with virtually no loss in performance. This simulation is performed on an Intel

Core i7 2.8GHz personal computer.

4.5 Concluding Remarks

In this chapter, we have developed a first-principle dynamic model for a two-column cryo-

genic ASU. Simulation studies show that set-point tracking NMPC based on this model can
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Figure 4.17: Output variables with the multi-scenario formulation.

operate the ASU for a wide range of production rate, which may be problematic for lin-

ear MPC with empirical models. Moreover, an economically-oriented NMPC that directly

minimizes the operational cost is also proposed to take the advantage of the fluctuating elec-

tricity price. ARIMA models based on moving horizon framework are proposed to forecast

the future real time price. Moreover, multi-scenario formulation is developed to deal with

the uncertainty in the forecasted price. It is observed that the economically-oriented NMPC

is able to reduce the operational cost by more than 6% compare to the set-point tracking

NMPC. In addition, the asNMPC controller is utilized to reduce the online computational

delay by at least 200 times with no performance loss.
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Chapter 5

Offset-Free Output-Feedback NMPC

In Chapter 4, we demonstrate that both the set-point tracking and economical NMPC with

state-feedback can be implemented for large scale processes. They exhibit better perfor-

mance compared to linear MPC based on the assumption that all the states are available

for measurement and there is no plant-model mismatch. In this chapter, we study a more

realistic control scenario where only part of the state is measurable and critical control per-

formance needs to be retained in the presence of plant-model mismatch. In this case, an

output-feedback NMPC with state estimators is necessary.

5.1 Introduction

Offset-free behavior, i.e. maintaining the controlled outputs at their desired steady state

set-points, is an important requirement in control applications. In order to achieve offset-

free behavior for linear systems, Muske and Badgwell [84] presented a general disturbance

model that accommodates unmeasured disturbances by state augmentation. Pannocchia

and Bemporad [87] proposed an integrated design strategy for disturbance model and dy-

namic observer. Moreover, Pannocchia and Kerrigan [88] proposed a target setting strat-

egy based on state augmentation to guarantee offset-free behavior for linear systems. For

nonlinear systems, Meadows and Rawlings [79] summarized a conventional offset-free

(N)MPC method which adds an output disturbance into the objective function for the en-
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tire predictive horizon. The output disturbance is generated by comparing the measured

plant output to the model prediction at the current time step. Srinivasrao et. al [103, 104]

proposed an offset-free NMPC formulation that integrates both the state and output dis-

turbances from the extended Kalman filter (EKF). It has the advantage of being able to be

applied to open-loop unstable systems.

However, design of EKF for complex nonlinear system can be a challenging problem,

especially when inequality constraints are enforced on state variables. One strategy for

constrained state estimation is MHE as discussed in Chapter 3. In this chapter, we propose

a general offset-free NMPC framework using MHE as the state estimator. In addition to

the formulation with state and output disturbances, MHE can estimate the plant state and

uncertainty parameter simultaneously, if the uncertainty structure is known. Therefore, the

plant-model mismatch is adaptively removed. Moreover, the analysis in this chapter can

be extended to general nonlinear recursive observers, such as EKF. We focus on the MHE

formulation in this chapter and defer the discussion of offset-free formulation with NMPC

and EKF to Chapter 6.

To introduce plant-model mismatch, we combine the plant model with nonlinear output

mapping (3.15) in Chapter 3 and the uncertainty plant model (2.13) in Chapter 2.

xk+1 = f (xk,uk,θk),

yk = h(xk), (5.1)

where θk ∈ Ωθ ⊂ Rnθ is the uncertainty parameter, and Ωθ is a compact set. Here if

θk = 0, equation (5.1) represents the nominal plant (3.15). Without losing generality, we

assume that the given plant (5.1) has an equilibrium point at the origin, that is f (0,0,0) = 0.

Moreover, no trajectory of this system exhibits finite escape time.

Depending on the prior knowledge of the plant-model mismatch, two variations of the
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offset-free NMPC with MHE are proposed in this section. In general, the uncertainty struc-

ture of a process is unknown; this could be due to sensor failures and process disturbances.

In this case, we introduce state and output disturbances in both the NMPC and MHE prob-

lems to compensate for plant-model mismatch and achieve offset-free control behavior. On

the contrary, some uncertainty structure of a process can be determined beforehand, e.g. a

certain parameter drifts away from its nominal value along a chemical reaction. Then we

propose an MHE formulation to estimate the uncertainty parameter and plant state simul-

taneously. This formulation yields offset-free control behavior as well, due to the removal

of the plant-model mismatch.

5.2 Offset-Free Formulation with State and Output Dis-

turbance

In the first scenario, we assume that the uncertainty structure is unknown. Hence, the nom-

inal zero value of the uncertainty parameter is used in the predictive model. To compensate

for the plant-model mismatch, state and output disturbances are introduced into the general

MHE (3.16) and NMPC (3.14) for a nominal system.
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At time step k, the MHE proble (3.16) is modified as

min
Ne

∑
j=0

(ζ T
k−Ne+ jΠyζk−Ne+ j +ξ

T
k−Ne+ jΠxξk−Ne+ j)+(x̂k−Ne− x̄k−Ne)

T
Π0(x̂k−Ne− x̄k−Ne)

(5.2a)

s.t. x̂k−Ne+ j+1 = f (x̂k−Ne+ j,uk−Ne+ j,0)+ξk−Ne+ j (5.2b)

ŷk−Ne+ j = h(x̂k−Ne+ j) (5.2c)

ζk−Ne+ j = yk−Ne+ j− ŷk−Ne+ j (5.2d)

x̂k−Ne+ j ∈ X, ζk−Ne+ j ∈Ωζ , ξk−Ne+ j ∈Ωξ (5.2e)

j = 0, . . . ,Ne, (5.2f)

where Πx is a symmetric positive definite tuning matric, and ξk, ζk are the state and output

disturbances which are assumed to be bounded in compact sets Ωζ and Ωξ , respectively.

Note that though we consider a noise free plant (5.1) for notational simplicity, the proposed

MHE and NMPC can easily incorporate the state and output noises, due to the introduction

of the state and output disturbances. In addition, state noise can be considered as a special

form of the uncertainty parameter θ .

After the MHE problem (5.2) is solved, it yields the optimal estimated state (x̂k), as well

as the state and output disturbances (ξk, ζk) at the current time step k. Therefore, set-point

tracking output-feedback NMPC with state and output disturbances is formulated as:
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min
Np

∑
j=0

(lk+ j− yr)
T

Γy(lk+ j− yr)+
Nc−1

∑
i=0
4vT

k+iΓu4vk+i (5.3a)

s.t zk+ j+1 = f (zk+ j,vk+ j,0)+ξk, j = 0, . . . ,Np−1 (5.3b)

zk = x̂k, zk+ j ∈ X (5.3c)

lk+ j = h(zk+ j)+ζk, 4vk+i = vk+i+1− vk+i (5.3d)

vk+ j = vk+ti for ti ≤ j < ti+1, vk+i ∈ U, (5.3e)

t0 = 0≤ t1 ≤ t2 ≤, . . . ,≤ Np−1 (5.3f)

where Np, Nc are the prediction and control horizon length respectively; yr is the set point

for the output; zk, lk, vk are the predicted state, output and control movement, respectively.

NMPC is initialized with the estimated state x̂k. In typical NMPC applications, fewer de-

grees of freedom are available for the control movement. The last two constraints indicate

that the control action is the input blocking form, ensuring that the available degrees of

freedom spread over the entire prediction horizon.

Note that unlike NMPC formulation (3.14), the predictive model (5.3b) is perturbed by

the state and output disturbances (ζk and ξk) to compensate for the unknown uncertainty

parameter θk. It is worth mentioning that ζk and ξk, which are calculated at the end of the

estimation horizon in MHE, are fixed parameters in the NMPC problem.

We now show that the proposed method yields zero steady state offset. The analysis is

similar to that in [79]. However, it does not depend on a target setting optimization problem.

Theorem 1 If

1. the set point yr is reachable for the perturbed predictive model zk+ j+1 = f (zk+ j,vk+ j,0)+

ξk and lk+ j = h(zk+ j)+ζk,
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2. the NMPC controller (5.3) is asymptotically stabilizing for the perturbed predictive

model,

3. the closed-loop system goes to a steady state,

4. the perturbed predictive model is observable at the steady state,

then the system controlled by the MHE (5.2) and the NMPC (5.3) has zero steady state

offset.

Proof : In the following analysis, the superscript ss denotes the steady state value. Since yr

is reachable for the perturbed predictive model and the NMPC control law is asymptotically

stable, the stage cost in NMPC (5.3) is zero at steady state, i.e.

lss = yr. (5.4)

Moreover, at the steady state, the predictive state remains constant, zss = x̂ss. The control

action is also a constant, i.e. uss = vss. The state and output disturbances (ξ ss and ζ ss) can

be estimated from the assumption that the perturbed predictive model is observable. Thus

the following equations hold true,

x̂ss = f (x̂ss,uss,0)+ξ
ss, (5.5a)

lss = h(x̂ss)+ζ
ss. (5.5b)

In addition, at the steady state the MHE evolves according to

x̂ss = f (x̂ss,uss,0)+ξ
ss, (5.6a)

ŷss = h(x̂ss), (5.6b)

ζ
ss = yss− ŷss. (5.6c)
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Since the predictive model in the MHE (5.6a) is exactly the same as that in the NMPC

(5.5a), by combining equations (5.5b), (5.6b) and (5.6c), we see

lss = yss. (5.7)

Then by virtue of equations (5.4) and (5.7), the following equation can be derived

yss = yr. (5.8)

This indicates that the plant output equals the set point at the steady state. �

Remark 1 If the set point yr is not feasible, then the proposed approach minimizes the

steady state output difference, i.e. (yss− yr)
T Γy(yss− yr).

Remark 2 Note that in this analysis, the observer is in a general formulation (5.6). Thus,

the Theorem also applies to the NMPC (5.3) incorporated with nonlinear recursive ob-

servers, such as EKF and extended Luenberger Observer. In Chapter 6, we will discuss the

offset-free formulation of NMPC with EKF and the theoretical result obtained in Theorem

1 still applies.

5.3 Offset-free Formulation with State and Parameter Es-

timation

In the second scenario, we assume that the uncertainty parameter structure is known. Then

instead of compensating for the uncertainty by state and output disturbances, MHE can

estimate both the state and uncertainty simultaneously. Thus, the model for the MHE and

the NMPC is modified adaptively online.
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At time step k, with the measured output sequence yk−Ne , yk−Ne+1, . . . , yk, the MHE is

formulated as:

min
Ne

∑
j=0

(ζ T
k−Ne+ jΠyζk−Ne+ j)+ θ̂

T
k Πθ θ̂k +(x̂k−Ne− x̄k−Ne)

T
Π0(x̂k−Ne− x̄k−Ne) (5.9a)

s.t. x̂k−Ne+ j+1 = f (x̂k−Ne+ j,uk−Ne+ j, θ̂k) (5.9b)

ŷk−Ne+ j = h(x̂k−Ne+ j) (5.9c)

ζk−Ne+ j = yk−Ne+ j− ŷk−Ne+ j (5.9d)

x̂k−Ne+ j ∈ X,ζk−Ne+ j ∈Ωζ , θ̂k ∈Ωθ (5.9e)

j = 0, . . . ,Ne, (5.9f)

where θ̂k is the estimated uncertainty parameter which is bounded in a compact set Ωθ .

Similar to the MHE formulation (5.2b), ζk−Ne+ j is the output disturbance, bounded in the

compact set Ωζ . However, there is no state disturbance in this formulation. MHE (5.9)

yields the optimal uncertainty parameter θ̂k that minimizes the difference between the esti-

mated output ŷ, and the measured output y over the entire estimation horizon. As a result,

the estimated state x̂ is also smoothed over the entire estimation horizon.

With the optimal estimated state x̂k, output disturbance ζk and the optimal uncertainty pa-

rameter θ̂k at the current time step k, the output-feedback NMPC with parameter estimation
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is formulated as the following:

min
Np

∑
j=0

(lk+ j− yr)
T

Γy(lk+ j− yr)+
Nc−1

∑
j=0
4vT

k+ jΓu4vk+ j (5.10a)

s.t zk+ j+1 = f (zk+ j,vk+ j, θ̂k), j = 0, . . . ,Np−1 (5.10b)

zk = x̂k, zk+ j ∈ X (5.10c)

lk+ j = h(zk+ j)+ζk, 4vk+ j = vk+ j+1− vk+ j (5.10d)

vk+ j = vk+ti for ti ≤ j < ti+1, vk+ j ∈ U, (5.10e)

t0 = 0≤ t1 ≤ t2 ≤, . . . ,≤ Np−1. (5.10f)

Similar to the NMPC formulation with state and output disturbances (5.3b), this NMPC

problem is initialized with the estimated state variable x̂k and the planned control move-

ment is chosen as the input-blocking form. However, this NMPC formulation does not

perturb the predictive model with the state disturbance. Instead, it adaptively updates the

uncertainty parameter with the optimal value from the MHE.

Similar to the analysis in Theorem 1, we can show that the NMPC and MHE with parameter

estimation (MHE (5.9) and NMPC (5.10)) is able to provide offset-free control behavior.

The proof follows in the same way as that in Theorem 1, and is omitted here.

5.4 Simulation Examples

In this section, the proposed methods are demonstrated on simulation examples. In addi-

tion, the advanced step algorithm in Chapter 3 is also utilized to reduce the online compu-

tational time.
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5.4.1 CSTR Simulation

In this subsection, a simulated NMPC scenario with a nonlinear continuous stirred tank

reactor (CSTR) is considered, which is adopted from the CSTR model in [41]. The CSTR

is represented by the following differential equations:

dzc

dt
= (zc−1)/u2 + k0zc exp(−Ea/zT ) (5.11a)

dzT

dt
= (z f

T − zT )/u2 + k0zc exp(−Ea/zT )−νu1(zT − zcw
T ). (5.11b)

This system involves two states z = [zc,zT ] corresponding to dimensionless concentration

and temperature, and two manipulated inputs, corresponding to the cooling water flow

rate u1 and the inverse of dilution rate u2. The model parameters are zcw
T = 0.38, z f

T =

0.395, Ea = 5, ν = 1.95×10−4 and k0 is an uncertainty parameter in the plant with nominal

value k0 = 300. The system is operated at steady state zss = [0.12466,0.74068] correspond-

ing to uss = [378,20]. In this simulation, it is assumed that both the states are measured,

i.e. the output mapping function in (5.1) is chosen to be h(·) = diag[1,1]× [zc,zT ]
T .

This model is regulated by the proposed two variations of offset-free output-feedback

NMPC with MHE. The horizon of the MHE, Ne is chosen as 6 time units with sampling

time equals to 1 time unit. Let Q = diag[1,1] and R = diag[1,1], and define Ass =
∂ f
∂ z |zss,uss ,

Bss =
∂ f
∂u |zss,uss , Css =

∂h
∂ z |zss and Vss = R+CssQCT

ss. The weighting matrices are chosen to be

inverse of the covariance information which is calculated similar to the extended Kalman

filter, i.e., Π
−1
0 =AssQAT

ss+BssQBT
ss−AssQCT

ssV
−1
ss CssQAT

ss, Π−1
x =Q, Π−1

y =R and Πθ = 0.

The NMPC is tuned with prediction horizon Np chosen to be 10 time units, control horizon

Nc chosen to be 5 time units and equally distributed over the entire prediction horizon. The

tuning matrices are Γy = diag[1×106, 1×106], Γu = 0.

In the first simulation, the plant is controlled by the formulation with state and output

disturbances (MHE (5.2) and NMPC (5.3)). The plant starts from the nominal steady state
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Figure 5.1: State profile in scenario 1 in the CSTR simulation.

value. At time step 10, the uncertainty parameter k0 is reduced to 70% of its nominal value

as shown at the bottom of Fig. 5.3. The resulting closed-loop responses are shown in

Fig. 5.1 and 5.2. It is observed that although both states are measured, the state estimates

are biased after the plant-model mismatch is introduced. However, these differences are

utilized in the NMPC formulation to remove the steady state offset of the plant outputs. As

shown in Fig. 5.1, the proposed method is able to regulate the plant outputs at the desired

set points.

The second simulation scenario is the same as the first one, except that the plant is regulated

by the formulation with state and parameter estimation (MHE (5.9) and NMPC (5.10)). As

shown at the bottom of Fig. 5.5, the estimated uncertainty gradually converges to the plant

value after the plant-model mismatch is introduced at time step 10. Thus, after time step 25,

the uncertainty parameter in the model equals that in the plant, removing the plant-model

mismatch. Fig. 5.4 shows that the proposed method quickly rejects the disturbance and
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Figure 5.2: Control profile in scenario 1 in the CSTR simulation.
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Figure 5.3: Error profile in scenario 1 in the CSTR simulation.
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Figure 5.4: State profile in scenario 2 in the CSTR simulation.

yields offset-free control behavior. In addition, the estimated states converge to the mea-

sured plant states without any error after the plant-model mismatch is eliminated. It is in-

teresting to compare Fig. 5.1 and 5.4 to see that the formulation with parameter estimation

(equations (5.9) and (5.10)) rejects the plant-model mismatch faster than the formulation

with state and output disturbances (equations (5.2) and (5.3)).

5.4.2 As-MHE-NMPC for the ASU

In the previous section, the CSTR is controlled by the hypothetical ideal-MHE-NMPC,

which is based on the assumption that the MHE and NMPC problems can be solved in-

stantaneously, i.e. no computational delay. However, in practice, we need to consider

the computational delay resulting from solving the optimization problems associated with

MHE and NMPC, especially for the large scale ASU process. Furthermore, the MHE and
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Figure 5.5: Control and uncertainty profile in scenario 2 in the CSTR simulation.

NMPC problems need to be solved sequentially, because the NMPC uses the estimated

plant state as the initial condition which is the result of the MHE problem. Therefore, the

computational delay is the result of solving two optimization problems online.

In this section, we incorporate the asNMPC and asMHE which are described in Chapter

3 into the proposed offset-free framework to reduce the online computational delay. The

algorithm is summarized as the following:

In background, between time step k and k+1:

• asMHE: having x̂k and uk, compute the disturbance-free extrapolation of the state

x̃k+1 and the corresponding output ỹk+1. Solve an extended MHE problem (5.2) or

(5.9) with horizon Ne + 1 and output sequence yk−Ne , yk−Ne+1, . . . ,yk, ỹk+1. Let

p0 = ỹk+1 and hold the KKT matrix at the solution.
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• asNMPC: having x̂k and uk, predict the future state of the system zk+1 using the

predictive model (5.3b) or (5.10b). Solve the NMPC (5.3) or (5.10) with p0 = zk+1.

Hold the KKT matrix at the solution.

Online update, at time step k+1:

• asMHE: obtain the true measurement yk+1. Set p = yk+1 and compute the fast ap-

proximation solution using equation (3.12). Extract the estimated state x̂k+1.

• asNMPC: obtain the state estimate x̂k+1. Set p = x̂k+1 and use equation (3.12) to

get the fast updated solution. Extract the control action uk+1 from the approximate

solution vector and inject to the plant.

Remark 3 The background solution of NMPC does not need to wait for the result of the

MHE. Therefore, the background solution can be further parallelized on different comput-

ing units. The sampling time can be chosen as the longer of the two background solution

times, instead of the summation of the two background solution times.

It is observed that the online computational delay of this as-MHE-NMPC scheme is only

two single backsolves associated to the online update of the MHE and NMPC, which is

significantly faster compared to solving the MHE and NMPC problems online.

In the following, we apply the as-MHE-NMPC scheme to the ASU model presented in

Section 4.2. The hydraulic parameter kd in equation (4.7) is considered as the uncertainty

parameter and is perturbed by 20%. The controller setup is exactly the same as the set-point

tracking NMPC controller in Section 4.3. The objective is to regulate the ASU outputs

shown in Fig. 4.1 at their set-points in the presence of the plant-model mismatch, and the

control objective function is chosen to be equation (4.15).
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Since there are many uncertainties in the ASU process, e.g. thermodynamic properties, tray

efficiencies, etc., it is not trivial to determine the uncertainty structure of the ASU model

in practice. Therefore, we choose to use the formulation with state and output disturbances

(MHE (5.2) and NMPC (5.3)).

The simulation starts from the nominal steady state with kd = 0.5. At 25 minutes, the kd

in the plant is increased to 0.6, while kd = 0.5 in the model, introducing a plant-model

mismatch. The closed-loop plant output is presented in Fig. 5.6, and the control action

is shown in Fig. 5.7. It is observed that both as-MHE-NMPC and ideal-MHE-NMPC in

the proposed offset-free framework reject the disturbance and regulate the plant outputs at

their set points without any steady-state offset. Moreover, the as-MHE-NMPC yields com-

parable performance as the ideal-MHE-NMPC. Finally, the purities in the product streams

POX and PNI are not directly measured. Nevertheless, it is interesting to note in Fig. 5.8

that the oxygen and nitrogen purity in the product streams satisfy the requirement (oxygen

purity ≥ 96%).

In addition, from the output of IPOPT, we see that the solutions of both MHE and NMPC

problems satisfy LICQ and SSOC at each time step, meaning that this system is locally

observable and controllable at each time step. We believe this is partially due to the fact

that the ASU is open-loop stable and the MHE and NMPC problems at each time step are

well initialized from their previous solutions.

After full discretization using Radau collocation as discussed in Chapter 3, the resulting

Nonlinear Programming (NLP) problem corresponding to the NMPC problem has 116,900

constraints and 117,140 variables; while the NLP corresponding to the MHE problem (5

finite elements and 3 collocations) contains 29,285 constraints and 30,885 variables. Both

the NLPs are solved using AMPL and IPOPT on an Intel DuoCore 2.4 GHz personal com-

puter. The ideal-MHE problems take up to 15 iterations and 90 CPU seconds to solve,
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Figure 5.6: Output profile of the ASU with state and output disturbance as-MHE-NMPC.
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Figure 5.7: Control profile of the ASU with state and output disturbance as-MHE-NMPC.
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Figure 5.8: Product purity profile of the ASU with state and output disturbance as-MHE-

NMPC.
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while ideal-NMPC problems take up to 6 IPOPT iterations and 200 CPU seconds to solve.

On the other hand, the online computational time is less than 1 CPU second for asMHE and

around 1 CPU second for asNMPC, even though as-MHE-NMPC has similar performance

as ideal-MHE-NMPC. It indicates that by using as-MHE-NMPC, the online computational

delay is reduced by 150 times, from around 5 minutes to less than 2 seconds.

5.5 Concluding Remarks

This chapter addresses the practical issue of achieving offset-free behavior in NMPC ap-

plications when plant-model mismatch is present and state estimator is integrated to re-

construct plant state from output. Using MHE as the general state estimator, we propose

an offset-free NMPC framework based on state and output disturbances. It can be shown

that the proposed method guarantees offset-free behavior if the set-point is feasible for the

observable perturbed predictive model and the control law asymptotically converges to the

steady state. The analysis can be extended to the general nonlinear recursive observers

like extended Kalman filter, which will be discussed in Chapter 6. Moreover, another

variation of offset-free NMPC framework is proposed based on integrated state and param-

eter estimation. Here, MHE is tuned to estimate the plant state and uncertainty parameter

simultaneously, in order to remove the plant-model mismatch online. Provided that the un-

certainty structure is known, we observe that this framework has better performance than

the formulation based on state and output disturbances. In addition, as-NMPC and as-MHE

is incorporated into the proposed offset-free frameworks, to reduce online computational

delay associated with solving the MHE and NMPC problems. We see that the framework

with parameter estimation can improve the robust stability of the as-MHE-NMPC. Finally,

the proposed as-MHE-NMPC based on state and output disturbances is successfully imple-
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mented on a large scale air separation unit. The online computational delay is reduced by

at least 150 times by using as-MHE-NMPC.
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Chapter 6

Robust Stability of NMPC with EKF

In Chapter 5, we studied the practical issue of achieving offset-free behavior using output-

feedback NMPC with MHE. In this chapter, we are interested in the robust stability prop-

erty of set-point tracking NMPC with an observer. EKF is chosen as the nonlinear observer

due to its popularity in industry. First, the convergence property of the estimated state from

EKF in the presence of non-vanishing perturbations is established. A local form of separa-

tion principle is shown that the EKF error is not influenced by the NMPC. Then, we further

analyze the impact of the estimation error on the robust stability of the output-feedback

NMPC. Moreover, a simulation study is shown with the output-feedback NMPC plus EKF

which inherits the offset-free theoretical result in Theorem 1.

6.1 Introduction

Based on the assumption that all the states in plants are measurable, stability analyses of

the closed-loop system with state-feedback nonlinear MPC have been extensively studied

for both nominal and robust systems. Thorough reviews can be found in [78, 74, 95]. In ad-

dition, Limon et al. [72] presented the theory of Input-to-State Stability (ISS) as a unifying

framework for robust NMPC. In practice, however, the system state is seldom fully avail-

able. Although output-feedback (N)MPC, in which nominal (N)MPC is integrated with a

separately designed observer is extensively used in industry, relatively little contribution
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has been made in the literature in terms of its stability analysis. This is mainly because

there is no valid separation principle for a general constraint nonlinear system.

Recently, stability properties of output-feedback NMPC with focus of particular systems

are studied. Findeisen et al. [36] obtained practical stability of systems by synthesizing a

sufficiently fast high-gain observer with a robust NMPC controller. In addition, Kothare

and Morari [62] demonstrated that MPC with contractive constraints is asymptotically sta-

ble provided with asymptotically convergent estimates. These results focus on continuous

time systems with vanishing perturbations. For discrete time systems, Magni and Scat-

tolini [65] studied the stability under vanishing perturbations by requiring Lipschitz con-

tinuity for both the observer and controller. Messina et al. [80] presented stability results

of output-feedback controllers. In addition, Roset et al. [99] showed the robust stability

property of NMPC to both state and measurement errors. However, these two studies treat

the plant-model mismatch as additive noise.

Here we analyze the robust stability of output-feedback NMPC with state-correction under

general non-vanishing plant-model mismatches with a class of widely-used state estima-

tors. The stability of MHE has been studied by Alessandri et al [3] and Zavala [114] by

assuming the control action is known. However, it is not clear how the result changes in

the closed-loop case, when the control action is calculated by using the MHE result as the

initial condition. In this chapter, we use a class of nonlinear observers based on recursive

calculations such as EKF and ELO. The open-loop stability of this class of observers has

been addressed by utilizing a generalized Lyapunov framework in [52]. Here, we use the

EKF as a representation due to its advantage to control the estimation error by tuning pa-

rameters. Nevertheless, the stability result in this chapter still holds if ELO is used as the

observer.

Although EKF is arguably the most popular state estimation tool in industry since 1970,
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few properties regarding the stability and convergence property of the EKF have been es-

tablished until recently. Given observability, recent research [97, 20] shows the nominal

stability property of the estimator. In particular, Reif and Unbehauen [97] presented con-

vergence analysis for the estimation error sequence and obtained the desired convergence

rate.

In this chapter, we first establish the robust stability of an EKF by extending the analysis in

[97] to systems with non-vanishing plant-model mismatch. With the help of a local form

of separation principle and utilizing the unifying ISS framework [72], we demonstrate that

the robust stability of the output-feedback NMPC deteriorates to Input-to-State practical

Stability (ISpS) [72] due to the estimation error of the EKF. Moreover, simulation studies

of using offset-free output-feedback NMPC with EKF, which inherits the theoretical result

in Theorem 1, are shown.

This chapter studies a general nonlinear plant with linear-output mapping as shown by

equation (6.1), which is a special case of the general nonlinear plant in equation (5.1).

xk+1 = f (xk,uk,θk) (6.1a)

yk =Cxk, (6.1b)

where C is a constant matrix. Although applications with nonlinear-output mapping exist

in many engineering fields such as robotics, electric and mechanical systems, majority of

the chemical engineering applications exhibit the linear-output mapping.

Notations and definitions used in this chapter are introduced in Section 2.3.1.
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6.2 Robust Stability of EKF

In this study, we use the same EKF formulation as in [97, 47].

x−k+1 = f (x̂k,uk,0) (6.2a)

x̂k = x−k +Kk(yk−Cx−k ) (6.2b)

where x−k and x̂k are called the a priori and a posteriori estimate, respectively. Note the un-

certainty parameter is 0 in the model, introducing a non-vanishing plant-model mismatch.

Kk here is the Kalman gain calculated by:

Kk = P−k CT (CP−k CT +R)−1

P−k+1 = α
2AkP+

k AT
k +Q P+

k = (I−KkC)P−k (6.3)

where Ak =
∂ f
∂x (x̂k,uk,0) is the linearization of the model, Q and R are symmetric positive

definite matrices, α ≥ 1 is a real number, which is the exponential data weight and can

control the convergence rate of the EKF. The Kalman gain equation can be rewritten as

Kk = P+
k CT R−1 [97].

Let ϕ(·, ·, ·, ·) be the higher order term, then the residual of the EKF can be defined by the

following equation:

xk+1− x−k+1 = f (xk,uk,θ)− f (x̂k,uk,0)

= Ak[xk− x̂k]+Gkθk +ϕ(xk, x̂k,uk,θk) (6.4)

where Gk ,
∂ f
∂θ

(x̂k,uk,0). Now introduce prior and posterior error, ζk and ξk as

ζk = xk− x−k (6.5a)

ξk = xk− x̂k (6.5b)

From equation (6.2b) we have

ξk = (I−KkC)ζk. (6.6)
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Subtracting equation (6.2a) from (6.1a) and using equations (6.1b), (6.2b) and (6.4) yields

ζk+1 = Ak(I−KkC)ζk + rk = Akξk + rk (6.7a)

rk = ϕ(xk, x̂k,uk,θk)+Gkθk (6.7b)

From equations (6.4), (6.6) and (6.7),

ξk = [(I−KkC)Ak−1]ξk−1 +[(I−KkC)rk−1] (6.8)

Lemma 4 Assume

i) there are constants a,k, and g≥ 0 such that:

|A| ≤ a, |G| ≤ g, |K| ≤ k, (6.9)

ii) there are constants ε, κϕ , κθ ≥ 0 such that:

|ϕ(x, x̂,u,θ)| ≤ κϕ |x− x̂|2 +κθ |θ |2 +κϕθ |θ ||x− x̂| (6.10)

for |ξ |= |x− x̂| ≤ ε ,

iii) x̂ satisfies x̂ = x−+KC(x− x−).

Let r be defined by r = ϕ(x, x̂,u,θ)+Gθ , then there exists a K -function δr(·) such that

|r| ≤ κϕξ 2 +δr(|θ |) for |ξ | ≤ ε .

Proof: Using triangle inequality as well as equations (6.9) (6.10), we have |r| ≤ |ϕ(x, x̂,u,θ)|+

g|θ |. Then we define a K -function δr(|θ |) , (g+κϕθ ε)|θ |+κθ |θ |2. Thus considering

equation (6.10) and ξ = x− x̂, the Lemma follows. �

Defining Π
−
k = (P−k )−1, Π

+
k = (P+

k )−1, we use Lemma 6 in [97] to obtain:

Π
−
k+1 ≤ α

−2A−T
k (I−KkC)−T [

Π
−
k −Π

−
k (Π

+
k +α

2AT
k Q−1Ak)

−1
Π
−
k

]
× (I−KkC)−1A−1

k (6.11)
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Theorem 2 Let the assumptions in Lemma 4 hold for the EKF (6.2), (6.3), and assume

that Ak is nonsingular at each time step. Besides there exist constants p and p ≥ 0 such

that

pI ≤ P−k ≤ pI, pI ≤ P+
k ≤ pI. (6.12)

Then V (ξk), ξ T
k (I−KkC)−T Π

−
k (I−KkC)−1ξk is an ISS Lypunov function. Moreover there

exist constants η , ε̃ , εξ0
> 0, β > 1 and a K -function δ (‖θ‖k−1) such that the posterior

error sequence behaves according to |ξk| ≤ η |ξ0|β−k +δ (‖θ‖k−1) when |ξ0| ≤ εξ0
.

Proof: The basic idea of the proof is to first establish a Lyapunov function for the prior

error, from which the ISS Lyapunov function for the posterior error can be derived.

We start by considering a Lyapunov function defined with prior error, i.e. Ṽ (ζk), ζ T
k Π
−
k ζk.

Using (6.7) and (6.11)

Ṽ (ζk+1), ζ
T
k+1Π

−
k+1ζk+1

≤ α
−2

ζ
T
k
[
Π
−
k −Π

−
k (Π

+
k +α

2AT
k Q−1Ak)

−1
Π
−
k

]
ζk

+
[
2rT

k Π
−
k+1Ak(I−KkC)ζk

]
+
[
rT

k Π
−
k+1rk

]
≤ α

−2
ζkΠ

−
k ζk−

1
α2 p2(p+α2a2/q)

|ζk|2

+2rT
k Π
−
k+1Ak(I−KkC)ζk + rT

k Π
−
k+1rk (6.13)

where q > 0 is the smallest eigenvalue of the positive definite matrix Q.

From (6.12), we see P−k and P+
k are nonsingular and because of equation (6.3), the matrix

(I−KkC)−1 = P−k Π
+
k exists. Then from equations (6.6) and (6.3), it follows that

ζk = (I−KkC)−1
ξk Π

+
k = Π

−
k (I−KkC)−1 (6.14)

Furthermore using equations (6.14), we have

ζ
T
k Π
−
k ζk = ξ

T
k (I−KkC)−T

Π
−
k (I−KkC)−1

ξk (6.15)
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Now we define the Lyapunov function regarding to ξk

V (ξk) , ξ
T
k
[
(I−KkC)−T

Π
−
k (I−KkC)−1]

ξk

= ξ
T
k
[
(Π+

k )
T (P−k )T

Π
+
k

]
ξk. (6.16)

Using equation (6.6) and |(I−KkC)−1|= |P−k Π
+
k | ≤

p
p , the inequality (6.13) can be written

in terms of V (ξk+1) as

V (ξk+1) ≤ α
−2V (ξk)−

1
α2 p2(p+α2a2/q)(p/p)2 |ξk|2

+2rT
k Π
−
k+1Akξk + rT

k Π
−
k+1rk (6.17)

Denoting the smallest eigenvalue of R by r, we obtain

|Kk| ≤
∣∣P+

k

∣∣ |C| ∣∣R−1∣∣≤ k (6.18)

where k = p|C|/r.

Then applying Lemma 4, 2rT
k Π
−
k+1Akξk can be expressed as

2rT
k Π
−
k+1Akξk ≤ 2|rk|

a
p
|ξk| ≤ 2

[
κϕ |ξk|2 +δr(|θk|)

] a
p
|ξk|

≤ 2κϕ |ξk|2
a
p
|ξk|+

2a
p

ε [δr(|θk|)] (6.19)

Similarly, from Lemma 4, rT
k Π
−
k+1rk can be expressed as

rT
k Π
−
k+1rk ≤

1
p
|rk|2 ≤

1
p

[
κϕ |ξk|2 +δr(|θk|)

]2
≤ 1

p
(κϕ |ξk|2κϕε|ξk|)+

1
p

[
2
[
κϕε

2]
δr(|θk|)+ [δr(|θk|)]2

]
(6.20)
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Combining (6.19) and (6.20) with equation (6.17), we have

V (ξk+1) ≤ α
−2V (ξk)−

[ 1

α2 p2(p+α2a2/q)
(

p/p
)2

−κ̃|ξk|
]
|ξk|2 +δV (|θk|) (6.21)

κ̃ =
κϕ

p
(2a+κϕε)

δV (|θk|) =
1
p

[
2
(
κϕε

2 +aε
)

δr (|θk|)+(δr (|θk|))2
]

(6.22)

where δV (|θk|) is a K -function. Thus, we have

V (ξk+1)−V (ξk)≤ (α−2−1)V (ξk)

−

[
1

α2 p2(p+α2a2/q)
(

p/p
)2 − κ̃|ξk|

]
|ξk|2 +δV (|θk|)

≤ (α−2−1)V (ξk)−
1

2α2 p2(p+α2a2/q)
(

p/p
)2 |ξk|2

−

[
1

2α2 p2(p+α2a2/q)
(

p/p
)2 − κ̃|ξk|

]
|ξk|2 +δV (|θk|) . (6.23)

Choosing ε̃ as

ε̃ = min

(
ε,

1

2α2 p2κ̃(p+α2a2/q)
(

p/p
)2

)
(6.24)

such that [
1

2α2 p2(p+α2a2/q)
(

p/p
)2 − κ̃|ξk|

]
≥ 0

holds true when |ξk| ≤ ε̃ , leads to

V (ξk+1)−V (ξk)≤−
1

2α2 p2(p+α2a2/q)
(

p/p
)2 |ξk|2

+(α−2−1)V (ξk)+δV (|θk|) . (6.25)
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Thus, V (ξk) is a locally ISS-Lyapunov function when |ξk| ≤ ε̃ . It follows from the defini-

tion of V (ξk) that

1
σ
|ξk|2 ≤ V (ξk)≤

1
σ
|ξk|2 (6.26)

σ =
(p)2

p
and σ =

(
p
)2

p

Using (6.25) together with (6.26), we have

V (ξk+1) ≤ ωV (ξk)+δV (|θk|) (6.27)

where ω , α
−2

(
1−

(
p
)4

2p5(p+α2a2/q)

)
(6.28)

Without loss of generality, we assume that p > 1, which implies 0 < 1− (p)
4

2p5(p+α2a2/q)
< 1.

If we choose α ≥ 1, then ω < 1.

Equations (6.27) together with (6.26) imply that

1
σ
|ξk+1|2 ≤ ω

1
σ
|ξk|2 +δV (|θk|) (6.29)

and furthermore

|ξk+1| ≤ ω
1
2

(
p
p

) 3
2

|ξk|+(σδV (|θk|))
1
2 . (6.30)

It is clear that if we choose α such that ω
1
2

(
p
p

) 3
2
< 1 and {θ j} j≥k = 0, then the error {ξ j}

asymptotically converges to 0.

In addition, equation (6.27) also leads to

V (ξk) ≤ ω
kV (ξ0)+(ωk−1 +ω

k−2 + ...+1)δV (‖θ‖k−1)

≤ ω
kV (ξ0)+

1
1−ω

δV (‖θ‖k−1) . (6.31)
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Using inequality (6.26) again, we get

|ξk|2 ≤ ω
k
(

σ

σ

)
|ξ0|2 +

σ

1−ω
δV (‖θ‖k−1) . (6.32)

From the inequality a2 +b2 ≤ (a+b)2,∀a,b≥ 0, it leads to

|ξk|2 ≤

[
ω

k
2

√
σ

σ
|ξ0|+

(
σ

1−ω
δV (‖θ‖k−1)

)1/2
]2

(6.33)

which can be further simplified as

|ξk| ≤ ω
k
2

(
p
p

)3/2

|ξ0|+
(

σ

1−ω

)1/2

[δV (‖θ‖k−1)]
1/2 . (6.34)

Then we define η =
(

p
p

)3/2
> 0, β = 1/

√
ω > 1, and a K -function

δ (‖θ‖k−1) =

√
(p)2

p(1−ω)
[δV (‖θ‖k−1)]

1/2 ,

and observe that the posteriori error sequence {ξk} behaves according to

|ξk| ≤ η |ξ0|β−k +δ (‖θ‖k−1)

and is ISS stable. �

Remark 4

a) Equation (6.28) in the proof indicates that the convergence rate can be controlled by

choosing parameter α .

b) Equation (6.12) implies that the system is observable.

c) For the nominal case, i.e. {θk} = 0,∀k ≥ 0, the theorem reduces to an exponential

observer as obtained in [97]. In addition, in the case when plant-model mismatch

vanishes after a certain time step t̄, i.e. {θk} 6= 0,k ≤ t̄ and {θk} = 0,k > t̄ , the proof

(equation (6.30)) implies the observer error asymptotically converges to 0 after t̄.
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The above theorem states the robust stability for EKF in the open-loop case, when the

control action u is assumed given. In the following, we show that the stability result still

applies to the closed-loop case, when the control action u is a general function of estimated

state and output, uk = hk(x̂k,yk). Note that this formulation admits the fact that the control

law of NMPC with state constraints is generally not continuous.

Corollary 1 In the closed-loop case, assume that the feedback control law uk exists and is

bounded, and let uk be defined as uk = hk(x̂k,yk). Then Theorem 2 still applies to the EKF

(6.2).

Proof: Let ϕ1(·, ·, ·) and ϕ2(·, ·, ·) be the higher order terms, the residual definition (6.4) of

the EKF is modified as:

xk+1− x−k+1 = f (xk,hk(x̂k,yk),θk)− f (x̂k,hk(x̂k,yk),0) (6.35)

Now expand each term in the neighborhood of x̂k,

f (xk,hk(x̂k,yk),θk) = f (x̂k,hk(x̂k,Cx̂k),0)+Ak(xk− x̂k)

+
∂ f
∂u

[hk(x̂k,yk)−hk(x̂k,Cx̂k)]+Gkθk +ϕ1(xk, x̂k,θk) (6.36)

f (x̂k,h(x̂k,yk),0) = f (x̂k,h(x̂k,Cx̂k),0)+Ak(x̂k− x̂k)

+
∂ f
∂u

[hk(x̂k,yk)−hk(x̂k,Cx̂k)]+ϕ2(xk, x̂k,θk). (6.37)

Since the control law is not generally differentiable, the difference term [hk(x̂k,yk)−hk(x̂k,Cx̂k)]

is used. After subtracting (6.37) from (6.36), and defining ϕ(xk, x̂k,uk,θk),ϕ1(xk, x̂k,θk)−

ϕ2(xk, x̂k,θk), equation (6.35) equals to (6.4). The analysis from then on stays the same.

Hence Theorem 2 is still true for the EKF in the closed-loop case. �

Corollary 1 can be viewed as a local form of separation principle for the NMPC and EKF.

It indicates that the EKF error is not influenced by the control input in this setting. In the

following, we analyze the impact of the EKF error on the NMPC stability property.
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6.3 Robust Stability of Output-Feedback NMPC

The previous analysis shows that the estimated state from the EKF converges to a bounded

region around the true state, introducing an estimation error. In this section, we analyze the

impact of this estimation error on the robust stability of output-feedback NMPC controller.

We first recall the stability result of state-feedback NMPC.

6.3.1 Stability of State-Feedback NMPC

Given xk, the current state value at time step k, the state-feedback NMPC formulation can

be described in the following discretized form:

VN(xk) := min
N−1

∑
j=0

l(z j,v j)+F(zN) (6.38a)

s.t z j+1 = f (z j,v j,0), j = 0, . . . ,N−1 (6.38b)

z0 = xk, zN ∈ X f , v j ∈ U (6.38c)

where N is the finite time horizon, z j is the predicted state variables, and v j is the calculated

control action based on the plant state xk. The calculated state-feedback control law from

(6.38) can be written as uk = v0 = hk(xk), and the plant state at the next time step k+1 can

be expressed as xk+1 = f (xk,hk(xk),θk).

Assumption 1 [72, 95] There exists a K∞-function ςl(·) such that l(x,u) ≥ ςl(|x|) for all

x∈Rnx and u∈U. X f is an admissible control invariant set for the nominal system, i.e. for

all x ∈X f , there exists u ∈U such that f (x,u,0) ∈X f . F(·) is a control Lyapunov function

(CLF) for the nominal system such that for all x ∈ X f there exist K∞-functions αF(·) and

βF(·) satisfying αF(|x|) ≤ F(x) ≤ βF(|x|) and F( f (x,u,0))−F(x)+ l(x,u) ≤ 0, where u

is the first element of the control sequence calculated from (6.38).
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It is shown in section 2.5 of [95] that the assumption is not restrictive in general NMPC

applications. In fact, if the NMPC has a quadratic objective function, then the K∞-functions

in the assumption are also in quadratic form. Moreover, Chen and Allgöwer [25] proposed

an approach to calculate the terminal cost to ensure the nominal stability for state-feedback

NMPC. With Assumption 1, it is well known that the cost function VN(x) is a Lyapunov

function for the nominal system. The NMPC controller (6.38) asymptotically stabilizes the

nominal system.

For uncertain systems, using Assumption 1, Limon et al. [72] (Theorem 4) further estab-

lished the ISS property of the objective function VN(x) within an robust positive invariant

(RPI) set (Section 2.3.1). As illustrated in Fig. 6.1, if the initial state x0 lies in the RPI set

X0, the state-feedback NMPC (6.38) stabilizes the uncertain system in a neighborhood of

the origin, XN(θ). This neighborhood is a K -function of the uncertainty parameter θ . As

pointed out in [72], the uncertainty set Ωθ must be sufficiently small to ensure the existence

of the RPI set X0.

Figure 6.1: Robust stability of state-feedback NMPC.
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6.3.2 Stability of Output-Feedback NMPC

For output-feedback NMPC, an state estimator such as EKF, is used to construct the initial

state for the NMPC. In this section, we analyze the effect that the EKF error deteriorates

the robust stability of the NMPC controller.

For the purpose of generality, we consider a state observer with a general form x̂k+1 =

g(x̂k,yk,hk(x̂k,yk)), k≥ 0, where x̂k is the estimated state from the outputs yk at time step

k. Hence, the initial condition in the NMPC formulation (6.38) is modified as z0 = x̂k,

instead of z0 = xk in (6.38c). The calculated output-feedback control law is uk = hk(x̂k,yk),

and the plant state at k+1 can be modified as:

xk+1 = f (xk,uk,θk) = f (xk,hk(x̂k,yk),θk) (6.39)

In order to establish the robust stability of the output-feedback NMPC formulation, we

make use of the following assumption.

Assumption 2 The initial observer error is bounded by a positive constant εξ0
, i.e. |x̂0−

x0| ≤ εξ0
.

By virtue of Theorem 2 and Assumption 2, the EKF error behaves according to |ξk| ≤

η |ξ0|β−k +δ (‖θ‖k−1). Hence there exists a constant ε̃ ∈ R≥0 that ε̃ ≥ η |ξ0|β−k, and

|ξk| ≤ ε̃ +δ (‖θ‖k−1) . (6.40)

Then the robust stability of the output-feedback NMPC based on the nominal model is

established by the following theorem.

Theorem 3 Let function f (x,u,θ) be uniformly continuous in θ for all x ∈ Rnx , u ∈ U,

θ ∈ Ωθ and the state-feedback NMPC (6.38) satisfies Assumption 1. Let X0 be the RPI
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set for system (6.1a), and Assumption 2 is satisfied. If f (x,u,θ) and l(x,u) are uniformly

continuous in x, and F(x) is uniformly continuous in x for all u ∈U and θ ∈Ωθ , then there

exists a compact set X̃0 ⊆X0, which is defined as X̃0 , {x|x+εξ0
∈X0}, such that the cost

function VN(x) is an ISpS-Lyapunov function for system (6.1a) for all x ∈ X̃0.

Proof: The idea of the proof is to establish the ISpS property of the cost function VN(x)

within X̃0.

Since x ∈ X̃0, from the definition of the RPI set X0, it is easy to see that f (x,u,θ) ∈X0 and

f (x̂,u,θ) ∈ X0.

Then the difference of the two neighboring optimal cost function can be decomposed as,

VN( f (x,u,θ))−VN(x) =VN( f (x̂,u,0))−VN(x̂)+VN(x̂)

−VN(x)+VN( f (x,u,θ))−VN( f (x̂,u,0)) (6.41)

Assumption 1 ensures the nominal system without estimation error is asymptotically stable,

and there exists a K -function γ ,

VN( f (x̂,u,0))−VN(x̂)≤−γ(|x̂|). (6.42)

Moreover, it has been shown in [72, 95] that under the conditions stated in Theorem 3,

there exists a K -function υV (·), such that

VN(x̂)−VN(x)≤ υV (|x̂− x|). (6.43)

In addition, from the uniform continuity of f (x,u,θ), there exist K -functions υ f and υθ

such that

VN( f (x,u,θ))−VN( f (x̂,u,0))≤ υV (| f (x,u,θ)− f (x̂,u,0)|)

≤ υV ◦ (υ f (|x̂− x|)+υθ (|θ |)) (6.44)
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As a result, utilizing the identities (6.42), (6.43) and (6.44), inequality (6.41) leads to

VN( f (x,u,θ))−VN(x)≤−γ(|x̂|)+υV (|x̂− x|)

+υV ◦ (υ f (|x̂− x|)+υθ (|θ |)) (6.45)

The estimation state and estimation error have to be bounded. From Assumption 2, the

following identity can be derived for the initial estimation state.

|x̂− x| ≤ εξ0
=⇒ |x|− εξ0

≤ |x̂| ≤ |x|+ εξ0
. (6.46)

Hence, for a K -function γ(·), we can find other K -functions γL(·), γU(·) and positive

constant c1, c2, such that

γL(|x|)− c1 ≤ γ(|x|− εξ0
)≤ γ(|x̂|)≤ γ(|x|+ εξ0

)≤ γU(|x|)+ c2. (6.47)

Similarly for the later stage of the EKF, we see from equation (6.40) that |x̂− x| ≤ ε̃ +

δ (‖θ‖). There exist other K -functions γ̂L(·), γ̂U(·), δL(·), δU(·) and positive constants c3,

c4, such that

γ̂L(|x|)−δL(‖θ‖)− c3 ≤ γ(|x̂|)≤ γ̂U(|x|)+δU(‖θ‖)+ c4. (6.48)

As a result, for the initial estimation state, equation (6.47) indicates−γ(|x̂0|)≤−γL(|x0|)+

c1. In addition, we can find a constant c5 > 0 such that υV (εξ0
)+υV ◦υ f (εξ0

)+ c1 ≤ c5,

and a K -function υ2 that υ2(|θ0|), υV ◦υθ (|θ0|). Consequently equation (6.45) leads to:

VN( f (x0,u0,θ0))−VN(x0)≤−γ(|x̂0|)+υV (|x̂0− x0|)

+υV ◦ (υ f (|x̂0− x0|)+υθ (|θ0|))

≤−γL(|x0|)+υ2(|θ0|)+ c5 (6.49)

For the later stage of the EKF, equation (6.48) indicates−γ(|x̂k|)≤−γ̂L(|xk|)+δL(‖θ‖k−1)+

c3. Then we pick a constant c6 > 0 and a K -function υ3 such that δL(‖θ‖k−1) + c3 +
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υV (|x̂k−xk|)+υV ◦υ f (|x̂k−xk|)+υV ◦υθ (|θk|)≤ υ3(‖θ‖k)+c6. Consequently equation

(6.45) leads to

VN( f (xk,uk,θk))−VN(xk)≤−γ̂L(|xk|)+δL(‖θ‖k−1)+ c3

+υV (|x̂k− xk|)+υV ◦υ f (|x̂k− xk|)+υV ◦υθ (|θk|)

≤−γ̂L(|xk|)+υ3(‖θ‖k)+ c6 (6.50)

As the closed-loop system is ISpS stable for both the initial and later stages of the output-

feedback NMPC integrated with the EKF, the theorem is proved. �

Remark 5

a) As illustrated in Fig. 6.2, due to the estimation error, the system controlled by the

output-feedback NMPC has to start in a smaller set X̃0, in order to converge to XN(θ).

Moreover, the center of XN(θ) may shift away from the origin, as the ISS stability of the

state-feedback NMPC deteriorates to ISpS stability of the output-feedback NMPC. This

is due to the initial estimation error. If ξ0 = 0, then |x̂k−xk| is only a function of θ , and

the ISS stability is restored for the output-feedback NMPC.

b) The bound of the initial error εξ0
must be sufficiently small to ensure the existence of the

set X̃0.

c) From equation (6.50), we see that all the past uncertainty signals affect the difference

between the two neighboring cost functions of the output-feedback NMPC, while only

the current uncertainty signal appears in the difference term of state-feedback NMPC

(6.38).
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Figure 6.2: Robust stability of output-feedback NMPC.

6.4 Simulation Examples

In this section, we present two variations of offset-free output-feedback NMPC with EKF

that inherit the theoretical result in Theorem 1. In addition, a simulated nonlinear CSTR

with output-multiplicity is studied to demonstrate the two strategies.

Summarized in [79, 95], a conventional method for general nonlinear systems is to gener-

ate a disturbance term by comparing the predicted output and the actual output, which is

then added to the objective function for the entire horizon. This method is formulated as

equation (6.51). Here ρ is the disturbance term, which can be viewed as an integrator. In

this section, we refer to this approach as output-feedback NMPC with output-correction
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(OFOC).

min
u

Np

∑
j=1

[ET
j WEE j]+

Nc−1

∑
i=0

∆vT
i W∆u∆vi +ET

NW∞EN

s.t. z j+1 = f (z j,v j,0), z0 = x̂k

y j =Cz j +ρ j, ρ j+1 = ρ j, ρ0 = yk−Cx̂k

j = 0, . . . ,Np−1, i = 0, . . . ,Nc−1

v j = vti for ti ≤ j ≤ ti+1, vi ∈ U,

t0 = 0≤ t1 ≤ t2 ≤, . . . ,≤ Np−1. (6.51)

where E j , (y j−yr), yr is the set-point for the output, ∆vi = vi−vi−1, WE , W∞ and W∆u are

positive semidefinite weighting matrices, Np represents the prediction horizon and Nc rep-

resents the control horizon. Similar to the NMPC formulation (5.3), we use input blocking

formulation as shown by the last two constraints. They ensure that the available degrees

of freedom are spread across the entire prediction horizon, since fewer degrees of freedom

are available for the control movement in typical NMPC applications.

Despite the simplicity of the OFOC NMPC, the open-loop observer or online model sim-

ulations have to be used while carrying out predictions. Hence, this strategy is unable to

regulate unstable systems [79]. To address this problem, Srinivasrao et al. [103] proposed

an output-feedback NMPC with state-correction (OFSC) for empirical models, in which

the observer is in the filter form. As a result, the OFSC strategy is able to regulate certain

unstable systems. In this work, we extend this idea to systems with first-principle models.
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The OFSC NMPC is formulated as:

min
u

Np−1

∑
j=1

[ET
j WEE j]+

Nc−1

∑
i=0

∆vT
i W∆u∆vi +ET

NW∞EN

s.t. z j+1 = f (z j,v j,0)+Kkψ j,

ψ j+1 = ψ j, ϖ j+1 = ϖ j

y j =Cz j +ϖ j

z0 = x̂k, ψ0 = yk−Cx−k , ϖ0 = yk−Cx̂k

j = 0, . . . ,Np−1, i = 0, . . . ,Nc−1

v j = vti for ti ≤ j ≤ ti+1, vi ∈ U,

t0 = 0≤ t1 ≤ t2 ≤, . . . ,≤ Np−1 (6.52)

where K is the Kalman gain, and ψ and ϖ are the state and output disturbances, respec-

tively. It may be noted that another advantage of this formulation is that it does not require

adding artificial integrator states in the state estimation, as is common practice for linear

and nonlinear systems [68].

It is not hard to see that both the OFOC and OFSC formulations satisfy the conditions in

Theorem 1, since a general observer formulation including the EKF formulation in OFOC

and OFSC strategies is used in Theorem 1. Therefore, both the strategies based on NMPC

and EKF yield offset-free behavior, by virtue of Theorem 1.

The simulation studies in this section are performed on the same CSTR system (5.11) with

exactly the modeling parameters in Section 5.4. In the first case, the control objective is to

regulate the CSTR at a stable steady state zss = [0.10144,0.76708]. The parameter k0 in the

plant is changed from its nominal value by introducing a square pulse of amplitude equal

to±20% at sampling instants 5, 40 and 80 as shown at the bottom of Fig. 6.5. For compar-

ison, the CSTR is controlled by both OFOC and OFSC strategies. The EKF in both pre-
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dictor and filter form is tuned with Q =
[

∂ f
∂u |zss,uss

]
Q̄
[

∂ f
∂u |zss,uss

]T
and Q̄ = diag[6.25,0.04],

R = diag[1× 10−6,1× 10−6]; α in equation (6.3) is chosen equal to 1.5. The NMPC is

formulated using WE = W∞ = diag[1× 106, 1× 105], prediction horizon Np = 16, control

horizon is Nc = 8 and sampling time is 1. W∆u is chosen as a null matrix.
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z T
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state correction
output correction

Figure 6.3: Output profile of the CSTR at the stable steady state

The resulting closed-loop responses are shown in Fig. 6.3 and 6.4, and the corresponding

variation of the state estimation errors is shown in Fig. 6.5. We see that the EKF in both

the predictor and filter form yields biased state estimates due to the presence of the plant-

model mismatch. Fig. 6.3 shows that both the OFOC (6.51) and OFSC (6.52) strategies are

able to reject the first disturbance introduced at time step 5, and regulate the output at the

setpoint without any offset. The OFSC strategy (6.52) settles the system faster. After the

second disturbance is introduced at time step 40, the OFSC strategy (6.52) quickly rejects

the disturbance and controls the system at the set point. However, the OFOC strategy
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Figure 6.4: Input profile of the CSTR at the stable steady state
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Figure 6.5: Error profile of the CSTR at the stable steady state
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(6.51) needs significantly longer time to achieve the desired setpoint. Moreover, after the

plant parameter k0 is reset to its nominal value at time step 80, both the OFOC and OFSC

strategies reduce to nominal NMPC since the estimated state exactly equals the actual plant

state.

In the second case, the control objective is to regulate the CSTR at the unstable steady state

zss = [0.6416,0.5387]. The OFOC strategy (6.51) fails since the EKF in the predictor form

can not work at the unstable steady state and conditions 2 and 3 in Theorem 1 are violated.

The parameter k0 in the plant is changed from its nominal value by introducing a square

pulse of amplitude equal to ±30% at sampling instants 5 and 20 as shown at the bottom of

Fig. 6.8. The OFSC strategy (6.52) is tuned to be the same as in the first case. Fig. 6.6

and 6.7 show the closed-loop plant response. We see that the OFSC strategy rejects this

relatively large disturbance and regulates the plant at the unstable steady state without any

offset.
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Figure 6.6: Output profile of the CSTR at the unstable steady state
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Figure 6.7: Input profile of the CSTR at the unstable steady state
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Figure 6.8: Error profile of the CSTR at the unstable steady state
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6.5 Concluding Remarks

This chapter addresses the robust stability issue of output-feedback NMPC for general

nonlinear systems with bounded but non-vanishing perturbations. We choose EKF as the

observer, due to its wide application in control practice and its ability to control the er-

ror convergence rate. Given observability, we show that the estimated state exponentially

converges to a bounded region around the true state in the presence of non-vanishing plant-

model mismatches, and the convergence rate can be controlled by tuning a parameter. More

importantly, we prove that this analysis holds true even for the closed-loop cases when EKF

is integrated with NMPC, i.e. the control action is a function of estimated state and output.

With this result, we further analyze the impact of the estimation error on the robust stability

of NMPC. Compared to state-feedback NMPC, the robust stability region of the output-

feedback NMPC shrinks, due to the presence of estimation error. Moreover, we show

that with the similar assumptions as state-feedback NMPC, the ISpS stability of output-

feedback NMPC can be established. In addition, the ISS stability is restored if there is no

initial estimation error.

Two variations of output-feedback NMPC that inherit the offset-free theoretical result in

Theorem 1 are presented. Both of them are implemented on a simulated CSTR example

studied in Chapter 5. It is observed that the output-feedback NMPC with state-correction

(OFSC) is able to regulate the system at the unstable steady state, and shows superior

performance against output-feedback NMPC with output-correction (OFOC).
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Chapter 7

Nominal Stability of

Economically-Oriented NMPC

In Chapter 5 and Chapter 6, we mainly focus on properties of set-point tracking NMPC.

Nevertheless, the simulation result in Chapter 4 indicates that it is economically beneficial

to use economically-oriented NMPC to directly minimize the operational cost of the energy

intensive ASU and to take advantage of the periodically varying electricity price. In this

chapter, we are interested in the nominal stability of the economically-oriented NMPC.

For simplicity, we assume all the states are measured. Therefore, state-feedback NMPC is

considered in this Chapter. However, the commonly-used Lyapunov framework to analyze

the stability can not be applied directly to the economically-oriented NMPC. Therefore,

we introduce transformed systems by subtracting the optimal cyclic steady state from the

original system, for which the Lyapunov function can easily be established. We show that

the asymptotical stability of the transformed system is equivalent to that of the original

system. Hence it is inferred that the original systems are nominally stable at the cyclic

optimal solution. Moreover, two economically-oriented NMPC formulations are proposed

to ensure the system converge to the cyclic steady state.
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7.1 Introduction

It has been pointed out by many researchers [33, 1, 105] that the conventional two-layer

structured method is based on the assumption that model disturbance and transients are

handled entirely by the controller, which may not be true for some applications. Moreover,

the model inconsistency in the two layers and the presence of the transient constraints may

lead to an unreachable set-point [94]. In addition, since the NMPC layer does not consider

economic performance, it may be suboptimal to minimize the transition time and simply

track the set-point as fast as possible [93].

Moreover, it is important to deal with systems that may not go to steady state. For instance,

several applications in the process industry exhibit cyclic steady state behavior due to their

operational nature, such as pressure swing adsorption (PSA) [2] and simulated moving bed

(SMB) separation [60]. To deal with these periodic systems, Lee et al. [67] proposed a

tracking-MPC method by using the concept of repetitive control, but without considering

economic performance. Furthermore, periodically varying power prices suggest that it is

difficult to achieve optimal economical performance by running the plant at a steady state.

On the contrary, a periodic operation which takes advantage of the varying electricity price

is preferred. For the above applications, it is difficult to implement the traditional two-layer

structured method since there is no optimal steady state.

As a result, interest has significantly increased in economically-oriented NMPC which di-

rectly optimizes the plant’s economic performance subject to dynamic constraints. Re-

cently, many NMPC practitioners have reported good practical performance by using heuris-

tic economically-oriented NMPC formulations [117, 93, 33, 7, 8]. However, there is little

stability theory supporting the economically-oriented NMPC, in contrast to the mature the-

oretical basis of set-point tracking NMPC, where one can find good reviews [95, 78, 72] of

CHAPTER 7. NOMINAL STABILITY OF ECONOMICALLY-ORIENTED NMPC

113



7.2 SYSTEMS WITH CYCLIC BEHAVIOR

Lyapunov-based stability theory for both nominal and robust cases. This is partially due to

the objective function of economically-oriented NMPC, which is unbounded on the infinite

horizon. A more problematic issue is that the cost function of the economically-oriented

NMPC is not decreasing when the plant exhibits cyclic behavior. Hence the common ap-

proach summarized in Chapter 2, which proves stability by establishing the cost function

as the Lyapunov function does not apply to the economically-oriented NMPC.

This chapter studies the nominal stability of economically-oriented state-feedback NMPC

for cyclic systems. As a result, assuming all the states are measurable, we use the general

discrete time nonlinear plant (2.1) without uncertainty parameters. Given the cyclic steady

state period, we first define the optimal cyclic steady state. To establish the Lyapunov

function, a transformed system is introduced by subtracting the optimal cyclic steady state

from the original system. We show that the original system is asymptotically stable at

the optimal cyclic steady state if the transformed system is asymptotically stable at the

origin. A Lyapunov function with respect to the transformed system can be established

since it is strictly decreasing. As a result, the transformed system is asymptotically stable

at the origin. Equivalently the original system is asymptotically stable at the optimal cyclic

steady state.

7.2 Systems with Cyclic Behavior

For the nonlinear plant model (2.1), we consider a general economic cost function l(xk,uk),

which is not necessarily a quadratic tracking term. We assume l(xk,uk) remains bounded

for xk ∈X and uk ∈U. The objective is to find a stabilized feedback control law uk = u(xk)

so that the system is feasible and the average cost function

lim
N→∞

1
N

N

∑
i=0

l(xi,ui)
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or its close approximation is minimized.

We also assume that K is the period of the cyclic steady state, since in practice the peri-

ods of many cyclic processes are known. For example, the periods of PSA and SMB are

specified in the system design phase, and the period of the varying power price is gener-

ally published by utility companies. Hence, let us define the optimal cyclic steady state

[(x∗0,u
∗
0),(x

∗
1,u
∗
1), . . . ,(x

∗
K−1,u

∗
K−1)] with a period K as

x∗k+1 = f (x∗k ,u
∗
k), x∗k ∈ X, u∗k ∈ U, k = 0, . . . ,K−1

(x∗K,u
∗
K) = (x∗0,u

∗
0), and

K−1

∑
i=0

l(x∗k ,u
∗
k)<

K−1

∑
i=0

l(xk,uk), (xk,uk) 6= (x∗k ,u
∗
k),∀xk ∈ X,uk ∈ U. (7.1)

As shown in Fig. 7.1, we assume the optimal cyclic steady state is unique and evolves

according to the system dynamic function f (·, ·). Moreover, the optimal cyclic steady state

has a period K, that is (x∗k ,u
∗
k) = (x∗k+cK,u

∗
k+cK), where c is any positive integer. In the

following, we propose two economically-oriented NMPC formulations and further pursue

a Lyapunov stability analysis. The system is assumed to have the following property.

...

Figure 7.1: Illustration of the optimal cyclic steady state.

An input sequence u = (u0,u1,u2, . . .) is termed as feasible for the initial state x if u ∈

U, and the corresponding state sequence evolves according to the plant (2.1) with initial

condition that satisfies xk ∈ X, k = 0,1, . . . ,∞. Moreover, the admissible set ZN can be
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defined as the set of (x,u)

ZN = {(x,u)|xk ∈ X and uk ∈ U, k = 0,1, . . . ,∞},

and the projection of ZN onto the space X can be further defined as the set of admissible

states XN , i.e.

XN = {x|∃u such that (x,u) ∈ ZN}. (7.2)

We make the following commonly used assumption.

Assumption 3 f (·, ·) and l(·, ·) are Lipschitz continuous on the admissible set, and there

exist Lipschitz constants l f and ll ≥ 0 such that for all (z1,v1), (z2,v2) ∈ ZN ,

| f (z1,v1)− f (z2,v2)| ≤ l f |(z1,v1)− (z2,v2)|

|l(z1,v1)− l(z2,v2)| ≤ ll|(z1,v1)− (z2,v2)| (7.3)

Moreover, the system is assumed to have some degree of controllability. Here we extend

the concept of weak controllability defined at a single steady state by [30] to weak control-

lability at the optimal cyclic steady state [(x∗0,u
∗
0),(x

∗
1,u
∗
1), . . .(x

∗
K−1,u

∗
K−1)]. Without losing

generality, let N = cK, where c is a positive integer. Therefore ∑
N+K−1
k=0 (·) :=∑

c−1
p=0 ∑

K−1
j=0 (·).

Assumption 4 (Weak controllability at the cyclic steady state): There exists a K∞ function

γ(·) such that for every initial condition x ∈ XN , there exists u such that (x,u) ∈ ZN and

c−1

∑
p=0

K−1

∑
j=0
|upK+ j−u∗j | ≤

K−1

∑
j=0

γ(|x j− x∗j |). (7.4)

This assumption means that starting from the admissible state set, the system can be steered

to the cyclic steady state in N steps without requiring large cost for the input sequence,

while satisfying the constraints.
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Finally, we note that the analysis in the next two sections also applies to conventional

NMPC controllers, of the tracking or economic type, where the system evolves to a steady

state and K = 1.

7.3 Strategies for Economically-Oriented NMPC

There are many strategies to guarantee the nominal stability of a set-point tracking NMPC

formulation. For example, it is well known that an infinite-horizon NMPC formulation will

yield nominal stability. In addition, it has been shown by Keerthi and Gilbert [61] that

an equality constraint at the end of the prediction horizon also generates nominal stability.

In this section, motivated by these two strategies, we propose two similar economically-

oriented NMPC formulations with nominal stability proof.

7.3.1 Periodic Constraint NMPC

In the first approach, we modify the general NMPC formulation (3.14) by adding a periodic

constraint at the end of the horizon:

min
N+K−1

∑
i=0

l(zi,vi)

s.t zi+1 = f (zi,vi), i = 0, . . . ,N +K−1

z0 = xk, zN+K = zN ,

zi ∈ X, vi ∈ U (7.5)

where N +K is the horizon length.

In addition, zN+K = zN is a periodic constraint as shown in Fig. 7.2. If the optimiza-

tion problem (7.5) is well-posed and the solution of (7.5) is locally unique, then the dy-
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namic system f (·, ·) will be driven from the initial condition z0 = xk to a cyclic steady state

[zN ,zN+1, . . . ,zN+K−1], which equals to [x∗0,x
∗
1, . . . ,x

∗
K−1] according to the principle of op-

timality. As a result, the periodic constraint in economically-oriented NMPC (7.5) for the

cyclic steady state can be viewed as the terminal equality constraint in set-point tracking

NMPC (2.9) to mimic the plant dynamic over infinite time at the end of a finite horizon, as

described in [61].

N KN +

...

...0=i

Figure 7.2: Illustration of economically-oriented NMPC with periodic constraint.

For simplicity, we make the following assumption in this section.

Assumption 5 The optimization problem (7.5) satisfies the linear independent constraint

qualification (LICQ) [85], sufficient second order condition (SSOC) [85] and strict com-

plementarity (SC) [85] at the solution.

Assumption 4 states that there exists an N such that the optimization problem (7.5) has a

feasible solution with bounded objective, while Assumption 5 indicates that (7.5) is well-

posed and its solution is locally unique. Therefore, the plant (2.1) controlled by NMPC

(7.5) evolves to the optimal cyclic steady state [x∗0,x
∗
1, . . . ,x

∗
K−1].

To analyze the stability of NMPC, we consider previous Lyapunov stability results for set-

point tracking NMPC as described in [78, 95]. In a recent work, Diehl et al [30] established

a Lyapunov function for NMPC with a general economic objective function. It deals with
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stability at a single steady state and establishes a Lyapunov function at the steady state. As

a single steady state is not present for system (2.1) with cyclic behavior, we introduce a

transformed system by subtracting the optimal cyclic steady state from the original system

as follows,

z̄i = zi− x∗i

v̄i = vi−u∗i , (7.6)

and the transformed state evolves according to

z̄i+1 = f (z̄i + x∗i , v̄i +u∗i )− x∗i+1

= f (z̄i + x∗i , v̄i +u∗i )− x∗i+1−cK. (7.7)

The second equality comes from the fact that the cyclic steady state x∗ has a period K. It is

worth emphasizing that the cyclic steady state (x∗i ,u
∗
i ) is assumed known in the transformed

system z̄i+1 = f̄ (z̄i, v̄i) for the purpose of the stability analysis, but not for the implementa-

tion of the NMPC controller.

From equation (7.7), we see when (z̄i, v̄i) = (0,0),

x∗i+1 = f (x∗i ,u
∗
i ) = x∗i+1−cK

or zi+1 = f (zi,vi) = zi+1−cK, and zi = x∗i . (7.8)

This means that if the transformed system (7.6) is steered from initial state z̄0 = xk− x∗0 to

0, then the original system will converge to the optimal cyclic steady state, i.e. (zi,vi)→

(x∗i ,u
∗
i ), when (z̄i, v̄i)→ (0,0). In addition, since we consider the nominal system in this

study, the plant state x evolves exactly according to the predicted state z. Therefore, the

following lemma can be stated.
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Lemma 5 The stability of the transformed system

z̄i+1 = f̄ (z̄i, v̄i) := f (z̄i + x∗i , v̄i +u∗i )− x∗i+1 (7.9)

at (0,0) is equivalent to the stability of the original closed-loop system xi+1 = f (xi,ui) at

the cyclic steady state (x∗i ,u
∗
i ).

The proof of the Lemma follows the argument that the optimal cyclic steady state (x∗,u∗)

is bounded, and both z̄, v̄ and x, u converge to their targets simultaneously. Therefore, the

asymptotic stability of the original system is the same as that of the transformed system. As

a result, we can prove the stability of the original system by showing that the transformed

system is asymptotically stable at the origin.

For the purpose of stability analysis, we modify the objective function in the NMPC for-

mulation (7.5) by subtracting the optimal cyclic steady state cost l(x∗,u∗), that is

N+K−1

∑
i=0

(l(zi,vi)− l(x∗i ,u
∗
i )). (7.10)

Note that since Assumption 5 implies that the optimal cyclic steady state

[(x∗0,u
∗
0),(x

∗
1,u
∗
1), . . . ,(x

∗
K−1,u

∗
K−1)] is a unique solution, and ∑

N+K−1
i=0 l(x∗i ,u

∗
i ) is a constant.

Thus, economically-oriented NMPC formulation (7.5) yields the same control action if the

objective function is modified as (7.10). Consequently, stability result of the NMPC (7.5)

remains the same even though equation (7.10) is used as the objective function.

For the transformed system (7.6), we further modify the objective function (7.10) as fol-

lows,

V (x̄k) =
N+K−1

∑
i=0

l̄(z̄i, v̄i)

:=
N+K−1

∑
i=0

(l(z̄i + x∗i , v̄i +u∗i )− l(x∗i ,u
∗
i )) , (7.11)
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where x̄k = xk− x∗0. It is easy to see

l̄(0,0) = 0. (7.12)

Therefore in the following, we show the value function (7.11) is a Lyapunov function and

the transformed system is asymptotically stable at the origin.

In view of Assumption 3, it is equivalent to state that for all (z1,v1), (z2,v2) ∈ ZN , the

transformed system f̄ (·, ·) and cost function l̄(·, ·) are Lipschitz continuous, that is there

exist Lipschitz constants l f̄ and ll̄ ≥ 0 such that

| f̄ (z̄1, v̄1)− f̄ (z̄2, v̄2)| ≤ l f̄ |(z̄1, v̄1)− (z̄2, v̄2)|

|l̄(z̄1, v̄1)− l̄(z̄2, v̄2)| ≤ ll̄|(z̄1, v̄1)− (z̄2, v̄2)| (7.13)

Similarly, the weak controllability Assumption 4 and the periodic constraint in (7.5) re-

quires the transformed system (7.6) to be steerable to the origin without large input cost.

Hence, there exists a K∞ function γz(·)
N+K−1

∑
i=0

|v̄i−0| ≤ γz(|z̄0−0|). (7.14)

Finally, we make a similar assumption for the transformed system as with the stability

analysis for the set-point tracking NMPC.

Assumption 6 There exists a K∞ function β (·) such that the stage cost l̄(·, ·) satisfies

l̄(z̄, v̄)≥ β (|z̄−0|) (7.15)

In practice, a general economic objective function may not satisfy this assumption, but

one can add regularization terms to the economic objective function so that Assumption 6

holds.

The main theorem of this section is stated as:
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Theorem 4 Let Assumptions 3, 4, 5 and 6 hold, then V (x̄k) defined as equation (7.11) is

a Lyapunov function and the transformed system (z̄, v̄) is asymptotically stable at (0,0).

Consequently, the original closed-loop system controlled by the periodic constraint NMPC

(7.5) is asymptotically stable at the optimal cyclic steady state (x∗i ,u
∗
i ).

Proof: From the definition of a K∞ function, Assumption 6 implies that

l̄(z̄, v̄)≥ 0, (7.16)

then

V (x̄k) =
N+K−1

∑
i=0

l̄(z̄i, v̄i)≥ β (|x̄k−0|) (7.17)

Moreover, Assumption 4 and periodic constraint in (7.5) imply that for the transformed

system, z̄i = 0,∀i≥ N+K−1. Therefore from the fact that the system is nominal, we have

V ( f̄ (x̄k, ūk))−V (x̄k)≤−l̄(x̄k, ūk)≤−β (|x̄k−0|), (7.18)

where the second inequality comes from Assumption 6.

Finally from equation (7.12), Assumption 3 and equation (7.13), we see

V (x̄k) =
N+K−1

∑
i=0

l̄(z̄i, v̄i)

=
N+K−1

∑
i=0

(
l̄(z̄i, v̄i)− l̄(0,0)

)
≤ ll̄(

N+K−1

∑
i=0

|z̄i−0|+
N+K−1

∑
i=0

|v̄i−0|). (7.19)

Moreover, from Lipschitz continuity of f̄ (·, ·), we have

|z̄i−0| ≤ li
f̄ |z̄0−0|+ li

f̄ |v̄0−0|

+li−1
f̄ |v̄1−0|+ . . .+ l f̄ |v̄i−1−0|. (7.20)
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Summing this inequality gives

N+K−1

∑
i=0

|z̄i−0| ≤ LF

[
|z̄0−0|+

N+K−1

∑
i=0

|v̄i−0|

]
(7.21)

where LF ≥ 1+ l f̄ + . . .+ lN+K−1
f̄ .

In addition, from Assumption 4 and equation (7.14), we have

N+K−1

∑
i=0

|v̄i−0| ≤ γz(|z̄0−0|) (7.22)

Notice z̄0 = x̄k. As a result, equation (7.19) turns out to be

V (x̄k) ≤ ll̄(
N+K−1

∑
i=0

|z̄i−0|+
N+K−1

∑
i=0

|v̄i−0|)

≤ ll̄LF |x̄k−0|+ ll̄(LF +1)γz(|x̄k−0|). (7.23)

Hence

V (x̄k)≤ α(|x̄k|) (7.24)

where α(·) = ll̄LF(·) + ll̄(LF + 1)γz(·) is a K∞ function. Therefore, equations (7.17),

(7.18) and (7.24) indicate that V (x̄k) is an Lyapunov function and the transformed sys-

tem is asymptotically stable. Then in view of Lemma 5, the original closed-loop system is

asymptotically stable at the optimal cyclic steady state. �

7.3.2 Infinite Horizon NMPC with a Discount Factor

In the second approach, we propose an infinite horizon formulation without periodic con-

straints, which is the counterpart of the infinite horizon formulation for set-point tracking

NMPC. The main advantage of using infinite horizon formulation is that the somewhat

arbitrary choice of the final time of the optimization problem is avoided. Moreover since

the cost function is optimized on the infinite horizon, we also consider a discount factor
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in the cost function. The discount factor ρ > 0 projects the future profit or cost to the

present value and is introduced as in [111]. More discussion on the discount factor and its

economic implication can be found in [111]. The infinite horizon NMPC with economic

objective function at time step k is formulated as follows:

min
(zi,vi)

∞

∑
i=0

l(zi,vi)

(1+ρ)k+i + |zi− zK+i|2Q + |vi− vK+i|2R (7.25a)

s.t : zi+1 = f (zi,vi), i = 1, . . . ,∞ (7.25b)

z0 = xk (7.25c)

zi ∈ X, and vi ∈ U (7.25d)

By adding the term |zi− zK+i|2Q + |vi− vK+i|2R, where Q and R are positive definite weight-

ing matrices, one can regularize the objective function to ensure the problem (7.25) is

well-posed and its solution is locally unique. Moreover, it forces the system to converge

to a cyclic steady state with period K. Otherwise, the objective function will grow in-

finitely. Since the discount factor ρ > 0, and l(z,v) remains bounded for all z ∈ X, v ∈ U,

limi→∞
l(zi,vi)

(1+ρ)k+i → 0. Hence, the objective function (7.25a) remains bounded on the infinite

horizon.

Similar to Assumption 5, we make the following assumption for the infinite horizon NMPC

(7.25).

Assumption 7 The optimization problem (7.25) satisfies linear independent constraint qual-

ification (LICQ) [85], sufficient second order condition (SSOC) [85] and strict complemen-

tarity (SC) [85] at the solution.

In practice, one can adjust Q and R in the regularization terms in the objective function to

ensure this assumption is satisfied, which implies that the optimization problem (7.25) is

well-posed and its solution is locally unique. As a result, by the principle of optimality, the
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system evolves to the optimal cyclic steady state [x∗0,x
∗
1, . . . ,x

∗
K−1].

For the purpose of stability analysis, we introduce the transformed system (7.6) as in the

Section 7.3.1, and Lemma 5 holds true for the infinite horizon formulation as well. More-

over, the objective function in (7.25) is modified by subtracting the optimal cyclic steady

state cost,
∞

∑
i=0

l(zi,vi)− l(x∗i ,u
∗
i )

(1+ρ)k+i + |zi− zK+i|2Q + |vi− vK+i|2R. (7.26)

Since

−
∞

∑
i=0

l(x∗i ,u
∗
i )

(1+ρ)k+i

is a constant, the objective function (7.26) only differs from the objective function (7.25a)

by a constant, and the infinite horizon formulation (7.25) yields the same control action

if (7.26) is used as the objective function. In addition, with x∗i = x∗K+i and u∗i = u∗K+i, the

objective function (7.26) is further modified as

V∞(x̄k) =
∞

∑
i=0

L(z̄i, v̄i)

=
∞

∑
i=0

l̄(z̄i, v̄i)

(1+ρ)k+i + |(zi− x∗i )− (zK+i− x∗K+i)|2Q + |(vi−u∗i )− (vK+i−u∗K+i)|2R,

(7.27)

where x̄k = xk− x∗0 at time step k, and l̄(z̄i, v̄i) is defined in equation (7.11). It is clear that

L(0,0) = 0. Therefore, in the following, we show that V∞(x̄k) is a Lyapunov function at

time step k.

In view of Assumption 3 and equation (7.13), it is easy to see that the stage cost L(·, ·) is

Lipschitz continuous. Thus there exist Lipschitz constants lL and l f̄ such that

| f̄ (z̄1, v̄1)− f̄ (z̄2, v̄2)| ≤ l f̄ |(z̄1, v̄1)− (z̄2, v̄2)|

|L(z̄1, v̄1)−L(z̄2, v̄2)| ≤ lL|(z̄1, v̄1)− (z̄2, v̄2)|, (7.28)

where f̄ (·, ·) is defined in (7.9) and the Lipschitz constant l f̄ is defined in (7.13).
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In addition, the regularization term |(zi− zK+i)|2Q + |(vi− vK+i)|2R allows us to make the

following assumption similar to Assumption 6.

Assumption 8 There exits a K∞ function β∞(·) such that the stage cost L(·, ·) defined in

(7.27), satisfies

L(z̄, v̄)≥ β∞(|z̄−0|). (7.29)

Moreover, the weak controllability of Assumption 4 indicates that there exists a sequence

of feasible control actions ṽ0, ṽ1, . . . , ṽN+K−1 that steers the plant from the initial condition

xk to the optimal cyclic steady state [(x∗0,u
∗
0),(x

∗
1,u
∗
1), . . . ,(x

∗
K−1,u

∗
K−1)] in N time steps.

As a result, (z̃i, ṽi) = (x∗i ,u
∗
i ),∀i ≥ N + K. For this particular feasible solution, let the

transformed system be

ẑi = z̃i− x∗i

v̂i = ṽi−u∗i , i = 0,1, . . . ,∞, (7.30)

then

L(ẑi, v̂i) = 0 i≥ N +K. (7.31)

Furthermore, for the transformed system, condition (7.4) implies that there exists a K∞

function γ∞(·)
N+K−1

∑
i=0

|v̂i−0| ≤ γ∞(|x̄k−0|). (7.32)

Now, we are ready to state the main theorem in this section.

Theorem 5 Let Assumptions 3, 4, 7 and 8 hold, then at time step k, the value function

V∞(x̄k) defined by (7.27) is a Lyapunov function, and the transformed system (7.6) is asymp-

totically stable at (0,0). Consequently, the original closed-loop system controlled by the
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infinite horizon NMPC (7.25) is asymptotically stable at the optimal cyclic steady state

(x∗i ,u
∗
i ).

Proof: Assumption 8 indicates that

L(z̄, v̄)≥ 0,

then

V∞(x̄k) =
∞

∑
i=0

L(z̄i, v̄i)≥ L(z̄0, v̄0)≥ β∞(|x̄k−0|). (7.33)

From the principle of optimality and the fact that the system is nominal, we have

V∞( f̄ (x̄k, ūk))−V∞(x̄k) =
∞

∑
i=1

L(z̄i, v̄i)−
∞

∑
i=0

L(z̄i, v̄i)

= −L(z̄0, v̄0)≤−β∞(|x̄k−0|), (7.34)

where the inequality is from Assumption 8 and z̄0 = x̄k at the time step k.

Since (z̃i, ṽi) (and the corresponding transformation (ẑi, v̂i)) is a feasible solution to problem

(7.25), the associated cost is greater or equal than that of the optimal solution, that is

V∞(x̄k) =
∞

∑
i=0

L(z̄i, v̄i)≤
∞

∑
i=0

L(ẑi, v̂i)

=
N+K−1

∑
i=0

L(ẑi, v̂i), (7.35)

where the last equality is from equation (7.31). Then taking norms, utilizing the triangle

inequality, and Lipschiz continuity of L(·, ·) in (7.28) , we have

V∞(x̄k)≤
N+K−1

∑
i=0

(L(ẑi, v̂i)−L(0,0))

≤
N+K−1

∑
i=0

lL(|ẑi−0|+ |v̂i−0|). (7.36)
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Moreover, repeatedly using Lipschiz continuity of f̄ (·, ·), we see

|ẑi−0| ≤ li
f̄ |ẑ0−0|+ li

f̄ |v̂0−0|+ li−1
f̄ |v̂1−0|+ · · ·+ l f̄ |v̂i−1−0|. (7.37)

Summing this inequality yields

N+K−1

∑
i=0

|ẑi−0| ≤ LF

[
|ẑ0−0|+

N+K−1

∑
i=0

|v̂i−0|

]
, (7.38)

where LF = 1+ l f̄ + · · ·+ lN+K−1
f̄ . In view of Assumption 4, equation (7.32) and ẑ0 = x̄k at

time step k, the value function V∞(x̄k) can be expressed as:

V∞(x̄k)≤
N+K−1

∑
i=0

(L(ẑi, v̂i)−L(0,0))

≤ lLLF |ẑ0−0|+ lL(LF +1)γ∞(|ẑ0−0|) (7.39)

Hence we can define a K∞ function α∞(·) = lLLF(·)+ lL(LF + 1)γ∞(·) so that the value

function satisfies,

V∞(x̄k)≤ α∞(|x̄k|) (7.40)

As a result, equation (7.33), (7.34) and (7.40) indicates that at time step k, V∞(x̄k) is a

Lyapunov function and the transformed system is asymptotically stable. Then in view of

Lemma 5, the original closed loop system is asymptotically stable at the cyclic steady state.

�

7.4 Simulation Examples

In this section, we consider two simulation systems for the infinite horizon NMPC formu-

lation (7.25) and periodic constraint NMPC (7.5), respectively.
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7.4.1 Double-tank System with Infinite Horizon NMPC

First, an interconnected double-tank system as shown in Fig. 7.3 is studied. The liquid

inlet flow into the first tank is Fin. The liquid outlet flow from the first tank is the liquid

inlet flow into the second tank. It is determined by the liquid height in the first tank x1,

i.e. 0.4x
1
2
1 . The liquid outlet flow from the second tank is termed as Fout . Similarly, Fout is

a function of the liquid height in the second tank x2, i.e. Fout = 0.4x
1
2
2 . It is required that

Fout is maintained above a certain level all the time, i.e. Fout ≥ 0.16 using Fin as the control

variable. In addition, the operational cost is considered as Fin multiplied by a sinusoidally

varying power price with 10 time steps as the period, which is shown at the bottom of Fig.

4.7. The control objective is to minimize the operational cost while satisfying all the system

constraints.

inF

outF

1x

2x

Varying electric price  

Figure 7.3: Double-tank system.

The mathematical model of the double-tank system can be described by the following ODE
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system:

dx1

dt
= 0.16Fin−0.4x

1
2
1

dx2

dt
= 0.4x

1
2
1 −Fout

Fout = 0.4x
1
2
2 . (7.41)

The infinite horizon NMPC (7.25) is applied to this system. The objective function is to

minimize the utility cost, and the period is K = 10 time steps, and the horizon is N = 50

time steps. The discount factor is ρ = 0.01. The tuning matrices are Q = diag[1,1] and

R = 0.

The closed-loop responses of this system are shown in Figs. 7.4, 7.5 and 7.6. From Fig. 7.4,

we see that both the states in the double-tank system exhibit cyclic steady state behavior

with a period of 10 time steps, which is the same as the sinusoidally varying power price

profile. Moreover, after a few sampling times, the system asymptotically converges to

the cyclic steady state and is stabilized. As a result, the outlet flow Fout also changes

sinusoidally with the varying power price as shown in Fig. 7.5. In addition, it is interesting

to note from Fig. 7.6 that the Fin roughly follows the trend of the price profile. This means

that most of the liquid inlet flow is pumped into the double-tank system when it is the

cheapest to do so.

Moreover, it is worth mentioning that the periodic constraint NMPC (7.5) is also imple-

mented on the double-tank system and a very similar simulation result is observed.

7.4.2 Periodic Constraint NMPC for the ASU

In this section, periodic constraint NMPC (7.5) is used to control the nominal ASU model

as described in Section 4.2. The control structure is exactly the same as in Section 4.4
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Figure 7.4: State variables (levels) profiles in the tank controlled by economically-oriented

NMPC
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Figure 7.5: Outlet flow profile from the tank controlled by economically-oriented NMPC,

Fout and power price profile
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Figure 7.6: Control variable (Fin to first tank) profile in economically-oriented NMPC
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and the objective function is chosen to be (4.16). The regularization term reg. in (4.16)

can make sure that the periodic constraint NMPC (7.5) satisfies Assumptions 5 and 6.

Moreover, the sinusoidally varying electricity price with period of 60 minutes is shown

in Fig. 7.7. This high frequency is chosen to provide a clearer demonstration of cyclic

behavior.
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Figure 7.7: Varying power price profile

The closed-loop responses are shown in Fig. 7.8 and 7.9. It is easy to see that both input

flowrates (EA and MA) exhibit sinusoidal behavior, and are at their minimum when the

electricity price is the highest. Moreover, the economically-oriented periodic constraint

NMPC (7.5) reduces the operational cost ((EA+MA)× ele price ) by 29.71%, compared to

set-point tracking NMPC.
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Figure 7.8: Input profile in the ASU controlled by economically-oriented NMPC
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Figure 7.9: Output profile in the ASU controlled by economically-oriented NMPC

CHAPTER 7. NOMINAL STABILITY OF ECONOMICALLY-ORIENTED NMPC

134



7.5 CONCLUDING REMARKS

7.5 Concluding Remarks

This chapter proposes economically-oriented NMPC formulations with guaranteed nom-

inal stability for systems with cyclic steady state behavior. A periodic constraint NMPC

formulation and an infinite horizon NMPC formulation with a discount factor are proposed

to solve the economically-oriented problems. However, since the NMPC objective func-

tion, which is the most common candidate of a Lyapunov function, is not strictly decreasing

at the optimal cyclic steady state, it is difficult to directly apply the widely-used framework

for set-point tracking NMPC to prove stability. To overcome this problem, transformed

systems that subtract the optimal cyclic steady state from the original systems are intro-

duced. It is easy to establish Lyapunov functions for the transformed systems. Moreover,

we show that the transformed systems enjoy the same nominal stability as the original sys-

tems. Hence, nominal stability for the original system is also proved. Moreover, we note

that the stability analysis for both formulations also applies to conventional NMPC con-

trollers, of the tracking or economic type, where the system evolves to a steady state and

K = 1.

To demonstrate the performance of these NMPC formulations, we consider two case studies

where electricity price varies periodically. Therefore, there is an economic interest to apply

the proposed formulations on the systems to take advantage of the varying electricity price.

The infinite horizon NMPC formulation is implemented on a double-tank system, while

the periodic constraint NMPC is applied to the ASU process. In both cases, the systems

are stabilized at optimal cyclic steady states, and the electricity costs are minimized.
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Chapter 8

Conclusions

Nonlinear model predictive control (NMPC) has gradually emerged as an important ad-

vanced control technique in the process industry. Current advances in dynamic optimiza-

tion algorithms and software allow us to incorporate first-principle dynamic models and

solve them quickly enough online. The incorporation of first-principle dynamic models

leads to an economically-oriented formulation that directly optimizes the economic perfor-

mance of an operation. Despite good practical performance reported by many researchers,

there are still open questions regarding the theoretical and practical issues of NMPC. This

dissertation aims to address some of these theoretical challenges of NMPC and dynamic

real time optimization (D-RTO). In this chapter, we summarize the thesis contributions and

present recommendations for future work.

8.1 Thesis Summary and Contributions

Chapter 2 reviews the recent developments in the area of real time NMPC strategies and

stability analyses for both set-point tracking and economically-oriented NMPC. It serves

as a centralized literature review in the dissertation.

Chapter 3 briefly discusses the advantages and disadvantages of different approaches for

solving DAE-constrained optimization problem. Full-discretization strategy based on or-
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thogonal collocation is used throughout this dissertation. This strategy will lead to large

scale NLP problems. IPOPT, which is an interior point NLP solver is used. However, solv-

ing the problem may introduce computational delay especially for online applications such

as NMPC and MHE, which are the focus of this dissertation. Hence, the advanced step

algorithm based on NLP sensitivity is introduced to reduce the online computational delay.

Chapter 4 makes use of the methods discussed in Chapter 3 and applies them for a large

scale air separation unit. Both set-point tracking and economically-oriented NMPC con-

trollers are studied. Our contributions are:

• The derivation of first-principle dynamic model for an ASU process.

• Simulation study of implementing asNMPC on the ASU model shows advantages

over linear MPC, which is the common practice in the process industry.

• Proposing economically-oriented NMPC formulations that directly optimize the eco-

nomical performance of the ASU. Around 6% cost reduction is achieved. In this case,

a moving-horizon-based ARIMA modeling strategy is developed to forecast the fu-

ture electricity prices.

Chapter 5 studies a practical issue in the NMPC formulation, which is to achieve offset-free

behavior based on state estimation in the presence of plant-model mismatch. Moreover,

the asNMPC and asMHE methods introduced in Chapter 3 are used to reduce the online

computational delay with little performance loss. Our contributions are:

• Proposing two variations of offset-free output-feedback NMPC based on MHE. When

the uncertainty structure is unknown, we use state and output disturbances to com-

pensate for the uncertainty parameter. On the other hand, if the uncertainty parameter
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structure is known, MHE is used to estimate both the state and uncertainty simulta-

neously to remove the plant-model mismatch.

• The state and output disturbance formulation is shown to have steady state offset-free

property. Moreover, the analysis is based on a general state estimation formulation.

Therefore, it applies to output-feedback NMPC with a wide class of state estimators,

including MHE, EKF and other recursive observers.

Chapter 6 focuses on the closed-loop robust stability of output-feedback NMPC in the

presence of plant-model mismatch. Although both nominal and robust stability have been

heavily investigated in the literature, there are few contributions devoted to the stability

property of output-feedback NMPC. This follows because there is no general separation

principle for nonlinear systems. Therefore, we choose EKF as the nonlinear observer in

the output-feedback NMPC in this chapter because of its popularity in industry. Our con-

tributions are:

• Analysis of robust stability of EKF in the presence of plant-model mismatch. The

estimation error dynamic is shown to have ISS property.

• A separation-principle-like result for the EKF is proven. It is demonstrated that the

EKF error dynamics are not affected by the control action.

• The impact of the estimation error on the robust stability of the output-feedback

NMPC is studied. It is shown that the robust stability region shrinks and only ISpS

property can be established for the closed-loop system.

• An output-feedback NMPC formulation with EKF based on state and output distur-

bances is proposed and it inherits the offset-free result in Chapter 5. Moreover, it

is observed that the proposed OFSC formulation (6.52) has superior performance

against the traditional OFOC method (6.51).
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Chapter 7 studies the nominal stability of economically-oriented state-feedback NMPC for

cyclic processes. Here, the commonly-used Lyapunov framework to analyze the stability

can not be applied directly to the economically-oriented NMPC. This is because of the

following two reasons: 1) the objective function of economically-oriented NMPC is un-

bounded on the infinite horizon; 2) the corresponding Lyapunov function is not decreasing

when the plant exhibits cyclic behavior. Our contributions are:

• The nominal stability of the economically-oriented NMPC is proven by establishing

Lyapunov satiability for a transformed system, which enjoys the same stability as the

original system.

• A periodic constraint formulation that forces the system to converge to the optimal

cyclic steady state is proposed. The stability result applies to this formulation.

• An infinite-horizon formulation with discount factor is proposed to steer the system

to the optimal cyclic steady state. This formulation also inherits the stability result.

The publications resulting from this dissertation are [53, 44, 52, 48, 49, 46, 43, 45, 47, 50,

51, 42].

8.2 Recommendations for Future Work

In this dissertation, we have studied practical and theoretical issues from set-point track-

ing NMPC to economically-oriented NMPC for large scale processes. Applications of

economically-oriented NMPC can achieve better economical performance for energy in-

tensive systems. These applications have helped us to identify many issues to improve this

work. Some recommendations for future work are as follows.
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8.2.1 Stability of Economically-Oriented NMPC

The stability property of economically-oriented NMPC has drawn a lot of attention re-

cently. It is believed to be a key feature for the future advanced controllers, because an

economically-oriented objective can directly optimize the performance. In this disserta-

tion, we have started to work on the stability of economically-oriented NMPC for cyclic

processes. However, the obtained result is based on the state-feedback NMPC without any

disturbance or plant-model mismatch. We believe it is beneficial to extend the current result

to more general cases, including:

• Robust stability with respect to plant-model mismatch and disturbances: For

set-point tracking NMPC, Limon et al. [72] proposed to use ISS as the unifying

framework to analyze the robust stability. We believe this ISS framework can be

adapted to analyze the robust stability of the economically-oriented NMPC.

• Robust stability with respect to the disturbances in the period: In this disserta-

tion, the obtained stability result is based on the assumption that the period of the

cyclic steady state is known exactly. In many operations, the length of the period

may suffer some fluctuations. For example, the utility pricing scheme is a result of

many complicated factors, including demand, supply, location or even politics. It

is very likely that the period is subjected to fluctuation. In addition, the operation

disturbances in cyclic processes such as PSA and SMB may also cause the designed

period to be shifted. As a result, it is very interesting to study the robust stability of

control in these scenarios.

CHAPTER 8. CONCLUSIONS

140



8.2 RECOMMENDATIONS FOR FUTURE WORK

8.2.2 Closed-Loop Stability of Output-Feedback NMPC

In this dissertation, we analyzed the robust stability of output-feedback NMPC based on

EKF. It is shown that the EKF has a property similar to the separation principle that helps

the analysis of the closed-loop stability. We believe the current result can be extended in

the following ways:

• Output-feedback NMPC based on other observers: It is well-known that EKF

has some practical issues. For example, it is difficult to pose inequality constraint in

EKF. In addition, it is necessary to calculate sensitivity at each time step which may

be time-consuming for large scale problems. Many different observers have been

proposed to improve the estimation performance, like MHE, ensemble Kalman filter

EnKF [28, 11], particle filtering [5], unscented Kalman filter [56, 55]. However,

they can not be analyzed using the framework in [52] to show the robust stability.

Hence, it is required to analyze the robust stability of these observers using different

means. More importantly, a general separation principle that shows the stability of

these observers in the closed-loop is necessary. Finally, the impact of the estimation

error on the output-feedback NMPC should be studied.

• Output-feedback economically-oriented NMPC: The current stability result is for

set-point tracking NMPC. Nevertheless, we believe the analysis should be able to

adapt to the economically-oriented NMPC formulation. Moreover it is very interest-

ing to study the robust stability for output-feedback economically-oriented NMPC.
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8.2.3 Robust NMPC Formulation

We have studied robust stability property of the output-feedback NMPC formulation in this

work. However, it belongs to the category named a priori robust stability, which means that

the stability result inherits from the closed-loop system. No special design strategy is used

to improve the robustness of the controller. On the other hand, a posteriori robust NMPC,

which resorts to other strategies to guarantee the robust stability in the presence of a large

uncertainty, has been investigated by other researchers. At this stage, the approaches ap-

peared in the literature are still premature and mainly for set-point tracking state-feedback

formulation. Contributions in this area particularly for the economically-oriented NMPC

are still needed.

• Robust stability for set-point tracking NMPC: Currently, the most widely-studied

a posteriori strategies are min-max formulation [66, 77] which solves a min-max

optimization problem and tube-based [71, 91, 22, 69] NMPC which calculates the

control actions based on different uncertainty regions. In addition, we proposed an

a posteriori strategy based on multi-scenario formulation [46]. However, all the

methods suffer exponentially-growth computational complexity with respect to the

uncertainty region. As a result, it is desirable to have other approaches with lighter

computational burdens.

• Extension to economical NMPC and output-feedback NMPC: It is expected that

the a posteriori robust strategy can be extended to the output-feedback NMPC. In

this case, it is interesting to design a robust state estimator. Then the output-feedback

NMPC formulation is robust with the state estimation error. In addition, this method

should be adapted to the economically-oriented NMPC as well.
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8.2.4 Applications of Economically-Oriented NMPC

In this dissertation, the proposed economically-oriented NMPC with guaranteed nominal

stability is implemented on the ASU with cyclic behavior. In this case, the cyclic behavior

is created by introducing cyclicly varying electricity price. Moreover, a regularization term

is added to the formulation to ensure the stability. It is interesting to apply the proposed

method to other applications, particularly systems with cyclic operational nature.

• Implementing economically-oriented NMPC for PSA and SMB: The proposed

economically-oriented NMPC needs to be tested on these systems with general cyclic

operational nature. It may require longer prediction horizon in order to cover the

entire cycle. As a result, the proposed economically-oriented NMPC formulation

may be incorporated with the upper-level decision-making process.

• Improve the formulation of economically-oriented NMPC: Throughout this dis-

sertation, we have argued that the economically-oriented NMPC formulation needs

to be regularized in order to have a unique solution and satisfy the assumptions in

the stability analysis. However, to some extent, the regularization term sacrifices

optimality. It is interesting to quantify the optimality loss and introduce a better

regularization term that offsets the loss of optimality, such as a time-varying regular-

ization term. In addition, it will also be beneficial to study how the robust stability

property affects optimality.
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[24] Büskens, C. and Maurer, H. [2001], Sensitivity analysis and real-time control of para-
metric control problems using nonlinear programming methods, in S. K. M. Grötschel
and J. Rambau, eds, ‘Online Optimization of Large-scale Systems’, Springer-Verlag,
pp. 57–68.

BIBLIOGRAPHY

145
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