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Abstract

For achieving stringent design & performance objectives in energy systems, it

becomes necessary to develop holistic integrated models as well as, ascertain

the level of details required within each sub-system, for accurate physical de-

scription and system optimization. This requires multi-scale modeling, which

involves description of atomistic, molecular, mesoscopic, continuum, device,

and plant levels as well as transmitting information sequentially at each level to

produce synergistic knowledge-bases. This dissertation focuses on constructing

a generalized framework for integration, as well as examination of sensitivity of

sub-system models to fulfill overall design & performance objectives by select-

ing hydrogen polymer electrolyte fuel cell (PEFC) as a benchmark case study.

The hydrogen PEFC is an alternative power producing device for stationary

and automotive applications, with advantages of high efficiency, operation on

renewable fuels with near-zero green house gas emissions.

We begin by developing an integrated modeling and optimization frame-

work that includes detailed computational fluid dynamics based models. As

an illustration, a multi-dimensional, multi-physics PEFC model is constructed
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that accounts for major transport processes in the gas channel and the mem-

brane electrode assembly, with a phenomenological description within the cat-

alyst layer (CL) sub-component. The resulting system of highly nonlinear

partial differential-algebraic equations is fully discretized using a finite volume

method, and the resulting large-scale nonlinear program is linked to a state-of-

the-art interior point optimization algorithm. The framework is used for solv-

ing challenging parameter estimation problems resulting from incorporation of

multiple experimental data points. Also, parametric studies are performed on

detailed water transport mechanisms and distribution characteristics, and on

overall system performance.

We then replace the phenomenological CL description with a state-of-the-

art continuum description which is closer to realistic scenario and provides

control over actual physical parameters. For achieving this, we adopt the ag-

glomerate CL model, and recast it into a compact form for optimization of

PEFC cathodes. This reformulation captures the transport processes within

gas diffusion layer (GDL) and CL, and transport/reaction processes within

an individual agglomerate particle. From the platinum (Pt) minimizations we

obtain relationships between optimal Pt mass and current density at differ-

ent operating voltages. For current density maximization we investigate the

optimal distribution of material parameters along the CL width.

For examining CL micro-structural sensitivity to PEFC performance, we

further expand the agglomerate model. We first investigate the shape sen-

sitivity of agglomerates on intra- and inter-agglomerate transport processes
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via effectiveness factors and effective transport models. We also examine the

agglomerate size sensitivity by generating self-similar CL structures and poly-

disperse systems, possessing mixture of particle sizes. Furthermore, via ex-

amining multi-zone agglomerate, we introduce non-uniformly distributed sites

for electrochemical reaction, called the triple phase boundaries. Our results

demonstrate large sensitivity in simulation and optimization results for differ-

ent CL structures.

We further investigate the particle level descriptions within GDL and poly-

mer electrolyte membrane (PEM) sub-systems, moving one level down in the

multi-scale hierarchy. For describing non-homogenous porous GDL, we intro-

duce the lattice Boltzmann methods for estimating effective transport prop-

erties within composite porous media structures. For understanding relation-

ship between PEM structures, water uptake and proton motion, we construct

a coarse-grained bead spring molecular model for PEM, and perform molec-

ular dynamics simulations. Finally, we present a novel multi-scale system

integration strategy for systems described via different time and length scale

phenomena, based on reduced order methods.
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Chapter 1

Introduction

Design of new energy systems involves discovery of new materials, device as-

sembly design, optimal operation at device and plant levels, as well as sat-

isfying the environment, health, and safety regulations. With an extremely

large number of trial and error cases involved in this process, systematic mod-

eling and optimization strategies provide guidelines for experimental design.

Energy systems comprise of multi-physical phenomena at different time and

length scales, described through a hierarchy of scale-specific physical models.

Hence, it becomes necessary to use holistic multi-scale models, which ensure

that knowledge generated at one scale is transmitted to the other producing

synergistic knowledge-base that fulfills stringent performance requirements.

Our work focuses on constructing a generalized framework for multi-phenomena,

multi-scale integration, for systematic design and analysis of energy systems

for achieving desired performance objectives. Owing to its complex physical

phenomena at different time and length scales, hydrogen polymer electrolyte
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1.1 Introduction to PEFCs

fuel cell (PEFC) is an excellent benchmark candidate for examination of our

multi-scale modeling and optimization approaches, and is the focus of this dis-

sertation. In the following, we present a brief introduction to hydrogen PEFCs,

followed by sub-component and system level descriptions that require multi-

scale modeling and optimization. We then present the research objectives of

this work, followed by the outline of the dissertation.

1.1 Introduction to PEFCs

In the past decade, research and development activities for commercialization

of fuel cell systems as a potential power source for stationary, portable and

automotive systems have increased rapidly. PEFCs have especially received

attention owing to their higher power densities over the other types of fuel

cells. Compared to conventional battery systems, the advantages of these

systems are high operating efficiency, near-zero greenhouse emissions, opera-

tion on renewable fuels, reliable operation, and nearly instantaneous recharge

capabilities [Mench et al., 2001].

A PEFC comprises of anode and cathode regions, and a central electrolyte,

which is a polymer membrane. An H2 PEFC converts the chemical energy of

the cell reaction shown in Fig. 1.1 to electrical energy. The basic mechanism

of an H2 PEFC can be explained as following: Humidified hydrogen is fed

to the anode, which decomposes to protons and electrons. These protons are

transferred from anode to the cathode via the polymer electrolyte membrane
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1.2 Multi-scale modeling and optimization in PEFCs

Figure 1.1: Schematic of basic mechanism of an H2 PEFC.

(PEM), and electrons via an external circuit. At the cathode protons and

electrons react with feed O2 to form water product.

1.2 Multi-scale modeling and optimization in

PEFCs

In spite of the above mentioned advantages in the PEFC technology, there are

several cost, performance, and durability issues which need to be overcome

before commercialization can be achieved. In order to motivate the discussion

for modeling and optimization strategies which address these issues, we present

here the PEFC sub-components in more details (Fig. 1.2). A single PEFC

assembly comprises of seven key components: two gas channels (GCs), two

gas diffusion layers (GDLs), two catalyst layers (CLs), and a PEM. The GCs

are graphite bi-polar plates, which comprise of open channels for inlet and

outlet of reactants and products. An issue in GC sub-components is to design
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1.2 Multi-scale modeling and optimization in PEFCs

Figure 1.2: A multi-component schematic of PEFC.

the flow channels which maximize the cell performance. This flow phenomena

is generally described via continuum level models.

The GDLs are porous carbon paper or interwoven cloth materials. The

function of GDLs is to uniformly distribute reactants from GC to the CL,

support the CL materials, and act as a passage for water removal. One of

the key issues with this sub-component is blockage of pores by water due to

water vapor condensation, which leads to additional mass transfer resistances

to the reactant gases, especially on the cathode side. The problem boils down

to designing the GDL structures (porosity and hydrophobicity), which may be

addressed via meso-scale descriptions of two phase flows within porous media.

The CL comprises of platinum (Pt) particles supported on carbon, where

the electrochemical reactions occur. The main issue with this sub-component

is finding alternative catalyst materials, or CL structures, which lead to higher

reaction kinetics, and are less expensive. This issue can be addressed by de-

veloping atomistic/molecular models.
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1.2 Multi-scale modeling and optimization in PEFCs

Finally, the PEM sub-component maintains the potential difference be-

tween the anode and cathode regions, as well as conducts protons from anode

to cathode. This proton conduction process is critical to PEFC performance

as it may lead to significant ohmic losses in the cell. Alternative less expensive

PEMs or PEM structures need to be designed possessing equal or higher con-

ductivity than the state-of-the-art NafionTM and GoreTM PEMs. This issue

may be addressed via molecular / supra-molecular level descriptions.

Figure 1.3 illustrates the PEFC multi-scale modeling scheme on time and

length scales, where each subcomponent is placed at its most desirable mod-

eling hierarchy.

Figure 1.3: PEFC multi-scale modeling scheme.

The above mentioned component level issues need to be addressed based on
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1.3 Research objectives

entire integrated system performance at the device / enterprise level. Hence,

for addressing the PEFC technological issues, one attractive methodology will

be to construct a ’holistic’ integrated PEFC model in an efficient optimization

framework, comprising of subcomponent descriptions at these different time

and length scales. This would entail developing strategies for integrating these

separated time and length models accurately, as well as within permissible

computational expenses.

1.3 Research objectives

With PEFC as the benchmark case study for energy systems, we aim to con-

struct model integration strategies for the following:

• Multiphysical phenomena comprising mass, momentum & energy trans-

fer, including electrochemical reaction phenomena.

• Multiscale phenomena comprising the macroscopic and continuum levels

within the standard engineering domains, and further extending into

scientific domains to include mesoscopic and molecular level descriptions.

• Multi-component systems, e.g., integrating GC, GDL, CL, and PEM

sub-components in PEFCs.

We further aim to apply optimization as a model integration and design

tool.

6



1.4 Outline of dissertation

1.4 Outline of dissertation

Although we aimed at developing entire holistic multi-scale models in an in-

tegrated optimization framework, we partially achieved this goal, by start-

ing with simplified integrated descriptions and systematically adding physics

within each sub-system, initiating subsequent rounds of optimization.

This dissertation is organized in to six Chapters.

In Chapter 2, we introduce an integrated modeling and optimization frame-

work for detailed computational fluid dynamics (CFD) based models for en-

ergy systems. We construct a multi-dimensional, multi-physics PEFC model

accounting for major transport processes within GC, GDL, and PEM sub-

components, with a phenomenological description within the CL sub-component,

where parameter estimation is employed as a tool complementary to model-

ing. Also, parametric studies are performed, investigating the effect of flow

arrangements, inlet humidity, and PEM thickness on detailed water transport

and distribution characteristics, and on overall system performance. Incorpo-

ration of CFD based models in an efficient optimization framework is a key

step towards holistic integrated modeling in energy systems.

In Chapter 3, we introduce a state-of-the-art continuum description for CL,

the agglomerate model, for optimization of PEFC cathodes. The governing

equations are discretized using a finite difference method and resulting opti-

mization problem is linked to our inhouse state-of-the-art nonlinear program-

ming algorithm. We perform platinum (Pt) minimization studies to obtain
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1.4 Outline of dissertation

relationships between optimal Pt mass and current density of operation. We

further introduce non-homogeneity in CL, by systematically sub-dividing the

CL in 2N zones, each possessing different material compositions. We perform

current density maximization for obtaining optimal Pt distributions along the

CL width.

In Chapter 4, we further extend the agglomerate model description for in-

cluding micro-structural information within our existing optimization frame-

work, to examine the sensitivity of different CL structures to cell performance.

Here we investigate the shape and size sensitivities of agglomerates on intra-

and inter-agglomerate transport processes. We also examine polydisperse ag-

glomerate systems, for several particle mixtures. Further, via introducing

a spherical shell model, we explore non-uniform distribution in triple phase

boundaries for electrochemical reaction.

In Chapter 5, we briefly explore the mesoscopic/molecular level descrip-

tions within the GDL and PEM sub-components, by moving from field- to

particle-level descriptions. Via lattice Boltzmann methods for GDL, we ex-

plore effective transport mechanisms within composite porous media struc-

tures, and through a molecular description for PEM, we explore the proton

transport mechanisms, and dependence on PEM structure & water uptake. We

further present, for multi-scale systems in which integrating methodologies are

not available, an integration strategy based on reduced order methods.

In Chapter 6, we conclude the dissertation, as well as highlight the key

contributions and accomplishments to the field of integrated multi-scale mod-
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1.4 Outline of dissertation

eling in energy systems, especially in PEFCs. Some directions for future work

are also given.
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Chapter 2

Parametric Study and

Estimation in CFD-based PEM

Fuel Cell Models

2.1 Introduction

In the past two decades, research and development activities for commercial-

ization of polymer electrolyte fuel cell (PEFC) systems have increased rapidly

as a potential power source for portable electronic devices, automotive systems,

and power plant applications. Compared to conventional battery systems, the

advantages of these systems are high operating efficiency, near-zero greenhouse

emissions, operation on renewable fuels, reliable operation, and nearly instan-

taneous rechargeable capabilities. Also, there is tremendous interest in the

technology due to recent ‘quantum jumps’ in the membrane electrode assem-
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2.1 Introduction

bly (MEA), the region most critical to PEFC performance [Costamagna and

Srinivasan, 2001]. In spite of these developments, several design and operation

related challenges need to be overcome before the commercial entry of PEFCs.

These issues can be addressed through an optimization problem with an ob-

jective of maximizing the power density and minimizing the cost, for a given

durability. Solving this problem requires repeated experiments that may be

expensive and time consuming as there are numerous degrees of freedoms in

the system. With a plethora of parameters to be optimized and conditions to

be satisfied, theoretical modeling is bound to play a pivotal role in achieving

the objective.

Theoretical modeling in PEFC systems is a complex task as the system is an

integrated assembly of several interacting physical components, each compris-

ing of multi-dimensional, multi-physical transport and/or reaction processes.

There have been numerous PEFC system modeling efforts beginning from the

early 1990s [Springer et al., 1991, Bernardi and Verbrugge, 1991]. The model

in Springer et al. [1991] assumed a perfectly mixed gas channel (GC), 1-D

transport processes through gas diffusion layer (GDL), catalyst layer (CL) as

a thin interface between GDL and polymer electrolyte membrane (PEM), and

1-D water transport within the PEM, thus accounting for non-uniform con-

ductivity in the PEM. The model in Bernardi and Verbrugge [1991] incorpo-

rated a porous electrode model for the CL assuming however, a fully hydrated

PEM. Although these models have limited applicability for large-scale FCs

with high fuel utilization and wider operating ranges, they provided a funda-
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mental basis for the forthcoming models. Gurau et al. [1998] presented a 2-D

transport model for a PEFC and illustrated the utility of the model in ex-

amining multi-dimensional water and reactant distributions inside FC. Um &

co-workers [Um et al., 2000, Um and Wang, 2004] applied computational fluid

dynamics (CFD) approach to develop 2-D/3-D transport models. There have

been numerous water management studies emphasizing on auto or low humid-

ity operations [Hogarth and Benziger, 2006, Um and Wang, 2006]. In addition,

various flow field patterns for bipolar plate design have been analyzed [Hyun

et al., 2006]. The state-of-the-art models are complex to the extent that they

account for multi-dimensional mass, momenta, energy, species, and charge

transport phenomena in different regions of a FC. Using available software

architectures there have been attempts of hybrid 3-D dynamic modeling in

PEFC systems [Pantelides, 2004]. Modeling of GCs using FluentTM and MEA

using gPROMSTM softwares has been illustrated for a 3-D temperature analy-

sis [Matzopoulos, 2007]. Other complex phenomena including two-phase flow

with non-isothermal effects, have received considerable attention as well [He

et al., 2004, Wang et al., 2001, You and Liu, 2002, Nam and Kaviany, 2003, Ju

et al., 2005, Wang and Wang, 2006]. However, many such transport and reac-

tion processes in the system are not fully understood, and are often modeled

using semi-empirical models containing unknown parameters. On the other

hand, while more detailed and complex models claim to describe the physics

more accurately, they generate more uncertain parameters. Hence, a rigorous

methodology for parameter estimation for validating models with experimental

12
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data is a very useful tool for PEFC systems. Moreover, an integrated systems

model of PEFC can be thought as a combination of interacting sub-models of

its various components. Hence parameter estimation is especially attractive

for two reasons: (i) From model reduction and simplification point of view, a

particular sub-component model may be modeled through a fitting function

whereas more physics may be concentrated in other desired components and

(ii) stand-alone measured properties of a sub-component may differ when the

component is integrated with the entire system under operation.

In spite of numerous modeling studies [Wang, 2004], there have been only

a few parameter estimation studies in PEFCs. Suares and Hoo [2000] esti-

mated model parameters based on the model by Nguyen and White [1993],

who accounted for heat transfer between solid and liquid phases and latent

heat associated with evaporation and condensation of water. The pseudo 2-D

problem (1-D for GC, and 1-D PEM) was solved by discretizing the differential

algebraic equation (DAE) model using an orthogonal collocation method, and

by solving the associated nonlinear program (NLP) by the successive quadratic

programming (SQP) approach. Applying a 1-D model, Berg et al. [2004] fitted

the voltage data for a specified current, from their experiments and estimated

PEM conductivity, cathode exchange current density, PEM water transfer co-

efficient, and GDL oxygen mass transfer coefficient. Using 1-D charge and

species balance in quiescent flow in GDL, CL, and PEM, Carnes and Djilali

[2005] estimated PEM conductivity, GDL oxygen mass transfer coefficient, and

exchange current densities by applying an algorithm for parameter estimation

13
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with PDE constraints based on a nonlinear least squares approach.

All the above parameter estimation studies however, employ simpler PEFC

models with fewer individual component models, less detailed treatment of

transport processes, and have been limited to zero or one-dimension. In par-

ticular, none of these studies have dealt with detailed water transport models

in all the PEFC components. These models are generally valid for a narrow

range of operating conditions. As a result the parameters obtained lead to

uncertainty in model predictions for large FC applications, particularly with

high fuel utilization and wide range of operation.

The reasons for these limitations in PEFC parameter estimation studies

is that the rigorous PEFC models are multi-dimensional and possess multi-

physical phenomena that involve a large coupled system of partial differen-

tial algebraic equations (PDAEs). These models have been generally solved

using commercial CFD codes that are unequipped to deal with large-scale

PDAE-constrained optimization problems associated with the corresponding

parameter estimation problems.

In this study, we present an integrated modeling and optimization frame-

work for multi-dimensional, multi-physical PEFC models. We develop detailed

transport models for GCs, GDLs, and PEM, along with a fitting function for

the CL region, and formulate the parameter estimation problem as a PDAE-

constrained optimization problem, with objective function that minimizes the

model and experimental error between both input and output variables in the

system. The problem is discretized in space leading to a large-scale NLP,
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2.2 Physical modeling of H2 PEFC

which is solved using a robust and efficient state-of-the-art interior point op-

timization solver, IPOPT [Wächter and Biegler, 2006]. The problem is solved

with multiple experimental data points, which cover a wide range of operating

conditions, yielding parameters that lead to accurate model predictions. We

further employ this framework to perform parametric studies on water trans-

port mechanisms and distribution within the PEFC system. We especially

focus on parametric behavior of individual water transport processes within

the PEM.

The remainder of this chapter is organized into the following components:

physical modeling, parameter estimation, and parametric studies on water

management in H2 PEFCs.

2.2 Physical modeling of H2 PEFC

A schematic of a H2 PEFC and anode and cathode half cell reactions are

shown in Fig. 2.1. A H2 PEFC comprises of two GCs, two GDLs, two CLs

each on the anode and cathode sides, as well as a central PEM. The GCs are

bipolar plates, that are hollow chambers for fluid inlet and outlet. They also

serve as a connection between adjacent cells. The GDLs are porous materials

(typically carbon paper or carbon cloth) which support the catalyst/support

particles, provide uniform distribution of gases, and act as a medium for elec-

tron transport from the CL to the external current collectors. The CLs are the

usually platinum alloy particles supported on carbon, where the electrochem-
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2.2 Physical modeling of H2 PEFC

Figure 2.1: A schematic of the H2 PEFC , and the anode and cathode half cell
reactions

ical reactions take place. PEM is generally polytetrafloroethylene chains with

perflorosulfonate side groups. The PEM acts as a proton transport passage

from anode to the cathode, and this conductivity of the PEM is a strong func-

tion of its water uptake. We will construct a 2-D macroscopic model illustrated

in Fig. 2.2. There are five chambers in the model, the GCs and the GDLs both

on anode and the cathode sides, and a central PEM region. The humidified

fuel and air are fed in the anode and cathode inlets, respectively. The species

undergo a 2-D diffusion-convection process in both the GCs and the porous

GDLs, after which they reach the PEM-GDL interface. On reaching the inter-

face, hydrogen and oxygen undergo electrochemical reactions, and the water

molecules are transported across the PEM from anode to the cathode. The

protons released in the oxidation reaction at the anode are transported across
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Figure 2.2: A schematic of the H2 PEFC model

the PEM, and electrons released reach the cathode via an external circuit.

The protons and electrons on reaching the cathode combine with the oxygen

in the reduction reaction to give water as the product.

The following assumptions are made in our model: (i) 2-D steady state

model; (ii) isothermal condition is imposed in the entire modeling domain;

(iii) both GDLs and PEM have isotropic porous media; (iv) the CLs are

treated as thin interfaces between the GDLs and the PEM; (v) water remains

in the vapor phase, and single phase flow takes place; (vi) cell current density

remains constant; and (vii) anode overpotential is negligible in comparison

to cathode overpotential and is neglected in the cell voltage calculation. In

addition, the standard simplifications including laminar and incompressible

flow, as well as negligible entrance effects have been imposed and numerically

verified. In view of the assumptions made, we would stress here that the pur-
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pose of our work here is to build an integrated modeling and optimization

framework for distributed CFD-based PEFC models, and the model presented

here is for illustrative purposes. Hence, there are many significant physical

features lacking in the model, such as the charge and energy balance equa-

tions, which are important in determining the potential, current density, and

temperature distributions, and may have significant effect on cell performance

at high current densities of operation.

The governing equations for each of the modeling regions, the interface and

boundary conditions, and the empirical correlations adopted, are summarized

in the list of Eqs. (2.1)-(2.19). A description of the variables can be found in

the Notation section, whereas the model parameters and their values are listed

in Table 2.3, at the end of this Chapter. The gas diffusion coefficients listed

are computed via the Fuller-Schettler-Giddings equation for binary gas pairs

(pg. 5-51, Green and Perry [2008]), where as the gas viscosities are computed

using Wilke’s expression [Wilke, 1950].

Equations (2.1) and (2.2) are continuity and isothermal Navier-Stokes (N-

S) equations descriptive for the fluid flow within the GCs. The species mass

transport (for H2, H2O and O2) is described by the diffusion-convection equa-

tion, Eq. (2.3). In modeling the GDL, the porosity (ǫ) of media is assumed

to be constant i.e., there are no dilation and expansion effects. The total

mass balance is described by Eq. (2.4). The N-S equation is modified by an
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2.2 Physical modeling of H2 PEFC

additional Darcy’s drag term (∝ v) - Eq. (2.5).

GC equations

Total mass balance: ∇ · v = 0 (2.1)

Momentum balance: M(v, p) ≡ ∇ · (vv)−∇ · (νeff∇v) +
1

ρ
∇p = 0 (2.2)

Species mass balance: Si(Ci, Di) ≡ ∇ · (vCi)−∇ · (Di∇Ci) = 0 (2.3)

GDL equations

Total mass balance: ∇ · (ǫv) = 0 (2.4)

Momentum balance: M(ǫv, p)− ρνeff

K
(ǫ2v) = 0 (2.5)

Species mass balance: Si(Ci, ǫ
0.5Di) = 0 (2.6)

Water transport in PEM

[

1− 8.8
Fρmkm

IMmµm

∂pw

∂x

]

∂λ

∂x
− 8.8

FDw,mρm

IMm

[

∂2λ

∂x2
+

∂2λ

∂y2

]

= 0 (2.7)

Boundary conditions

Interface conditions between PEM and GDL

H2 consumption: SH2
= −MH2

2F
I (2.8)

H2O transfer: SH2O = −α(x = a, y)
MH2O

2F
I (2.9)

O2 consumption: SO2
= −MO2

4F
I (2.10)

H2O generation: SH2O = (1 + α(x = b, y))
MH2O

2F
I (2.11)

Inlet velocity conditions

At anode: v0,a = ξa
Am

Ach

I

2FCH2,0

(2.12)

At cathode: v0,c = ξc
Am

Ach

I

4FCO2,0

(2.13)
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Cell voltage equations

Output cell voltage: Vcell = VOC − ηc − ηohm (2.14)

Open circuit voltage: VOC = 1.23− 0.9 x 10−3(T − 298.15) +
RT

4F
ln(a2

H2
aO2

) (2.15)

Cathode overpotential: ηc = β1lnI + β2 (2.16)

Ohmic overpotential:ηohm = I
Lm

σavg

(2.17)

Empirical correlations

PEM conductivity: σ = (0.005139λ− 0.00326)exp

[

1

303
− 1

T

]

(2.18)

λ vs. vapor activity: λ =















0.04 + 17.81aw − 39.85a2
w + 36a3

w for 0 < aw 6 1,

14 + 1.4(aw − 1) for 1 6 aw 6 3.

(2.19)

The species mass transport Eq. (2.6), is modified from the GC by multiply-

ing Di by a factor ǫ0.5 to account for the porosity, as given by the Bruggman’s

relation [Um et al., 2000]. Notice that ǫ = 1 recovers the GC species mass

transport equation, Eq. (2.3).

The PEM is considered impermeable to all species except the protons and

water. To describe the water transport in PEM, a quantity λ is introduced,

which is the ratio of the water molecules to the number of sulphonate ion

groups (SO−

3 H+). It is related to PEM water concentration (Cw,m) by

λ =
MmCw,m

ρm

(2.20)

The total flux (NTot) of water in the PEM comprises of three parts; electro-

osmotic drag (Nelec), diffusion (Ndiff ), and hydraulic permeation (Nhyd) [Yi
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and Nguyen, 1998]. The electro-osmotic drag originates from the flux due to

drag on water molecules by proton molecules from anode to the cathode side.

It is given by [Springer et al., 1991]:

Nelec =
2.5

22

λ

F
I (2.21)

The diffusion is caused by the concentration gradient due to non-uniform water

distribution within the PEM, and is given by [Springer et al., 1991]:

Ndiff =
Dw,mρm

Mm

∇λ (2.22)

The hydraulic permeation is generated due to the pressure gradient between

the anode and cathode sides. It is given by [Yi and Nguyen, 1998]:

Nhyd =
ρmkmλ

Mmµm

∇pw (2.23)

After summing up these three flux terms, we imposed a differential water mass

balance in the PEM. By assuming a steady state, we have

∇ · (Nelec + Ndiff + Nhyd) = 0, (2.24)

which can be expressed as Eq. (2.7) in 2-D. Equations (2.8) and (2.10) repre-

sent the rate of consumption for H2 and O2 (mass per unit time) due to electro-

chemical reactions at anode and cathode CLs, respectively. In Eq. (2.9), SH2O
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is the mass transfer rate of H2O across the PEM from anode to the cathode,

and α is the moles of water molecules transported in x-direction from anode to

the cathode side per mole of proton transported. It is given by the following

equation,

α =
NTot · i

I/F
= 2.5

λ

22
− Dw,mρmF

MmI

∂λ

∂x
− ρmFkmλ

MmIµm

∂pw

∂x
(2.25)

In Eq. (2.25), the three terms in the right hand side represent the electro-

osmotic drag coefficient (ζelec), the back-diffusion coefficient (ζdiff ), and the

hydraulic permeation coefficient (ζhyd) respectively. In Eq. (2.11), SH2O is the

sum of the transfer rates of water molecules from anode to the cathode by

electro-osmotic drag and water generation due to electrochemical reaction at

cathode. Equations (2.12) and (2.13) represent the inlet velocity conditions at

anode and cathode for specified stoichiometric ratios and current density. At

the outlets of the GCs the velocity and concentration profiles are assumed to

be fully developed.

The output cell voltage is calculated from Eq. (2.14). The open circuit

cell voltage VOC depends on the system temperature and pressure as shown in

Eq. (2.15) [Bernardi and Verbrugge, 1991]. From Tafel kinetics, the cathode

overpotential is modeled as a linear function of lnI with β1 and β2 as two fitting

parameters (Eq. (2.16)). The parameters β1 and β2 represent the electrode

properties that influence the FC performance. The ohmic overpotential is given

by Eq. (2.17). The PEM conductivity (σ) is correlated to water concentration
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(Eq. (2.18)) as reported in Springer et al. [1991]. Finally Eq. (2.19) provides

relationship between λ and water vapor activity (aw = CH2ORT /Psat) at the

GDL-PEM interface [Springer et al., 1991].

The boundary conditions for the model are as follows: (i) At anode and

cathode inlets, velocity and concentration values are specified; (ii) At anode

and cathode exits, the flow is assumed to be fully developed and pressure

is specified; (iii) At walls, no slip condition and zero normal species flux are

employed; (iv) At GDL-PEM interface, no slip condition and interfacial species

consumption eqs. (2.8)-(2.11) are employed.

2.3 Parameter estimation

Once the PEFC model is constructed, we link the model to IPOPT, and per-

form parameter estimation. Here we first present the parameter estimation

problem formulation, followed by the details of numerical procedure, and ap-

plication to PEFC system.

2.3.1 Problem formulation

The model equations (2.1) - (2.19) form a set of PDAEs which is cast in the

following compact form:
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g

[

∂z

∂x
,
∂z

∂y
,
∂2z

∂x2
,
∂2z

∂y2
, z(X),w(X), X,p

]

= 0

h [z(X),w(X), X,p] = 0

B [z(0), z(1), ż(0), ż(1)] = 0 (2.26)

Here, z denotes the differential state variables. The symbol w represents

the algebraic variables, and p, the parameters. The symbol X represents the

set {x, y} of independent variables. The partial differential equations compris-

ing of momentum, species mass, and total mass balance equations are denoted

by g[.], the algebraic equations including the cell voltage calculation equations

and empirical correlations by h[.], and the boundary conditions by B[.]. In

(2.26), the bold symbol represents a vector.

For parameter estimation problem formulation an appropriate objective

function needs to be chosen. Standard least-squares formulation approach

leads to parameter estimates that minimize the error between model and ex-

perimental output variables, and therefore account only for errors due to model

inadequacy and random errors in measurement of output variables. If the in-

put variables have measurement errors as well, this approach however, is well

known to give biased parameters [Moran, 1971]. For this, we employ the

errors-in-variables-measured (EVM) formulation approach, that takes into ac-

count the errors of all measured variables, both inputs and outputs to the

system. The corresponding parameter estimation problem is formulated as
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the following optimization problem:

min
p

N
∑

i=1

[

(wi,O −wM
i,O)TV−1

w,O(wi,O −wM
i,O) + (wi,I −wM

i,I)
TV−1

w,I(wi,I −wM
i,I)
]

s.t. gi

[

∂zi

∂x
,
∂zi

∂y
,
∂2zi

∂x2
,
∂2zi

∂y2
, zi(X),wi(X), X,p

]

= 0

hi [zi(X),wi(X), X,p] = 0

wi,O − fi [zi(X), X,p,wi,I ] = 0

Bi [zi(0), zi(1), żi(0), żi(1)] = 0

i ∈ {1, ..., N} (2.27)

where, N is the number of experimental data sets and index i is used to repli-

cate the model equations and variables for each of these data sets. The first

summation term in the objective represents the least squares error between the

model and experimental output variables, wi,O and wM
i,O respectively, whereas

the second term represents the error between the input variables wi,I and wM
i,I .

V−1
w,O and V−1

w,I denote the weighting matrices for output and input variables

respectively, and represent the inverse of the corresponding covariance ma-

trices. Superscript T represents the matrix transpose operator. The EVM

formulation however, leads to an increase in the number of degrees of freedom

in the optimization problem (2.27) by the number of data sets used in the prob-

lem, often posing additional computational challenges in optimization. The

EVM variables are the current density, I (input), and cell voltage, V (output)
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in this study.

2.3.2 Numerical procedure

The transport equations within the GC, GDL, and PEM compartments are

discretized using a finite volume method (FVM). The entire modeling domain

was sub-divided into finite volumes. We employed the staggered grid approach,

where the velocity field components are defined at a staggered location on the

grid with respect to the concentration and pressure variables. We have adopted

the discretization procedure given in Patankar [1980].

Discretized equations of the PDAE system can be formulated as a gener-

alized NLP of the following form,

min f(x)

s.t. c(x) = 0

xL 6 x 6 xU (2.28)

The NLP algorithm employed in our study is IPOPT [Wächter and Biegler,

2006]. This algorithm is based on a barrier approach in which the variable

bounds are treated by adding a logarithmic barrier term to the objective func-
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tion, which casts the problem in (2.28) into the following form,

min ϕ(x) = f(x)− µ̂
∑n

i=1 ln(x(i) − x
(i)
L )

−µ̂
∑n

i=1 ln(x
(i)
U − x(i))

s.t. c(x) = 0 (2.29)

with a barrier parameter µ̂ > 0. Here, x(i) denotes the ith component of the

vector x. The degree of influence of the barrier is determined by the size of µ̂,

and under mild conditions x∗(µ̂) converges to a local solution x∗ of the original

problem (2.28) as µ̂ → 0 [Fiacco and McCormick, 1990]. Consequently, a

strategy for solving the original NLP is to solve a sequence of barrier problems

(2.29) for decreasing barrier parameters µ̂l, where l is the counter for the

sequence of subproblems.

IPOPT follows a primal-dual approach and applies a Newton method to

the optimality conditions of (2.29), leading to solution of the following linear

system at each iteration k:









Hk + Σk AT
k

Ak 0

















∆x

∆Λ









= −









∇ϕ(xk) +∇c(xk)
T Λk

c(xk)









(2.30)

where we use the convention, X = diag(x), etc., Hk is the Hessian of the La-

grangian function f(xk)+c(xk)
T Λk, Ak = ∇c(xk) and Σk = (Xk−XL)−1(V k

a )+

(XU − Xk)
−1(V k

b ) is the barrier term. Global convergence of the Newton

method is promoted by a novel filter line search strategy; detailed analysis
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shows both global convergence and fast local convergence properties. More

information on IPOPT can be found in Wächter and Biegler [2006] and on the

following website: https://projects.coin-or.org/Ipopt.

The discretization of the NLP using FVM was performed manually for

all the equations and physical modeling domains. This CFD implementa-

tion was carefully verified with the commercial CFD softwares (FluentTM and

FEMLABTM), however no automated CFD software was employed to build

this model. Instead for all calculations the discretized equations were pro-

grammed in the modeling environment AMPL [Fourer et al., 1992], which was

linked to the IPOPT solver.

2.3.3 Application to PEFC system

We now illustrate the above methodology for parameter estimation in PEFC

models using the current-voltage (I−V ) data from Ticianelli et al. [1988] (from

Fig.2.5, 20 wt.% Pt/C in supported electrocatalyst plus 50 nm sputtered film

of Pt, 0.45 mg/cm2 of Pt. Case 353 K, 3/5 atm), with output variable as

V , and input variable as I. The goal here is to find parameter plus model

combination which validates the experimental data for a wide range of oper-

ating conditions, which is achieved by using multiple I − V data points in the

parameter estimation problem. The model equations are replicated depending

on the number of I − V points chosen. The EVM approach minimizes the

slanted distance between model and experimental points on the global I − V
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curve.

Model parameters

We choose to estimate the following parameters in the PEFC system:

• PEM water diffusion coefficient: The significance in estimating this

property lies in the accurate prediction of water holdup and transport

characteristics within the PEM, which in turn is critical to the water

management issue. However, the PEM diffusion coefficient depends upon

the PEM structure, the pretreatment method used for a PEM type, its

water uptake, and the counter-ions in the system, thus increasing the

number of cases for which experiments need to be performed [Suresh

et al., 2006]. The experimental studies performed [Springer et al., 1991,

Motupally et al., 2000] have been limited mainly to NafionTM stand-alone

PEMs, and there is scarcity of data for other PEMs, especially with in

situ measurements. Our work, for the first time provides a systematic

framework for estimating diffusion coefficients using a multi-dimensional,

multi-physics modeling and optimization framework.

• Parameters β1 and β2 in CL: The focus of current study is water

management and hence detailed physics is incorporated within the PEM.

Within the CL region, we employ a Tafel type equation for cathode

overpotential (Eq. (2.16)), with β1 and β2 representing the electrode

properties.
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Results

The EVM problem was solved for 3, 4, 7, and 11 I − V data points and the

estimated parameter values are summarized in Table 2.1.

Table 2.1: Parameter estimates for different number of I-V data point cases.

I − V points 109Dw,m(m2/s) β1 β2

3 1.77 0.054 0.423
4 1.64 0.047 0.416
7 1.60 0.045 0.412
11 1.72 0.047 0.418

The values of Dw,m are within the range of values reported by other semi-

empirical and experimental data sources [Motupally et al., 2000, Fuller and

Newman, 1993]. On comparison of Eq. (2.16) with Tafel overpotential ex-

pression [Larminie and Dicks, 2002], the values of β1 and β2 from the 11-point

case correspond to an electrode charge transfer coefficient value of 0.32 and

a exchange current density value of 1.37 x 10−4 A/cm2 which are well within

their respective physical ranges. The fitted I-V curve for the 11-point case is

illustrated in Fig. 2.3.

Table 2.2 illustrates the computational details of the associated NLPs for

different data point cases. NZJ and NZH denote the number of nonzero entries

in the Jacobian and Hessian matrices, respectively.

The problems were solved on a 3.4 GHz processor, 4 Gb RAM, Pentium

IV machine. The problems in each case were initialized by the solution of

square problem simulation cases. The value of the objective (residual) for
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Figure 2.3: The fitted I − V curve for the 11-point case.

Table 2.2: Computational details for each of multiple data point cases

I −V
points

Residual Variables Constraints Iters. CPUs NZJ NZH

3 6.97 x 10−13 19 944 19 938 17 49.06 115 815 34 599
4 3.58 x 10−05 26 591 26 584 17 55.59 154 420 46 132
7 6.27 x 10−05 46 532 46 522 25 143.19 270 235 80 731
11 3.48 x 10−04 73 120 73 106 23 259.54 424 655 126 863

the 3-point case, which corresponds to same number of parameters as the

number of data points, comes out to be nearly zero. Also the residual values

increase with number of data points, as expected. The CPU times scale linearly

with problem size. The 11-point case corresponds to a large-scale NLP of

73 120 variables which is solved in little over four minutes. Hence, the current

optimization framework seems to be reliable and computationally efficient in

dealing with larger parameter estimation and optimization problems in PEFC

systems. Moreover, the reduced Hessian matrix at the solution of each of the

problems is positive definite, which corresponds to the fact that the parameters
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estimated are unique.

2.4 Parametric studies

In this section we present parametric study results which focus on the water

management issue in PEFCs. Water management refers to the act of ensuring

sufficient hydration of PEM to avoid ohmic losses, and to avoid liquid water

flooding (thus, ensuring efficient product water removal) that blocks the active

CL sites and GDL pores, thus hindering the gas transport from the GC inlet

to the CL. The problem boils down to designing the GDL (porosity and hy-

drophobicity), the CL (thickness, composition, and particle size distribution)

and determining optimal operating and design conditions (e.g., optimal flow

characteristics, inlet humidity, geometric parameters, temperature, pressure,

and current density), that achieve the above goal.

Numerous water management studies in the PEFC literature elucidate wa-

ter transport characteristics with various design and operating parameters in

the system [Wang, 2004]. Hence the goal of current work is two-fold; to validate

our modeling and optimization framework by reproducing similar parametric

behaviors as reported in previous studies and then, to examine in more de-

tail the parametric behavior of individual water transport processes especially

within the PEM. In this section, using the parameters estimated from previous

section, we perform parametric studies to see the effect of flow arrangement

(co-flow or counter-flow with respect to anode and cathode inlet locations),
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2.4.1 Flow arrangement

inlet gas humidity, and PEM thickness on water transport mechanisms and

distribution in the system, and overall cell performance.

2.4.1 Flow arrangement

We first examine the effect of changing inlet gas flow directions in anode and

cathode GCs on the cell water distribution and on overall performance. As ob-

served from Fig. 2.4(a) (left), in the co-flow arrangement, water concentration

Figure 2.4: Water concentration (mol/m3) profiles in (a) anode and cathode regions
and (b) PEM water profiles (λ), for co-flow (left) and counter-flow (right) cases.
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2.4.1 Flow arrangement

increases monotonically from the inlet to the outlet of the GCs, both within

the anode and the cathode regions. Also, the PEM water concentration (Fig.

2.4(b) (left)) follows a monotonically decreasing trend from cathode to the

anode side. On the other hand, in the counter-flow arrangement (right sides

of Figs. 2.4(a) & (b)), there exists a maxima of water concentration in the

middle region in both anode and cathode sides, and in the PEM region. Also,

the gradient of water concentration in the PEM becomes multi-directional.

More detailed water transport characteristics can be observed from Figs.

2.5(a) & (b), which show the variation of individual water transport coeffi-

Figure 2.5: Variation of PEM water transport coefficients along the anode GDL-
PEM interface for (a) co-flow and (b) counter-flow cases.

cients, defined earlier in Eq. (2.25), along the anode GDL-PEM interface for

the co-flow and the counter-flow arrangements. For the co-flow arrangement

(Fig. 2.5(a)), the electro-osmotic drag effect, which is directly proportional to

λ, increases monotonically, but the diffusion effect acting in the opposite di-

rection also increases at a similar rate. Since, the anode and cathode pressures
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2.4.1 Flow arrangement

have been taken equal in these parametric studies, ζhyd remains zero through-

out the length along the interface. The overall water transport coefficient α

is therefore simply a summation of ζelec and ζdiff , and remains constant and

negative, as the diffusion effect dominates over the electro-osmotic drag effect.

For the counter-flow case (Fig. 2.5(b)) however, electro-osmotic drag co-

efficient possesses a maximum because of a maximum in water concentration

along the GDL-PEM interface, whereas the back-diffusion coefficient decreases

sharply. The sign of α changes in between from negative to positive, which

indicates the presence of an internal water re-circulation in the counter-flow

arrangement. This recirculation mechanism causes the PEM to hold higher

amount of water and therefore, leads to a better performance via enhanced

conductivity. The improved performance of the counter-flow case can be seen

in Fig. 2.6 which compares the I − V characteristic curves for the two flow

arrangements. The disparity in the performances is especially visible for dry

Figure 2.6: Polarization curves for counter-flow and co-flow cases.

to low humidities, and for lower pressures of operation. However, for higher
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2.4.2 Inlet humidity

humidification conditions, the flow arrangement does not seem to affect the

cell performance.

2.4.2 Inlet humidity

As inlet gas humidities increase, the overall water uptake in the system in-

creases, which increases the ionic conductivity of the PEM and enhances the

overall system performance. Figures 2.4(b, left) & 2.7 compare the PEM water

Figure 2.7: PEM water concentration profile for RH = 80/80.

uptakes of a totally dry inlet gas stream and the case where inlet humidities

are set equal to 80/80 (xx/xx denotes relative humidity (RH) values at the

anode and the cathode sides, respectively) in a co-flow arrangement. The av-

erage PEM water uptake increases by approximately four times in the latter

case.

As seen from Fig. 2.8, the cell performance improves significantly from dry

conditions to low humidity conditions (25 % RH in each anode and cathode
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2.4.2 Inlet humidity

Figure 2.8: Polarization curves for different inlet humidity cases.

side), and the performance further improves in the cases of inlet humidities

set equal to 100/0 and 80/80.

Figures 2.9(a) & (b) display the α and ζelec curves for a co-flow arrangement

Figure 2.9: Variation of α and ζelec along the anode GDL-PEM interface for RH =
80/80.

with inlet humidities set as 80/80. In contrast to totally dry inlet humidity

case where there is a unidirectional water flux from cathode to the anode side,

the water transport in high inlet humidity case takes place from anode to the

cathode side until a certain distance along the length, after which the water
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2.4.3 PEM thickness

transport direction reverses, as indicated by the switching in the sign of α

in between. This may be explained in the following manner: for higher inlet

humidity case, due to high water concentration near inlet, the electro-osmotic

drag effect dominates over the diffusion effect and there is net transport of

water from anode to the cathode side. However further down the channel,

due to this loss of water from anode, and due to water production in the

electrochemical reaction at the cathode, a sufficiently high water concentration

gradient sets up in the opposite direction, and diffusion effect dominates over

the electro-osmotic drag effect.

2.4.3 PEM thickness

PEM thickness affects the PEM conductivity in two main ways: (i) an increase

or decrease in the proton transport path and (ii) through water distribution

characteristics.

Figures 2.10(a) & (b) compare the water transport coefficients of NafionTM

117 (thickness 178 µm) and NafionTM 111 (thickness 25.4 µm) PEMs. Although

there is only a slight modification in the overall transport coefficient α which

becomes more negative for NafionTM 111, ζelec and ζdiff increase significantly

in magnitude, indicating increased water transport in NafionTM 111 as com-

pared to NafionTM 117 in either the right or the left directions. This causes

the water concentration to be more uniform in the x-direction for a thinner

PEM as compared to a thicker PEM (Figs. 2.11 (a) & (b)). Hence, there exist

38



2.4.3 PEM thickness

Figure 2.10: Variation of PEM water transport coefficients along the anode GDL-
PEM interface for (a) NafionTM 117 and (b) NafionTM 111 PEMs.

Figure 2.11: PEM water concentration profiles for (a) co-flow and (b) counter-flow
cases.

regions (for high y values), where water concentration is uniformly high along

the entire x-direction (or PEM width), which provide least resistance paths

for proton transport. On the other hand, for thicker PEMs, water distribution

is such that there are fewer, or no such regions of high proton conductivity

along the entire PEM width.

Figure 2.12 shows a large difference in performances of NafionTM 117 and

NafionTM 111 PEFCs. However, as shown in Fig. 2.12, counter-flow arrange-
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2.5 Summary

Figure 2.12: I-V characteristic curves for NafionTM 117 and NafionTM 111 PEFCs.

ment still leads to a better performance than the co-flow arrangement due

to increased PEM conductivity via internal water recirculation. The co- and

counter-flow (although not illustrated here) arrangements for NafionTM 111

gave similar performance.

2.5 Summary

In this Chapter we introduce a generalized modeling and optimization frame-

work for rigorous CFD models in PEFC systems, with focus on integration

of multi-component, multi-physics systems. Our PEFC model accounts for

major transport processes within the GCs and the MEA, whereas CL is de-

scribed phenomenologically. The resulting system of PDAEs is solved using

a complete discretization approach in IPOPT solver. We perform parameter

estimation for estimating CL fitting parameters and PEM water diffusion co-

efficient, and further employ this framework to perform water management
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2.5 Summary

parametric studies. Specifically, we examine the effects of flow arrangements,

inlet humidity, and PEM thickness on the water transport and distribution

mechanisms within entire cell as well as on overall performance. The proposed

methodology leads to fast and efficient solution of large-scale NLPs in a few

CPU seconds and a few iterations.
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Notation

a = Activity

A = Area, m2

B[.] = Vector of boundary conditions

C = Molar concentration, mol/m3

diag = diagonal matrix operator

Di = Diffusion coefficient for species i, m2/s

F = Faraday’s constant, C/mol

g[.] = Vector of PDEs

h[.] = Vector of algebraic equations

Hk = Hessian of the Lagrangian function

i = Unit vector in x-direction

I = Current density, A/m2

I = Current density vector, A/m2

k = Hydraulic permeability, m2

K = GDL permeability, m2

L = Length, m

Mi = Molecular weight of species i, kg/mol

N = Number of data sets

N = Flux, mol/m2·s

p = Pressure, N/m2

p = Vector of parameters

R = Gas constant, J/mol· K
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S = Consumption/production rate, kg/s

T = Temperature, K

v0 = Inlet velocity, m/s

v = Velocity vector, m/s

V = Voltage, Volt

V = Covariance matrix

w = Vector of algebraic variables

X = set of independent variables

z = Vector of differential variables

ż = Vector of derivative of differential variables

Greek symbols

α = [H2O]/[H+] transported

βi(i = 1, 2) = Catalyst layer fitting parameters, Volt

ǫ = GDL porosity

η = Overpotential loss, Volt

ζ = PEM water transport coefficient, dimensionless

λ = [H2O]/[SO−

3 H+] in PEM

Λ = Lagrange multiplier

µ = Viscosity, kg/m· s

µ̂ = Barrier parameter

ν = Kinematic viscosity, m2/s

ρ = Density, kg/m3
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σ = PEM conductivity, S-m−1

Σk = Barrier term

ξ = Stoichiometric ratio

Subscripts and superscripts

a = Anode

avg = Average

c = Cathode

ch = Channel

diff = Diffusion

eff = Effective value

elec = Electro-osmotic drag

gc = Gas channel

gdl = Gas diffusion layer

hyd = hydraulic permeation

I = Input

L = Lower bound

m = PEM

M = Measured

O = Output

OC = Open circuit

ohm = Ohmic

sat = Saturation value
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T = Matrix transpose operator

Tot = Total

U = Upper bound

w = Water

0 = Value at the inlet conditions

45



2.5 Summary

Table 2.3: Parameter definitions and values

Symbol Description Value
Ach Cell inlet area(m2) Lgc x width
Am Through plane direction area (m2) L x width
DH2

Hydrogen diffusion coefficient(m2/s) 3.95 x 10−5

DH2O,a Anode water diffusion coefficient(m2/s) 3.95 x 10−5

DH2O,c Cathode water diffusion coefficient(m2/s) 6.8 x 10−6

DO2
Oxygen diffusion coefficient(m2/s) 5.6 x 10−6

F Faraday’s constant (C/mol) 9.65 x 104

i Unit vector in x-direction
km PEM hydraulic permeability (m2) 1.8 x 10−18

K GDL permeability(m2) 1.76 x 10−11

L Length along GC (m) 7.36 x 10−2

Lgc GC width (m) 2.54 x 10−3

Lgdl GDL width (m) 2 x 10−4

Lm PEM thickness (m) 1.27 x 10−4

MH2
Hydrogen molecular weight (kg/mol) 2 x 10−3

MH2O Water molecular weight (kg/mol) 1.8 x 10−2

MO2
Oxygen molecular weight (kg/mol) 3.2 x 10−2

Mm PEM equivalent weight (kg/mol) 1.1
R Gas constant (J/mol ·K) 8.314
T Cell temperature (K) 353.15
ǫ GDL porosity 0.4
νeff

a Anode gas kinematic viscosity (m2/s) 2.44 x 10−5

νeff
c Cathode gas kinematic viscosity (m2/s) 4.1 x 10−6

µm PEM viscosity (kg/m · s) 2.14 x 10−3

ρa Anode gas density (kg/m3) CH2,0MH2
+ CH2,0,aMH2,0

ρc Cathode gas density (kg/m3) CO2,0MO2
+ CH2,0,cMH2,0

+CN2,0MN2

ρm PEM density (kg/m3) 2 x 103

ξa Anode stoichiometric coefficient 1.2
ξc Cathode stoichiometric coefficient 2.6
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Chapter 3

Optimization of Polymer

Electrolyte Fuel Cell Cathodes

3.1 Introduction

Out of the several performance losses within a polymer electrolyte fuel cell

(PEFC), maximum overpotential losses take place within the cathode catalyst

layer (CL) [Wang, 2004]. These losses occur due to sluggish oxygen reduction

reaction (ORR) kinetics and sub-optimal operation. For ORR to proceed effi-

ciently, the reactants (oxygen, protons, and electrons) need high mass transfer

rates through the CL and need to meet together for reaction to occur. The CL

comprises three phases, (i) the void space for oxygen/water transport, (ii) the

electrolyte phase for proton transport, and (iii) the electro-catalyst phase for

electron transport. These transport phenomena compete among each other

depending on the composition and distribution of the three phases. With a
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plethora of parameters to be optimized, systematic modeling and optimization

studies provide guidelines in selecting the composition and distribution of CL

materials (or phases) that maximize the output current density and minimize

the consumption of the expensive platinum (Pt) catalyst.

There have been limited attempts to optimize the CL parameters math-

ematically, in spite of numerous modeling efforts. Using a simplified 1D CL

model, Song et al. [2005] determined optimal Pt and electrolyte distributions

along the CL width by maximizing the current density at a specified cell volt-

age. In their calculations, the optimal distributions increase along the CL

width from gas diffusion layer (GDL) to the PEM interfaces. Rao and Ren-

gaswamy [2006] presented a single agglomerate particle model and maximized

the current density and minimized the Pt content for several voltage values.

Their approach, although among the first of its kind, does not couple CL to

any adjacent layers. Furthermore, their methodology for optimization is not

suitable to deal with large-scale optimization problems. Recently, Secanell

et al. [2007] have presented benchmark study on the optimization of entire CL

using a gradient based optimization framework based on adaptive mesh refine-

ment and capable of performing multi-variable optimization. They employed

a detailed agglomerate model into their optimization framework to determine

the optimal Pt content, mass ratio of Pt to carbon (Pt/C), void fraction in

the GDL, and optimal characteristics of individual agglomerates that maxi-

mize cell current density for a specified voltage. Their study, according to the

best of our knowledge, is the first systematic multi-variable optimization study
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of CL dealing with a sophisticated agglomerate model. The model is linked to

adjacent GDL, and can be integrated with entire system. However, their ap-

proach based on single-domain (combined GDL and CL) formulation appears

to have numerical difficulties due to redundancy in the governing equation

for the electrolyte phase potential, and may need more efficient algorithm for

large-scale simulations.

In this Chapter, we introduce a modified double-domain (and can be eas-

ily generalizable for 2N CL + GDL domains) form based on the agglomerate

CL-GDL model reported in Secanell et al. [2007] We discretize the governing

equations using a finite difference method and implement the discretized equa-

tions in an equation oriented modeling environment AMPL ‘A Mathematical

Programming Language’ [Fourer et al., 1992], which are solved using a state-of-

the-art general purpose interior point optimization solver (IPOPT) [Wächter

and Biegler, 2006].We have verified both the simulation and optimization re-

sults obtained by Secanell et al. [2007] and further performed Pt minimization.

We then have determined, via current density maximization, the optimal dis-

tribution of Pt and other CL characteristic parameters along the width of the

CL using IPOPT. This note illustrates the suitability of our formulation in

dealing with large-scale optimization problems arising in the integration of

detailed CL model with the remainder of PEFC system [Jain et al., 2008a].
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3.2 Physical modeling of PEFC cathode and its surroundings

3.2 Physical modeling of PEFC cathode and

its surroundings

In the agglomerate model, shown schematically in Fig. 3.1, the CL is con-

sidered as a packed bed of spherical agglomerate particles with void spaces

between the particles. Each agglomerate comprises numerous support carbon

Figure 3.1: A schematic of an agglomerate particle. ragg is the inner cluster radius,

and δ is the thickness of the electrolyte film encapsulating the inner cluster. Minute

Pt particles are sprinkled over each of the carbon particle forming Pt−C particulate.

particles with tiny Pt particles distributed on their surface. These carbon par-

ticles are interwoven in electrolyte fibers to form a spherical cluster, which is

encapsulated by a thin layer of electrolyte.

A 2D schematic of the combined CL and GDL system is sketched in Fig. 3.2.

The oxygen and water molecules enter through the GDL, and diffuse through

the pores of the GDL before reaching the CL. Within the CL, the molecules

diffuse through the void spaces in between the agglomerates and arrive at

the agglomerate surface. The oxygen and water molecules then dissolve in
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3.2 Physical modeling of PEFC cathode and its surroundings

Figure 3.2: A schematic of the 2D modeling domains. Lcl and Lgdl represent

the width of the CL and the GDL regions.

the thin electrolyte film, diffuse through it, and finally diffuse into the inner

cluster, where the oxygen molecules react with protons and electrons at the

interface of electro-catalyst and the electrolyte, and form product water. The

product water and water from the inlet determine the proton conductivity of

the electrolyte material within the CL [Springer et al., 1991].

The primary physical model used in our simulation/optimization includes

(i) Oxygen transport in GDL pores, (ii) Electron transport through GDL

fibers, (iii) Oxygen transport in CL void spaces, (iv) Oxygen dissolution into

thin agglomerate film, (v) Oxygen diffusion through the film (vi), Oxygen

diffusion in the electrolyte and reaction within the inner cluster, (vii) Proton

transport in the electrolyte phase, and (viii) Electron transport through Pt−C

particles within CL.

The following is a condensed and reformulated presentation of the agglom-
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3.2 Physical modeling of PEFC cathode and its surroundings

erate model for CL and adjacent layers, used by the previous investigators [Se-

canell et al., 2007]. The governing equations for water and oxygen transport

within the GDL and CL regions are described by the following Poisson type

equations:

∇ ·
(

CtotD
eff
H2O(ǫgdl/cl

v )∇xH2O

)

+
(2α + 1)

2F
j = 0, and (3.1)

∇ ·
(

CtotD
eff
O2

(ǫgdl/cl
v )∇xO2

)

− 1

4F
j = 0, (3.2)

with parameters listed in the nomenclature section. Others including Brugge-

man’s relations, used for calculating effective transport coefficients as a func-

tion of effective volume fractions of different phases (ǫeff ), are found in other

references [Nam and Kaviany, 2003]. Here Eq. (3.1), descriptive for water

transport, is presented for completeness of the CL and adjacent layers. How-

ever, it was not used in actual simulation. The electron charge transport

equation within CL and GDL is given by

∇ ·
(

σeff
s (ǫgdl/cl

s )∇φs

)

+ j = 0. (3.3)

The governing equation for the proton charge transport within the CL is ex-

pressed as

∇ ·
(

σeff
m (ǫcl

m)∇φm

)

− j = 0. (3.4)
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The volumetric current density j is

j =
jT (L(3ξL)/ξL)

1 +
9(1−ǫcl

v )(1−ǫagg)ǫ1.5
agg

ǫcl
s ǫcl

v

κagg

1+κagg
ξLL(3ξL)

, (3.5)

with,

ξL =
1

3

√

√

√

√

HO2,m

4(1− ǫcl
v )FPtotǫ1.5

agg

DO2,N

r2
agg

√

jT

xO2

. (3.6)

Here, L is the Langevin function used frequently in magnetics, κagg is the

ratio between agglomerate film thickness δ and the inner cluster radius ragg

(Fig. 3.1), and jT is volumetric current density of the standard Tafel type,1

jT = Ao
mPt

L
iref
o

(

PtotxO2

Cref
O2

HO2,m

)

exp

(

αF

RT
(φm − φs)

)

. (3.7)

Here mPt is the mass of Pt per unit area. It is noted that j is related to

(

jT /xO2

)1/2
via ξL. The catalyst surface area per unit mass of the catalyst

particle, Ao, is given by [Marr and Li, 1999]

Ao x 10−6 = 2.2779(Pt/C)3−1.5857(Pt/C)2−2.0153(Pt/C)+1.5850. (3.8)

The relationship among phase volume fractions within the GDL and CL

regions is given below. The subscripts v, m, and s denote the void, electrolyte,
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and other solid phases, respectively.

ǫgdl
v + ǫgdl

s = 1, and (3.9)

ǫcl
v + ǫcl

m + ǫcl
s = 1. (3.10)

Here, the solid volume fraction within the CL, ǫcl
s , and the electrolyte

volume fraction, ǫcl
m, are expressed as [Marr and Li, 1999]

ǫcl
s =

(

1

ρPt

+
1− Pt/C

ρCPt/C

)

mPt

Lcl

, and (3.11)

ǫcl
m =

ǫcl
s

1− ǫagg

[

ǫagg + (1 + κagg)
3 − 1

]

. (3.12)

3.3 Numerical procedure

The simultaneous partial differential equations (PDEs), expressed in Eqs. (3.2)

- (3.4), are solved using the following mixed boundary conditions. We have

indicated the boundary points A through G in Fig. 3.2.

• Boundary AB (z = 0, y ∈ [0, h]): ∂xO2
/∂z = 0, φm = ∆V , and ∂φs/∂z =

0.

• Boundaries BD and AF (z ∈ [0, (Lcl + Lgdl)], y = 0 and y = h):

∂xO2
/∂y = 0, ∂φm/∂y = 0, and ∂φs/∂y = 0.
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• Boundary DE (z = (Lcl + Lgdl), y ∈ [0, h/2]): xO2
= x0

O2
, and ∂φs/∂z =

0.

• Boundary EF (z = (Lcl + Lgdl), y ∈ [h/2, h]): ∂xO2
/∂z = 0, and φs = 0.

In addition, we impose the interfacial condition between CL and GDL

in our double-domain formulation as opposed to the model reported by

Secanell et al. [2007].

• Interface CG between CL and GDL: Deff,cl
O2

(∂xO2
/∂z)z=L−

cl
= Deff,gdl

O2
(∂xO2

/∂z)z=L+

cl
,

∂φm/∂z = 0, and σeff,cl
s (∂φs/∂z)z=L−

cl
= σeff,gdl

s (∂φs/∂z)z=L+

cl
.

The resulting algebraic equations, discretized using a finite difference scheme,

together with Eqs. (3.5) - (3.12) can be formulated as a generalized nonlinear

program (NLP) of the following form,

min f(x)

s.t. c(x) = 0

xL 6 x 6 xU (3.13)

where x represents all of the discretized variables. The NLP is implemented in

AMPL environment and linked to IPOPT. The algorithm for IPOPT is based

on a barrier approach in which the variable bounds (lower bound xL and upper

bound bound xU) are treated via a logarithmic barrier parameter (µ̂) to the
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objective function, which casts the problem (3.13) into the following form,

min f(x)− µ̂
∑n

i=1

[

ln(x(i) − x
(i)
L ) + ln(x

(i)
U − x(i))

]

s.t. c(x) = 0, (3.14)

with µ̂ > 0. Here, x(i) denotes the ith component of the vector x. Under mild

conditions the solution of problem (3.14), x∗(µ̂), converges to a local solution

of the original problem (3.13) as µ̂ → 0. IPOPT is based on a primal-dual

approach and applies a Newton’s method to the optimality conditions of prob-

lem (3.14). The global convergence is promoted by a novel filter line search

strategy; detailed analysis shows both global and rapid local convergence prop-

erties. IPOPT solver, with object oriented form, is ideal for constrained opti-

mization problems dealing with large-scale partial differential algebraic equa-

tions. Details on IPOPT are found in Wächter and Biegler [2006] and the

following website: https://projects.coin-or.org/Ipopt.

3.4 Results and discussion

We separately investigate minimization of Pt and maximization of cell current

density.
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3.4.1 Pt minimization

We formulated the optimization problem for minimizing Pt content for speci-

fied voltage and current density values as,

min mPt

s.t. Governing equations (3.2)− (3.12). (3.15)

The decision variables in problem (3.15) were Pt/C, ǫagg and ǫgdl
v . Prob-

lem (3.15) was solved using IPOPT solver. As shown in Fig. 3.3(a), we found

that the minimum amount of Pt required increases with the current density.

The curve shifts upwards as the voltage of operation increases. This may

Figure 3.3: (a) Pt minimization results at various current densities and voltages,

and (b) fitted curves to logarithmic plots of m∗

Pt vs. I at different voltages.

be explained from the fact that for a specified Pt amount current density de-

creases as cell voltage increases; therefore to generate the same current density

at a higher voltage more Pt would be required. The constant power density
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(P ) curves are also shown in the figure. This family of curves provide the

minimum amounts of Pt required for different current densities at a particular

power density. Alternately, they provide information for the maximum current

density obtainable from the fuel cell at a specified amount of Pt and given P .

In order to examine a relationship between m∗

Pt and I, we plot m∗

Pt vs. I

at three different voltages. (Fig. 3.3b). The the following power law relation

holds for low to medium current densities:

m∗

Pt = M(V )Iβ. (3.16)

The value of β = 1.1 remains nearly constant for different voltages, whereas

M(V ) varies exponentially with V . The departure from linearity in Fig. 3.3(b)

is most pronounced at higher voltages.

3.4.2 Maximization of Current Density

We formulated the problem for current density maximization as follows:

max I

s.t. Governing equations (3.2)− (3.12). (3.17)

Excellent agreement between Secanell et al. [2007] and our results was ob-

tained, which verifies our reformulated double domain CL-GDL approach, as

well as the numerical procedure reported here. As an illustration, the base
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and optimized cases’ I − V curves are shown in Fig. 3.4, which is essentially

identical to Fig. 11 in Secanell et al. [2007] Table 3.1 illustrates the base and

optimized design values. We further extended our analysis to obtain the opti-

Figure 3.4: I−V characteristics curve for base and optimized designs for verification

with Secanell et al. [2007]

Table 3.1: Parameter values for base and optimized designs

Cases I∗(A/cm2) mPt(g/cm2) Pt/C ǫagg ǫgdl
v

Base design 0.1556 0.0004 0.280 0.5 0.5
Optimized design (Ref. 4) 0.1936 0.0011321 0.467 0.3406 0.7257
Optimized design (Our results) 0.1917 0.0011264 0.467 0.3428 0.7377

mal Pt distribution along the CL width, i.e., we introduced non-homogeneity.

For this, we formulated a multi-zone optimization problem within the CL,

where the number of vertically sliced zones within the CL equals 2N (N =

0, 1, 2 etc.). Notice that N = 3 leads to 8 sets of the PDE’s that made up

the original problem. Each zone has a unique set of algebraic variable val-
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3.4.2 Maximization of Current Density

ues (ǫgdl
v ,ǫgdl

s , ǫcl
v , ǫcl

m, ǫcl
s , Pt/C, mPt, ǫagg, A0), which provides optimal Pt

distribution as well as other algebraic variables. Each zone is linked to the

adjacent zone through the continuity of concentration/potential fluxes, across

the interface. Here, we illustrate the case of zones with equal width. Table 3.2

Table 3.2: Optimization for 2N zones with total Pt mass constrained to 0.0001

g/cm2. Pt/C = 0.280, ǫagg = 0.5, and ǫgdl
v = 0.5.

N I∗(A/cm2) mPt x 104 (g/cm2) distribution from PEM-CL to CL-GDL interfaces
0 0.0331 1
1 0.0432 0.942 / 0.058
2 0.0467 0.840 / 0.099 / 0.036 / 0.025
3 0.0473 0.588 / 0.234 / 0.078 / 0.037 / 0.022 / 0.016 / 0.013 / 0.012

illustrates the optimal current density and Pt distribution values using the 2N

multi-zone scheme with equal width. In order to examine the effect of cata-

lyst distribution the total Pt mass was fixed to 0.0001 g/cm2. Figure 3.5(a)

shows the optimal catalyst distribution along the normalized CL width from

PEM-CL to CL-GDL interface. Figure 3.5(b) demonstrates the fitted cata-

Figure 3.5: Optimal catalyst distribution (a) histogram and (b) fitted curve
across normalized CL width at voltage of 0.876 V.

lyst mass distribution curve as a function of normalized CL width. The dots
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3.5 Generalization to three dimensional system

shown in Fig. 3.5(b) are mid-points of the histogram steps in Fig. 3.5(a). The

curve suggests an exponential decay rate from PEM-CL interface. Detailed

analysis shows that this decay constant depends strongly on current density.

The results from our preliminary analysis indicate that maximum cell current

density is obtained when Pt is loaded mostly near the PEM-CL interface.

3.5 Generalization to three dimensional sys-

tem

In this Chapter, we enhanced the phenomenological CL description presented

in Chapter 2 to a state-of-the-art continuum CL description, and examined

the two-dimensional GDL-CL system shown in Fig. 3.2. However, in an oper-

ating fuel cell, the phenomena within this GDL-CL system is dependent on the

surrounding sub-components, the GC and the PEM, via the two-dimensional

concentration (xO2
) and electrolyte phase potential (φm) boundaries (referred

as xB
O2

and φB
m, where superscript B refers to boundary) as shown in Fig. 3.6.

Hence, before integrating this enhanced CL description with entire PEFC as-

sembly, we examined the role of these boundaries, especially along the third

(x) dimension, by extending our existing two-dimensional GDL-CL framework

to three-dimensional system.

For this purpose, we generalized the field variables xO2
, φm, φs, j, jT , and

ξL , as well as field equations (Eqs. 3.2-3.7) from two to three dimensions.

61



3.5 Generalization to three dimensional system

Figure 3.6: A 3-D schematic of CL-GDL system with surrounding sub-
components.

Additional no flux boundaries at y − z and x − z faces (Fig. 3.6) for state

variables xO2
, φs, and φs were imposed. This generalization poses significant

computational challenges, e.g., a ten-fold increase in problem size (from 5 000

to 50 000 variables) from two to three dimensional system led to a 48 times

increase in computational times (from 25 seconds to 20 minutes) approximately

in IPOPT solver.

We first impose uniform boundaries xB
O2

and φB
m, along the y − x planes

(Fig. 3.7), setting xO2
(Lcl + Lgdl, y, x) = 〈xO2

〉 = 0.1773 and φm(0, y, x) =

〈φm〉 = 0.5V olt, where 〈〉 denotes the average value along the y − x plane.

In order to examine the sensitivity along the x direction, we examined the

volumetric current density (j) profiles on the x = W/4 (referred as first quad-

rant) and x = 3W/4 (third quadrant) planes (Figs. 3.8a & b), where W is

the width of the system along the x direction. As expected due to symme-

try along x direction, the first and third quadrant profiles are identical. We

62



3.5 Generalization to three dimensional system

Figure 3.7: A 3-D schematic of CL-GDL system with uniform boundaries xB
O2

and φB
m.

further, compared these profiles for a three-dimensional system to previously

examined two-dimensional volumetric current density profiles (Fig. 3.8c). We

observe that Fig. 3.8(c) is in good agreement with both Figs. 3.8(a & b), which

indicates that this three-dimensional system is equivalent to two-dimensional

system when there exist uniform boundaries xB
O2

and φB
m from the GC and the

PEM regions.

However, during a realistic PEFC operation, due to fuel & oxidant inlets

and outlets along the x direction in the GC, the boundaries xB
O2

and φB
m are ex-

pected to be non-uniform. To illustrate the essence of asymmetric boundaries

along x direction, we imposed a step change on xB
O2

as xO2
(Lcl + Lgdl, y, x) =

(1 + α)〈xO2
〉 for x ∈ [0, W/2], and xO2

(Lcl + Lgdl, y, x) = (1 − α)〈xO2
〉 for

x ∈ [W/2, W ], where α is the ‘broken symmetry’ parameter, indicating the

degree of non-uniformity in boundary along x direction. It is noted that α = 0

recovers back the case with totally uniform boundaries. Figures 3.9 (a)&(b)

illustrate the j profiles in the first and third quadrant planes for a non-uniform
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3.5 Generalization to three dimensional system

Figure 3.8: Volumetric current density profiles within (a) first & (b) third
quadrant planes, and (c) 2-D case.

xB
O2

case, with α = 0.5. It is observed, that j profiles significantly differ within

the two planes, and j in first quadrant plane is almost twice as compared to the

third quadrant plane. We also compared these profiles with the averaged vol-

umetric current density along x direction (j̄ = 1/W
∫W

0
j dx, Fig. 3.9 c). It is

observed that j̄ significantly differs from the first and third quadrant volumet-

ric current densities, however, is in qualitative agreement with Figs. 3.8 (a-c),

indicating that asymmetry in xB
O2

may be proportionally translated within

inner regions.

We further imposed asymmetric boundary φB
m along x direction, as φm(0, y, x) =

(1 + α)〈φm〉 for x ∈ [0, W/2], and φm(0, y, x) = (1− α)〈φm〉 for x ∈ [W/2, W ].

As observed from Figs. 3.10 (a)&(b), which illustrate the j profiles for a non-

uniform φB
m case, with α = 0.5, j in the first quadrant plane is an order of

magnitude higher as compared to the third quadrant plane. Furthermore, j̄
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3.5 Generalization to three dimensional system

Figure 3.9: Volumetric current density profiles within (a) first & (b) third
quadrant planes, and (c) j̄ with non-uniform boundary xB

O2
.

(Fig. 3.10 c) significantly differs from j within first and third quadrant planes.

On comparison of Fig. 3.10 (c) with Figs. 3.8 (a-c) we observe, j̄ significantly

differs from two-dimensional profiles, as well as three-dimensional profiles with

uniform xB
O2

and φB
m boundaries, indicating that asymmetry in φB

m is dispro-

portionately translated within inner regions.

We systematically tuned the broken symmetry parameter α, and examined

its effect on the overall cell current density I. As shown in Fig. 3.11, an

asymmetry in xB
O2

leads to a small 3% change in I as α varies from 0 to 0.5.

However, asymmetry in φB
m leads to a significant 18% change in I, indicating

the significance for three dimensional generalization. Table 3.3 shows the

optimization results for three dimensional system with dV = 0.5V olt, and

α = 0.5. It is observed that both base and optimized results for the uniform

boundary case are identical to our two dimensional results. However, as non-

uniformity in boundaries xB
O2

and φB
m is imposed, these results significantly
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Figure 3.10: Volumetric current density profiles within (a) first & (b) third
quadrant planes, and (c) j̄ with non-uniform boundary φB

m.

Figure 3.11: Variation in I with broken symmetry parameter α.

differ from the two dimensional case.

3.6 Summary

In this Chapter, we adopt an agglomerate CL model and reformulate into a

condensed form, for the optimization of PEFC cathodes. This model accounts

for major transport processes within GDL and CL, as well as electrochemical
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Table 3.3: Optimization results for uniform and non-uniform boundary cases.

Case I∗(A/cm2) m∗

Pt (mg/cm2) (Pt/C)∗ ǫ∗agg ǫgdl∗
v

Uniform boundary base 0.678 0.400 0.280 0.500 0.50

Uniform boundary optimized 0.921 0.534 0.467 0.634 0.78

Asymmetric xB
O2

1.080 1.250 0.968 0.900 0.77

Asymmetric φB
m 1.170 1.250 0.980 0.846 0.90

reaction phenomena within individual agglomerates. The governing equations

are solved using a full discretization approach in IPOPT optimization solver.

We performed Pt minimization for a specified cell performance; the relation-

ship between optimal Pt mass and current density obeys a power law at low

to medium current densities of operation. In addition, we introduce a double

domain approach for CL and GDL for I maximization, and verify our results

with those of Secanell et al. [2007], and further extend our methodology to

obtain optimal Pt distribution along CL width, by solving multi-zone partial

differential equation-constrained optimization problem. Finally, we extend our

GDL-CL model to three dimensions where we systematically tune the oxygen

concentration and electrolyte phase potential boundaries to mimic the sur-

rounding sub-component effect, and examine the role of third dimension.
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Notation

Ao = Catalyst surface area per unit catalyst particle mass, cm2g−1

C = Concentration, mol m−3

Di = Diffusion coefficient of species i, cm2s−1

F = Faraday’s constant, C/mol

h = Height, cm

H = Henry’s constant, dimensionless

io = Exchange current density, A cm−2

I = Current density, A cm−2

j = Volumetric current density, A cm−3

L = Width, cm

L = Langevin function

m = Mass per unit area, g cm−2

Pt/C = Platinum to carbon ratio (in mass)

r = Radius, cm

R = Gas constant, J/mol· K

T = Temperature, K

V = Voltage, V

xi = Mole fraction of species i
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Greek symbols

α = [H2O]/[H+] transported from anode to cathode

δ = Electrolyte film thickness over agglomerate, cm

ǫ = Volume fraction

κ = Ratio of agglomerate film thickness and inner cluster radius

µ̂ = Barrier parameter

φ = Phase potential, V

ρ = Density, kg/m3

σ = Conductivity, S-m−1

ξL = Thiele modulus

Subscripts and superscripts

agg = Agglomerate

C = Carbon

eff = Effective value

gc = Gas channel

gdl = Gas diffusion layer

L = Lower bound

m = Electrolyte phase

Pt = Platinum

ref = Reference value

s = Solid phase

tot = Total

69



3.6 Summary

T = Tafel

U = Upper bound

v = Void phase

* = Optimal value

0 = Value at the inlet conditions
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Chapter 4

Sensitivity of PEFC Models

with Cathode Layer Micro -

Structures

4.1 Introduction

As discussed in Jain et al. [2008b] sluggish oxidation reduction reaction in

cathode catalyst layer (CL) is the major source of performance losses in an op-

erating PEFC. These losses originate from poor reaction and transport rates of

various reacting species (oxygen, proton, and electron), which in turn depend

on the composition, structure/morphology, and catalytic material within the

CL. Systematic modeling and optimization studies for examining the effect of

composition, structure, and different catalyst materials on PEFC performance

are required to reduce the tremendous number of expensive experimental trial

and error cases, for providing design criteria for high performance CL.

A CL comprises of three phases, (i) the void space for oxygen/water trans-

port, (ii) the electrolyte phase for proton transport, and (iii) the electro-
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catalyst/solid phase for electron transport. These transport phenomena com-

pete among each other depending on the composition of the three phases & the

CL morphology, and the electrochemical reaction occurs at the intersection of

these phases, termed as the triple phase boundary (TPB). The state-of-the-

art macroscopic CL model in literature, the spherical agglomerate model [Sun

et al., 2005], is commonly employed to examine the effect of void, electrolyte,

and solid phase compositions on PEFC performance, as well as for optimiza-

tion [Secanell et al., 2007]. However, such a description does not account

for the structural effects on transport and reaction processes. Wang and co-

workers [Mukherjee and Wang, 2006, 2007, Wang et al., 2006a,b, 2007a], via

direct numerical simulation techniques, have incorporated mesoscopic pore-

scale description of species and charge transport for randomized or ordered

CL structures. Their detailed analysis however, is unsuitable for rigorous op-

timization studies.

In our study, we introduce the structural information through non-homogeneity

(mesoscopic) within the CL agglomerate model (macroscopic), by examining

shapes of agglomerate particles (Fig. 4.1) such as plate-like, cylindrical, and

spherical as well as spherical shell on the PEFC performance. The plate-like,

cylindrical, and spherical agglomerate models correspond with 1-D (uniformity

along y − z plane), 2-D (uniformity along z-axis), and 3-D CL models. We

expect both the intra-particle (within an agglomerate) as well as inter-particle

(between the agglomerates) transport processes to substantially differ due to

this dimensionality factor.
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Figure 4.1: CL structures with (a) plate-like (1-D), (b) cylindrical (2-D), and
(c) spherical (3-D) agglomerates.

In addition, we examine the effect of agglomerate sizes by generating self-

similar CL structures, with fixed CL composition but different number and

size of agglomerates (Fig. 4.2).

Figure 4.2: Self-similar CL structures with different-sized agglomerates.

This analysis is further extended to examine polydisperse systems, i.e.,

systems with mixture of various particle sizes. Furthermore, we relax the

commonly employed assumption, in both microscopic and macroscopic CL

descriptions, of uniformly available TPBs for electrochemical reaction. We

introduce the single and multi-zone spherical shell agglomerates with non-

uniform reaction rates for this purpose.
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Our goal, through sensitivity studies of simulation and optimization results

for different CL morphologies, is to construct a basis for realistic CL struc-

tures, described through macroscopic models. Furthermore, we extend the

prediction capabilities of the agglomerate CL model, and also examine criteria

for improved CL performance via structural information.

4.2 Effect of agglomerate shapes

Here, we examine the shape effect of agglomerate particles on PEFC perfor-

mance. We specifically examine two distinct features, i.e., agglomerate ef-

fectiveness factors (resulting from intra-particle transport and electrochemical

reaction) as well as effective transport properties (resulting from inter-particle

transport), separately. The inter-particle transport, especially important to

overall systems study, is briefly investigated here and is examined further in

Chapter 5.

4.2.1 Effectiveness factors

The effectiveness factor (η) for a porous catalyst particle represents the ratio

of reactant consumption rates, when intra-particle diffusion limitation exists,

to when there were no diffusion limitation and entire catalyst active area is

available for reaction. The effectiveness factors for rectangular (plate-like),

cylindrical, and spherical porous catalyst particles, which correspond to 1-, 2-,

and 3-D CL models respectively, are [Aris, 1957]

η(d)(ξ
(d)
L ) =

L(d)(ξ
(d)
L d)

ξ
(d)
L

(4.1)
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4.2.1 Effectiveness factors

where d is the shape parameter and d = 1, 2, and 3 for plates, cylinders

and spheres, respectively. Here, the functions L(1)(x) = tanh x, L(2)(x) =

I1(x)/I0(x) , and L(3)(x) = coth x − 1/x, where I0(x) and I1(x) denote the

modified Bessel functions of zeroth and first order, respectively. ξ
(d)
L is the

Thiele’s modulus given by

ξ
(d)
L =

(v

s

)(d)

√

kc

Deff
m

for d = 1, 2, 3 (4.2)

where (v/s)(d) is the inverse of specific area of a plate-like, cylindrical and

spherical particle. In typical agglomerate CL models, Deff
m is the effective

diffusion coefficient of oxygen in the electrolyte phase, and kc is the electro-

chemical reaction rate constant which is related to the electrolyte (m ) and

solid (s) phase potentials (φ) [Secanell et al., 2007], as well as the standard

Tafel current density, jT [Jain et al., 2008b] through

kc = Ao
mPt

Lcl

iref
o

4F (1− ǫcl
v )Cref

O2

exp

(

γF

RT
(φm − φs)

)

= jT

(

HO2,m

4F (1− ǫcl
v )PtotxO2

)

(4.3)

It is noted that for agglomerate CL models, the volumetric current density

of generation, j, is modified from jT via ξ
(d)
L and functions L(d), to include

intra-particle (within agglomerate) transport phenomena. The parameters

cited here can be found in Jain et al. [2008b]. ξ
(d)
L is recast into the following

form,
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ξ
(d)
L =

(v

s

)(d)
√

HO2,m

4(1− ǫcl
v )FPtotD

eff
m

√

jT

xO2

(4.4)

In this study, we employ Eqs. (4.3)&(4.4), along with the model equations

presented in Jain et al. [2008b] to examine the effect of different agglomerate

shapes on fuel cell performance by calculating effectiveness factors.

Figure 4.3: (a) 〈η(d)〉, and (b) 〈ξ(d)
L 〉 curves for spherical, cylindrical, and plate-like

shaped agglomerate particles.

As shown in Fig. 4.3(a), the space averaged effectiveness factor, 〈η(d)〉

(where, 〈X〉 = 1
A

∫∫

XdA for any observable quantity X) , exhibits an S-curve

behavior with cell voltage of operation. At low voltage (V (V olt) < 0.4),

which corresponds to high current density as shown in Fig. 4.4, the averaged

Thiele’s modulus, 〈ξ(d)
L 〉 (Fig. 4.3b), is very large as the reaction rate becomes

much faster than the intra-particle mass transfer rate, and a very low 〈η(d)〉

is obtained. At medium voltage values (0.4 < V (V olt) < 1), corresponding

to medium current density values, 〈η(d)〉 increases and there is a significantly

different response for the three different shape structures. The sphere pos-
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sesses the lowest 〈ξ(d)
L 〉 value or the lowest diffusion limitations compared to

the cylinder or the plate structures, keeping the other operating conditions

same, and exhibits the best performance. At high voltages (V (V olt) > 1.0),

〈ξ(d)
L 〉 is low, and 〈η(d)〉 approaches to 1.0 for all three different shapes. This

intra-particle transport resistance effect for different shaped structures on the

overall I-V characteristic curves is shown in Fig. 4.4.

Figure 4.4: I-V characteristics curves for spherical, cylindrical, and plate-like ag-

glomerate particle shapes.

The cathode CL is a region comprising competing transport phenomena

amongst various reacting species (proton, electron, and oxygen) which depend

on the corresponding phases (electrolyte, solid, and void (v)) holding these

species. In addition, a higher Pt content (part of solid phase) enhances the

electrochemical reaction rate. Due to coupled interplay between these phenom-

ena affecting the overall PEFC performance, systematic optimization studies

have recently gained special attention by Song et al. [2005], Mukherjee and
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Wang [2006], Secanell et al. [2007], Jain et al. [2008b].

We examined the sensitivity on the optimization results via different shape

effectiveness factors. Table 4.1 compares the ‘base’ (simulation results) and

‘optimized’ (results for maximized I, I∗ w.r.t. four degrees of freedom: total

Pt loading mPt, Pt to carbon ratio Pt/C, volume fraction of electrolyte in

an agglomerate ǫagg, and gas diffusion layer (GDL) void volume fraction ǫgdl
v )

cases. The ‘% E’ column represents the percentage of current density enhance-

ment from the base to the optimal cases. The current density is enhanced most

for the sphere case, and least for the plate case. However, it is interesting to

note that the location of the optimal point (m∗

Pt, (Pt/C)∗, ǫ∗agg, ǫgdl∗
v ) remains

nearly the same for all three different cases.

Table 4.1: Optimization results for spherical, cylindrical, and plate-like ag-

glomerate particle shapes.

I(A/cm2) % E m∗

Pt (mg/cm2) (Pt/C)∗ ǫ∗agg ǫgdl∗
v

Sphere
Base 0.673

36.8
0.400 0.280 0.50 0.50

Optimized 0.921 0.534 0.467 0.63 0.78

Cylinder
Base 0.612

33.7
0.400 0.280 0.50 0.50

Optimized 0.818 0.515 0.467 0.65 0.79

Plate
Base 0.488

26.2
0.400 0.280 0.50 0.50

Optimized 0.616 0.509 0.467 0.67 0.79

4.2.2 Transport properties

The effective transport properties, Γ
eff,(d)
p (d = 1, 2, 3), within phase p (p =

v for void, m for electrolyte, and s for solid), are a function of the volume
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fraction ǫp, of phase p, as

Γeff,(d)
p = Γp,0f

(d)(ǫp) for d = 1, 2, 3 and p ∈ {v, m, s} (4.5)

where, Γp,0 are the transport properties for ǫp = 1. The purpose of this sec-

tion is to demonstrate the sensitivity of PEFC performance to interparticle

transport processes (species diffusion and charge conduction) via various ef-

fective transport models. As an example, out of many empirical correlations

available, we choose the following functional forms f (d)(ǫp) for long cylinders

(d = 2) and spheres (d = 3).

f (2)(ǫp) =
ǫp

(2− ǫp)
for p ∈ {v, m, s} (4.6)

f (3)(ǫp) = ǫ1.5
p for p ∈ {v, m, s} (4.7)

Equations (4.6) and (4.7) are Rayleigh’s [Bird et al., 1960] and Brugge-

mann’s [Secanell et al., 2007] relations, respectively. It is noted that results

presented in Table 4.1 and Fig. 4.4 are based on Bruggemann’s relation.

Figure 4.5 compares the I − V simulation responses for the agglomerate

CL model for the above two effective transport models. It is observed that, for

very low current densities (<< 0.1 A/cm2), these two models generate similar

cell voltages. For intermediate current densities (between 0.1 to 0.5 A/cm2),

the ordinates are separated by nearly a constant value of 0.04 A/cm2. At high

current densities (> 0.5 A/cm2), where the external mass transport resistances
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become dominant, Bruggemann’s model predicts significantly larger voltages

over the Rayleigh’s model.

Figure 4.5: I − V curves for different transport models.

Table 4.2 shows the optimization results for these cases. The sphere (Brugge-

man) results here correspond with results in Table 4.1. We again observe a

significant difference in degree of enhancement in current density between the

base and optimized values of I between the sphere (Bruggemann) and cylinder

(Rayleigh) models. Unlike the results in Table 4.1, the location of the optimal

point also differs for the sphere and cylinder shape structures. A decrease in

the value of m∗

Pt (which enhances electrochemical reaction rate) from base to

the optimized case for the cylinder model may seem counter-intuitive, how-

ever, it is noted that a decrease in Pt content also enhances the H+ and O2

transport processes via increase in electrolyte and void phase hold-ups.
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Table 4.2: Optimization results for two different transport models.

I∗(A/cm2) m∗

Pt (mg/cm2) Pt/C∗ ǫ∗agg ǫgdl∗
v

Sphere Base 0.673 0.400 0.280 0.50 0.50

(Bruggemann) Optimized 0.921 0.534 0.467 0.63 0.78

Cylinder Base 0.570 0.400 0.280 0.50 0.50

(Rayleigh) Optimized 0.694 0.327 0.302 0.58 0.82

4.3 Effect of agglomerate size

We examine the agglomerate size effect via generating ‘self-similar’ CL struc-

tures, by varying number of particles, n = n02
m, (m = 0, 1, 2, ...; n0 = 1.696×

1011.). The particle size (ragg) and the PEM film thickness (δ) surround-

ing the agglomerate particle is adjusted so as to keep the constant ratio of

κagg = δ/ragg which equals to 0.08. All the other physical parameters of the

system are fixed: amounts of Pt, carbon, and PEM materials via phase volume

fractions (ǫcl
s = 0.355, ǫcl

m = 0.540, and ǫcl
v = 0.105), mPt = 0.0004g/cm2, and

Pt/C = 0.28, , as well as the GDL parameters via ǫgdl
s = 0.5 and ǫcl

v = 0.5.

A decrease in particle size leads to increase in overall oxygen consump-

tion rate within the agglomerate due to several reasons. As observed from

Figs. 4.6(a)&(b), Thiele’s modulus decreases with particle size (Eq. (4.2)) and

the effectiveness improves significantly. The effective reaction rate, which is

the product of reaction rate without intra-agglomerate mass transfer limita-

tions and agglomerate effectiveness, 〈η〉〈jT 〉 (we assumed 〈ηjT 〉 ∼ 〈η〉〈jT 〉)

enhances as particle size decreases. Furthermore, as specific surface area of
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4.3 Effect of agglomerate size

agglomerate increases the oxygen dissolution rate into the PEM film encap-

sulating the agglomerate enhances. Also, reduction in δ enhances the film

diffusion.

Figure 4.6: (a) Space averaged Thiele’s modulus and (b) effectiveness factor for

different agglomerate sizes

However, a higher oxygen consumption rate leads to a decrease in reactant

driving force. Also, at higher current densities, the inter-phase charge transfer

Figure 4.7: (a)Space averaged Tafel current density and (b) cell output current

density

driving force (φm − φs) decreases leading to decrease in electrochemical reac-

tion rate, represented by Tafel current density (Fig. 4.7a). As n → ∞, the
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4.3.1 Polydispersity

current density reaches an asymptotic value of 1.8 A/cm2, almost a three-fold

enhancement from the base value of 0.67 A/cm2. A ten-fold reduction in the

original particle size produces current density within 2.5% at this asymptotic

value.

4.3.1 Polydispersity

Here we examine mixtures of various particle sizes (polydisperse systems) with

given particle size distribution, which is more close to realistic scenarios.

The methodology employed here is based on finding a mean particle size

describing the overall performance of the CL bed [Aris, 1957]. The CL bed is

assumed to be homogenous, such that a sample from a random location within

comprises of same volume fraction, vi, occupied by the particles of ith size, and

∑NS
i=1 vi = 1, where NS is the number of available particle sizes.

To account for the polydispersity, ξL,i for each particle size, ragg,i, and the

corresponding ηi(ξL,i) (i = 1, ..., NS) are calculated from Eqs. (4.3) & (4.2).

The overall bed effectiveness (η̄) is:

η̄ =
NS
∑

i=1

ηi(ξL,i)vi (4.8)

An equivalent Thiele’s modulus corresponding to η̄ is found via Eq. (4.3),

and the equivalent particle size r̄agg via Eq. (4.2). This ragg is then employed

in the entire modeling equations [Jain et al., 2008b] for simulation and opti-

mization.

To study the qualitative behavior of polydisperse systems we examined
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4.3.1 Polydispersity

a simple bi-modal particle size distribution; comprising 1 micron (termed as

large) and 0.5 micron (small) particle sizes, with different blend ratios. The

amounts of Pt, carbon, and PEM materials are again fixed via phase volume

fractions, mPt, and Pt/C as described before. Figure 4.8 shows the I-V char-

acteristics for a range of bed compositions between a bed with pure component

of large and small particles. Here, fs is the fraction of small sized particles in

the bed.

Figure 4.8: I-V characteristic curves for two component mixtures

The curves corresponding to fs = 0 and fs = 1 are consistent with

Fig. 4.7(b). In I-V curves, various mixture compositions exhibit curves that

lie in between two pure component systems, and performance improves as fs

increases.

The optimization results based on maximum current density are shown in

Table 4.3, which illustrates the compensation amongst the competing mecha-
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4.3.1 Polydispersity

nisms of O2, H+, and e− transports as well as electrochemical reaction. Similar

Table 4.3: Optimization results for mixture systems.

fs I∗(A/cm2) m∗

Pt (mg/cm2) (Pt/C)∗ ǫ∗agg ǫgdl∗
v

0 0.921 0.534 0.467 0.630 0.78

0.25 0.945 0.546 0.467 0.628 0.79

0.50 0.985 0.564 0.467 0.620 0.79

0.75 1.076 0.598 0.467 0.605 0.80

1 1.467 0.655 0.467 0.595 0.80

to the I-V curves in Fig. 4.8, I∗ increases as fs increases. The optimal Pt

amount increases (which reduces the electrolyte and void phase hold-ups) fs

increases. This may be explained by the fact that O2 transport limitations are

lowered via enhanced specific surface area, reduced δ, and improved accessabil-

ity to Pt catalyst within an agglomerate for smaller sized systems. Therefore,

optimal location shifts towards improving electrochemical reaction rate via

higher Pt amount. Further, the optimal electrolyte amount within individual

agglomerate decreases as the Pt content increases.

Figure 4.9 illustrates the variation of current density for medium (0.676 V)

to low (0.396 V) voltages of operation, as well as I∗ at 0.676 V for various com-

positions of the system. Interestingly, I or I∗ follows a third degree polynomial

relationship with fs for bi-modal particle size distribution systems. Although,

our demonstration is for a simple bi-modal distribution, our methodology can

be easily extended to general, continuous distributions.
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4.4 Spherical shell agglomerate

Figure 4.9: Current density for two component mixtures

4.4 Spherical shell agglomerate

In contrast to plate-like, cylindrical, and solid spherical shapes, we introduce

the spherical shell agglomerate model. We focus on two design cases of ag-

glomerate particles: Case I, where the catalyst material inside a solid sphere

of radius R1 = ragg is concentrated within the shell between the radii R1 and

R2 (Fig. 4.10), and Case II, where solid spheres exist however, material within

the outer shell and the inner sphere are different. We examine the these shell

models by deriving the agglomerate effectiveness factors. These models intro-

duce extra flexibility of tuning diffusion and reaction inside an agglomerate

sphere.

Case I

An expression for effectiveness factor for a hollow spherical shell was reported

by Aris [1957], obtained by modifying effectiveness for a solid sphere, via
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4.4 Spherical shell agglomerate

Figure 4.10: A schematic of Cases I & II spherical shell agglomerates.

empirical shape factor, v/s for a shell into the generalized Thiele’s modulus

equation (Eq. (4.2)). In our study, instead of heuristic argument by Aris [1957],

we derive the effectiveness factor for a spherical shell from first principles.

Figure 4.11 shows a two-zone spherical agglomerate with zone 1 (R2 < r < R1)

concentration CA1, and zone 2 (r < R2) concentration CA2 for a species ‘A’. A

Figure 4.11: A schematic for derivation for effectiveness factor in Cases I & II.

differential mass balance for A with first order kinetics leads to the following
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4.4 Spherical shell agglomerate

equations in zones 1 & 2:

Di
1

r2

d

dr

(

r2dCAi

dr

)

= (kia)CAi for i = 1, 2 (4.9)

where, a is the specific surface area available for reaction, and ki & Di

denote the electrochemical reaction rate constants and diffusion coefficients

for ith zone (i = 1, 2), respectively. Now, for the case of hollow spherical shell

since there is no catalyst material in zone 2, we set CA2 to bulk concentration

CAS. Also, substituting CA1 = f/r [Bird et al., 1960], the general solution for

CA1 in Eq. (4.9) can be easily obtained as

CA1 =
C11

r
cosh λr +

C21

r
sinh λr (4.10)

where, λ =
√

k1a/D1, and C11 & C21 are constants determined via the follow-

ing boundary conditions (B.C.s):

CA1 = CAS for r = R1 (4.11)

k0σ(CA1 − CAS) =

(

D
dCA1

dr

)

r=R2

(4.12)

where, σ is the volume per unit surface area, and k0 the mass transfer coef-

ficient. Equation (4.12) is a general Robin B.C., a combination of Dirichlet

and Neumann B.C.s (covering both zero and non-zero flux cases), at radius

R2. The ratio of mass transfer resistances inside of and at the surface, k0/Dσ,

becomes dimensionless and is defined as the Biot number (Bi). The effective-

ness factor η, the ratio of molar flux at the surface r = R1 to the molar rate
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4.4 Spherical shell agglomerate

of conversion when no diffusion limitations exist, is given as:

η =
4πR2

1 (−D1dCA1/dr)r=R1

4
3
πR3

1(−k1aCAS)
(

1− (R2/R1)
3) (4.13)

On substituting for (dCA1/dr)r=R1
, calculated from Eqs. (4.10)-(4.12), we

obtained the following expression for shell effectiveness, η:

η =
η1

η2

where

η1 = 3

[(

λ2R1R2 −Bi

(

R2

R1

)

− 1

)

(tanh (λR1)− tanh (λR2))

− λR1

(

1 + (Bi− 1)

(

R2

R1

))

(1− tanh(λR1)tanh(λR2))

+ Bi

(

R2

R1

)2

(λR1 − 1)(tanh(λR1)− 1)

]

η2 = (λR1)
2

(

1−
(

R2

R1

)3
)

[

λR2 +

(

1 + Bi

(

R2

R1

))

tanh(λR1)

+ tanh(λR2)

(

1 + Bi

(

R2

R1

)

+ λR2tanh(λR1)

)]

(4.14)

Using Eq. (4.14) we first examined η with shell thickness for a given outer

radius, R1. Figure 4.12 shows the variation of ratio of shell effectiveness to a

sphere with the ratio R2/R1, for several different Bi. In these curves, Thiele’s

modulus for the shell was set to 1. As R2 increases, the shell thickness de-

creases and its effectiveness improves over a sphere, as same amount of catalyst

material is available for the reaction with the shell, and mass transport for the

region r < R2 is not required. In Fig. 4.12, the curve for Bi = 0, correspond-

ing to a zero radial diffusive flux at r = R2, shows a good agreement with the

expression reported for a spherical shell in Aris [1957].
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4.4 Spherical shell agglomerate

Figure 4.12: Effectiveness of spherical shell with its thickness for different Bi.
η and ηsph denote the effectiveness for a shell and sphere, respectively.

To illustrate the essence, we examined the effectiveness for Bi = 0 case

only, in our CL-GDL modeling with optimization framework [Jain et al.,

2008b]. Figure 4.13 shows the I-V curves for the pseudo homogenous, sphere

agglomerate, and spherical shell agglomerate models. The pseudo homogenous

model refers to a CL description where all three electrolyte, solid, and void

phases are assumed to be homogenously present for electrochemical reaction,

without the presence of agglomerates. The film dissolution, film diffusion, as

well as agglomerate inner cluster diffusion resistance are absent. As shown

in Fig. 4.13, three kinds of models predict same cell performance for I < 0.2

A/cm2, however for medium to lower values of I where mass transfer losses

become significant in fuel cell operation, the predictions vary significantly.

Due to absence of any agglomerate resistance, the pseudo homogenous model
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4.4 Spherical shell agglomerate

Figure 4.13: I-V characteristic curves for the pseudo homogenous, spherical
shell agglomerate and sphere agglomerate models.

exhibits the highest performance, whereas the spherical shell model shows a

departing behavior from the sphere model as the shell becomes thinner. For

the limiting case of an extremely thin shell (R2/R1 = 0.98) we observe, the

I-V curve lies approximately between the sphere agglomerate and pseudo ho-

mogenous model predictions. Hence, the spherical shell agglomerate model

provides extra degrees of freedom, including shell thickness and Bi (although

not fully examined), for predictions between the standard pseudo homogenous

and spherical agglomerate CL models. It is also noted that Fig. 4.13 depends

on the agglomerate particle size, which was discussed before.

In Table 4.4 we present the optimization results for maximization of I w.r.t.

mPt, Pt/C, ǫagg, and ǫgdl
v for spherical shells of various thicknesses. Is is noted

that the degree of departure from the sphere agglomerate model (R2/R1 = 0),

in the values of optimal current density I∗ becomes significantly larger the
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4.4 Spherical shell agglomerate

base current density I as shell thickness decreases. Also, m∗

Pt increases and

reaches its upper bound (1.250 mg/cm2) as well as ǫ∗agg decreases significantly

as the shell thickness decreases.

Table 4.4: Optimization results for different shell thicknesses for Case I.

R2/R1 I(A/cm2) I∗(A/cm2) m∗

Pt (mg/cm2) Pt/C∗ ǫ∗agg ǫgdl∗
v

0.00 0.154 0.192 1.126 0.467 0.343 0.740

0.50 0.158 0.200 1.162 0.467 0.321 0.740

0.75 0.162 0.216 1.246 0.467 0.271 0.737

0.90 0.165 0.226 1.250 0.454 0.229 0.835

Case II

Here, we examine the spherical agglomerate comprising of two zones, the inner

sphere r < R2, and the shell between radii R1 & R2, where different rates of

electrochemical reaction and intra-particle transport take place. The moti-

vation for this study stems from the fact, that the probability of finding the

electrolyte, solid, and void phases together (or TPB) may not be distributed

uniformly, which requires additional parameters to incorporate the role of TPB

in continuum level (meso-scale). To the best of our knowledge, none of the

continuum-based agglomerate models in literature account for non-uniformity

in the distribution of TPB. We capture, via a two-zone spherical agglomerate

model, the essence of TPB non-uniformity within an agglomerate, by setting

different reaction and/or transport rates in the two zones. To incorporate TPB

non-uniformity accurately, it is desirable to extend our analysis to an N-zone

case.
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4.4 Spherical shell agglomerate

We derive the effectiveness factor for such a two-zone agglomerate, shown

in Fig. 4.11. The governing species mass balance equations, Eq. (4.9), for the

two-zone case, have the following solutions:

CAi =
C1i

r
cosh λir +

C2i

r
sinh λir for i = 1, 2 (4.15)

where, λi =
√

kia/Di, C1i and C2i are constants determined via the following

B.C.s:

Outermost boundary:

CA1 = CAS for r = R1 (4.16)

Zero concentration gradient at r = 0:

(

dCA2

dr

)

r=0

= 0 (4.17)

Mass and flux continuity at interface R2 becomes:

(CA1)r=R+

2

= (CA2)r=R−

2

(4.18)

D1

(

dCA1

dr

)

r=R+

2

= D2

(

dCA2

dr

)

r=R−

2

(4.19)

The effectiveness factor η, is modified from Eq. (4.13) via a factor of (1−

(R2/R1)
3) as:

η =
4πR2

1 (−D1dCA1/dr)r=R1

4
3
πR3

1(−k1aCAS)
(4.20)

We implemented equations for constants C1i and C2i obtained from above

B.C.s along with Eq. (4.20) in the simultaneous solution framework presented

in Jain et al. [2008b] to obtain η. Figure 4.14 shows the ratio of two-zone spher-
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4.4 Spherical shell agglomerate

ical agglomerate model to the spherical agglomerate model (η/ηsph) with vary-

ing ratio (R2/R1). The case k1/k2 = 1, with uniform reaction rate throughout

Figure 4.14: Effectiveness of two-zone agglomerate for varying thickness of
zone 2.

the agglomerate corresponds to the case of single zone sphere discussed ear-

lier. To introduce the non-uniformity in TPB distribution, we examined the

effectiveness for reduced electrochemical reaction rates k2 within zone 2. In

Fig. 4.14, for k1/k2 > 1, the effectiveness factor decreases, as R2 increases.

The effectiveness factor for a two-zone agglomerate follows very closely with

a spherical agglomerate effectiveness (less than 2% drop) for R2/R1 < 0.3,

indicating that inside core of spherical agglomerate (r < 0.3R1) remains un-

used in the electrochemical reaction. However, for higher R2 values, the ef-

fectiveness drops sharply as k2 is reduced, and the effectiveness for the case

k1/k2 = 100 follows very closely with the case when the inner zone is dead or
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has no electrochemical reaction taking place. However, effectiveness for a two-

zone agglomerate reduces by less 20% w.r.t. sphere, even for a large fraction

of zero-reaction or dead zone (i.e.,R2/R1 = 0.7), indicating that majority of

electrochemical reaction occurs within a thin outer shell region.

Figure 4.15 shows the variation in current density for a voltage of 0.676 Volt

with R2/R1 for different k1/k2 ratios. As expected, the performance decreases

Figure 4.15: Current density for different k1/k2 ratios for two-zone agglomerate
system

as k2 reduces. However, it is interesting to note that a significant effect of

reduction in k2 to I begins to occur only when zone 2 radius R2 > 0.7R1.

Figure 4.16 illustrates the I-V characteristics for different R2/R1, generated

for a dead zone 2. The performance of the fuel cell decreases as the dead

zone size increases. For high current densities however, it is observed that,

the curves for different R2/R1 cases merge with the spherical agglomerate

model case. This may be explained by the fact that for high current densities
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Figure 4.16: I-V characteristics curves with different zone 2 thicknesses

of operation, when reaction rate is very high, the reactant O2 is consumed

rapidly within a very small outer shell region and further penetration inside is

not required.

Table 4.5 shows the optimization results for maximizing I, where I∗ de-

creases rapidly as shell thickness decreases. Similar to Table 4.4, m∗

Pt increases

and reaches the upper bound of 1.25 mg/cm2 whereas ǫ∗agg decreases signifi-

cantly with shell thickness.

Table 4.5: Optimization results for different shell thicknesses for Case II.

R2/R1 I(A/cm2) I∗(A/cm2) m∗

Pt (mg/cm2) Pt/C∗ ǫ∗agg ǫgdl∗
v

0.00 0.154 0.192 1.126 0.467 0.343 0.740

0.50 0.142 0.183 1.175 0.467 0.317 0.740

0.75 0.106 0.149 1.250 0.457 0.253 0.725

0.90 0.056 0.092 1.250 0.423 0.166 0.728
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4.5 Summary

In this Chapter, we performed sensitivity studies of cell performance for differ-

ent CL structures through macroscopic models, suitable for system optimiza-

tion. We examine the shape effect of agglomerate particles including plate-like,

cylindrical, and spherical as well as spherical shell on the PEFC performance.

Both the intra- and inter-particle transport processes substantially differ due

to this shape factor, as indicated by both simulation and optimization results.

In addition, we examine the effect of agglomerate sizes by generating self-

similar CL structures, with fixed CL composition but different number and

size of agglomerates, and extend to mixture of particle sizes. Furthermore, via

the 2-zone shell agglomerate model, we introduce non-homogeneity in TPB

distribution. Through these model sensitivity studies for different CL mor-

phologies, we formulate a basis for realistic CL structures, described through

macroscopic models.
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Notation

a = Specific surface area available for reaction, cm−1

Ao = Catalyst surface area per unit catalyst particle mass, cm2g−1

Bi = Biot number

C = Concentration, mol/cm3

d = Shape parameter

D = Diffusion coefficient, cm2s−1

fs = Fraction of small size particles

F = Faraday’s constant, C/mol

HO2
= Henry’s constant, Pa cm3mol−1

iref
0 = Reference current density, A/cm−2

I = Current density, A/cm−2

jT = Tafel current density, A/cm−3

ko = Mass transfer coefficient, m/s

kc = Electrochemical reaction rate constant, s−1

L = Length, cm

m = Mass per unit area, mg/cm2

n = Number of particles

N = Number of available particle sizes

Ptot = Total pressure, Pa

Pt/C = Platinum to carbon ratio

r = Radius of particle, cm

R = Universal gas constant, J/K −mol
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R1 = Outer radius, cm

R2 = Inner radius, cm

s = Surface area, cm2

T = Temperature, K

v = Volume, cm3

vi = Volume fraction of i th size

x = Mole fraction

Greek Symbols

δ = Electrolyte film thickness, cm

ǫ = Volume fraction

η = Effectiveness factor

γ = Butler-Volmer kinetics factor

Γp = Transport property for phase p

κ = ratio of electrolyte film thickness and agglomerate radius

ξL = Thiele’s modulus

φ = Phase potential, V olt

σ = volume per unit surface area, cm
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Subscripts and Superscripts

agg = Agglomerate

A = Subscript for species A

cl = Catalyst layer

d = Shape parameter

eff = Effective value

gdl = Gas diffusion layer

i = Particle size index

m = Electrolyte phase

O2 = Oxygen

p = Phase

ref = Reference value

s = Solid phase

S = External surface

v = Void phase

0 = Initial/base value

1 = Zone 1 within agglomerate

2 = Zone 2 within agglomerate

∗ = Optimal value
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Chapter 5

Multi-scale Modeling and

System Integration

5.1 Introduction

The goal of this work has been to develop multi-scale models in an optimization

framework for energy systems, with PEFC as a benchmark example. This not

only involves formulation as well as optimization at each multi-scale hierarchy,

but also integration of sub-component models comprising of coupled multi-

physical and multi-scale phenomena.

From this multi-scale modeling and integration perspective specifically, in

setting-up the theme for this Chapter, we briefly highlight our progress in

Chapters 2 to 4, and this Chapter in the matrix presented in Fig. 5.1. Each

row here represents the different sub-components at each multi-scale hierar-

chical level, and each column represents each PEFC sub-component system.

In Chapter 2, we focused on integration of multi-component systems, with

continuum based models in an efficient optimization framework. We incorpo-
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Figure 5.1: Our PEFC research milestone presented in this work.

rated rigorous computational fluid dynamics (CFD) descriptive for GC, GDL,

and PEM sub-components, whereas CL was phenomenologically described as a

thin interface. Although physically simplistic, introduction of CFD models in

an integrated optimization framework was a key step towards holistic energy

system models. In Chapter 3, we replaced the phenomenological description

of CL with a continuum/mesoscopic description which is closer to realistic

physical situation and provides control over actual physical parameters (e.g.,

Pt loading). We also introduced non-homogeneity in Pt distribution. The CL

was integrated with a continuum based GDL. In Chapter 4, we expanded our

continuum CL description to include as much micro-structural information

as possible within our existing optimization framework, e.g., through intro-

duction of polydisperse systems and non-uniform distribution of triple phase

boundary within CL. The coupled intra- and inter-particle transport processes

were separately examined for different CL structures. We also examined the

relationship between self-similar CL structures via variation in particle number
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non-homogenous media

and size, conserving the other physical properties.

In this chapter, we explore the mesoscopic/molecular level descriptions

within the PEM as well as GDL, by gearing towards actual particle-level from

field-level descriptions. Although complete multi-scale descriptions for each

sub-component are yet to be examined, in practice “partial multi-scale” is

desirable for system optimization, for which we propose a novel reduced order

methodology (ROM) suitable for system integration.

5.2 Mesoscale methods for estimating effec-

tive transport in non-homogenous media

In this section, we examine mesoscopic descriptions for non-homogenous porous

media structures with application to the PEFC membrane electrode assembly

(MEA), especially within the GDL subcomponent. The key technological is-

sues in PEFC technology stem from the performance inefficiencies within its

MEA comprising of GDL, CL, and PEM, which are heterogeneous porous ma-

terial sub-components, and through which heat & mass transport processes oc-

cur with or without electrochemical reaction. For overcoming the performance

limitations within MEA, a detailed understanding of the transport processes is

required. Especially, within a cathode GDL, liquid water transport results in

flooding phenomena leading to a key performance limitation, called the mass

transport overpotential, due to the blockage of pores hindering the oxygen

transport to the active reaction sites in the CL [Wang, 2004]. The problem
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boils down to designing the GDL structure which enables efficient removal of

water as well as oxygen transport. Traditional non-homogeneous media theo-

ries [Maxwell, 1881, Bruggemann, 1935, Wang et al., 2006c] estimate the effec-

tive molecular transport coefficients (without fluid flow information) through

averaged phase hold-up and/or tortuosity parameters, and therefore, are un-

able to account for the microscopic structural information within the media.

5.2.1 Lattice Boltzmann method

We introduce the lattice Boltzmann methods (LBMs) to incorporate meso-

scopic structural information by estimating effective transport properties in

a non-homogeneous medium. Unlike conventional CFD methods which dis-

cretize the macroscopic equations, LBM constructs simplified kinetic models

incorporating the essential physics of microscopic processes so that the aver-

aged properties describe the desired macroscopic properties. The advantages

of LBM are clear physical pictures, geometric flexibility, an inherently tran-

sient nature, hybridization with other physical phenomena, and fully parallel

algorithms, which makes LBM an attractive tool for multi-phase, multi-scale

simulation for PEFC devices [Kim et al., 2005a,b].

Here, as an example of estimating effective transport properties, we em-

ploy an LBM heat transfer model [Wang et al., 2007b] for estimating effective

thermal conductivity (Keff ) in porous media which is a non-homogenous com-

posite of solid and fluid phases (Fig. 5.2).

The left (AB) and right (CD) end boundaries, separated by length L, are
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Figure 5.2: A schematic of non-homogenous porous media

maintained at temperatures T1 and T2, whereas the upper and lower bound-

aries (AD and BC) are adiabatic. The 2-dimensional LBM with Bhatnagar-

Gross-Krook approximation can be written as [Chen and Doolen, 1998]:

fα(r+eαδt, t+δt)−fα(r, t) = −1

τ
[fα(r, t)−f eq

α (r, t)] for α = 0, ..., N−1 (5.1)

where fα is the evolution variable; r is the position vector; t is the time; δt

is the time step; N is the number of discrete particle velocities eα in each node,

chosen as 9. Figure 5.3 shows the schematic of the discrete velocity vectors.

f eq
α is the discrete equilibrium distribution function given as:

f eq
α = 0 α = 0

= T/6 α = 1− 4

= T/12 α = 5− 8 (5.2)

where, T is the system temperature. The N discrete velocities are given by:
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Figure 5.3: A schematic of discrete velocity vectors

eα = 0 α = 0

= (cosθαsinθα)c, θα = (α− 1)π/2 α = 1− 4

=
√

2(cosθαsinθα)c, θα = (α− 5)π/2 + π/4 α = 5− 8 (5.3)

The relaxation time (τ) controlling the rate of approach to equilibrium for

solid (s) and fluid (f) phases is given as:

τs = 3Ks/
(

2(ρCp)sc
2δt
)

+ 0.5 (5.4)

τf = 3Kf/
(

2(ρCp)fc
2δt
)

+ 0.5 (5.5)

where, Ks & Kf denote the solid and fluid phase thermal conductivities,

respectively, c = δx/δt is the lattice speed, with δx as the grid spacing, and

(ρCp)s & (ρCp)f denote the solid and fluid phase heat capacities, respectively.

The heat flux (q) and T at any grid point location are given as:

q = (
∑

α

eαfα)(τ − 0.5)/τ (5.6)

T =
∑

α

fα (5.7)
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5.2.1 Lattice Boltzmann method

For our simulations we employed the following boundary conditions as:

For isothermal boundaries:

fα − f eq
α = −(fβ − f eq

β ) (5.8)

For adiabatic boundaries:

fα = fβ (5.9)

where, α and β denote opposite directions in Fig. 5.3. The effective conduc-

tivity (Keff ) is calculated as:

Keff =
qL

T2 − T1

(5.10)

Preliminary results

We first validated our LBM for the cases where analytical solutions for Keff

exist, such as the series and parallel composites of pure solid and fluid phases.

Table 5.1 compares analytical solution, numerical results presented by Wang

et al. [2007b], and our simulation. Our results are in good agreement with

the analytical solution and Wang et al. [2007b]. After validating, we applied

Parallel mode Series mode
Kf/Ks Analytical

(W/mK)
Wang et al.
(W/mK)

Present
(W/mK)

Analytical
(W/mK)

Wang et al.
(W/mK)

Present
(W/mK)

1/10 5.5 5.5 5.5 1.818 1.815 1.828
1/100 50.5 50.5 50.05 1.980 1.976 2.243

Table 5.1: Validation results for series and parallel composite non-homogenous
media

our methodology on composite porous media structures which were generated
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5.2.1 Lattice Boltzmann method

via the quartet structure generation method [Wang et al., 2007b], on a 2-

dimensional mesh of 150 x 150 points. As shown in Fig. 5.4, we generated

the series, parallel, diagonal, and random structured porous media, where the

blue and red regions denote the solid and fluid phases, respectively. Table 5.2

Figure 5.4: Porous structures for (a) series, (b) parallel, (c) diagonal, and (d)
random configurations.

compares the results for effective conductivities of different overall porosities

in different structural arrangements for Ks/Kf = 100. It is noted that con-

ductivity of a series arrangement is lowest in both the porosity cases. Also,

as the porosity decreases in the system, the effective conductivity in all the

cases increases, where the amount of increase in series configuration is largest.

While these results are preliminary, the essence of non-homogenous porous me-

dia description via a mesoscale theory is illustrated here; directions for future
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5.3 Molecular simulations for PEM

Structural arrangement Porosity Keff/Kf Keff/Krand

Random 0.2 24.97 1
Series 0.2 16.66 0.66
Parallel 0.2 33.22 1.33
Diagonal 0.2 36.4 1.06
Random 0.5 12.76 1
Series 0.5 4.39 0.34
Parallel 0.5 16.96 1.329
Diagonal 0.5 18.086 1.417

Table 5.2: Effective conductivities for different porosities and structural ar-
rangements. Krand denotes effective conductivity for random structure.

work are presented in Chapter 6.

5.3 Molecular simulations for PEM

In this section, we examine mesoscopic/molecular descriptions for the PEM

sub-component. A PEM is a semipermeable ionomer, designed to conduct pro-

tons, while being impermeable to reactants. The ‘ideal’ PEM characteristics

include: (i) high proton conductivity at elevated temperatures, (ii) imperme-

ability to fuel and other reactants, (iii) mechanical and chemical robustness,

and (iv) reasonable cost. Among these, a key requirement is controlling PEM

proton conductivity for attaining high PEFC performance. The PEM gener-

ally consists of polytetrafloroethylene chains with hydrophilic perflorosulfonate

side groups (Fig. 5.5a). The water molecules within the system agglomerate

in the vicinity of hydrophilic groups and form hydrophilic clusters. A net-

work of these clusters forms passages for proton conduction within the PEM.

Hence a detailed relationship between PEM structure, water uptake, and pro-

ton conduction is necessary for synthesis of novel PEMs, which overcome the
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5.3.1 Molecular dynamics (MD) simulation

Figure 5.5: PEM (a) molecular structure, and (b) model used in our simula-
tion.

limitations of state-of-the-art PEMs.

5.3.1 Molecular dynamics (MD) simulation

We develop a molecular model for the PEM system with the goal of estab-

lishing a relationship between PEM microstructure, water uptake and species

(proton and water) transport processes. The molecular model of the PEM

is shown in Fig. 5.5(b), comprising of polymeric chains, water molecules, and

counterions. We use a coarse-grained, bead-spring model to represent a Nafion

chain, consisting of a series of beads determining the backbone and branch

chain lengths. A united atom approach, treating the CF2 and CF3 groups as

one large bead with the mass of the combined individual atoms, is applied to

reduce the computational cost.

The nonbonding interactions acting between all species were described us-

ing a combination of Lennard-Jones (LJ) potential and the Coulombic inter-
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5.3.1 Molecular dynamics (MD) simulation

actions as:

ULJ(rij) = 4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

+
qiqje

2

4πǫ0

1

rij

(5.11)

where qi the is the charge of the ith bead, ǫ0 the permittivity in free space, rij is

the distance between, and σij & ǫij are the LJ parameters between the ith and

jth beads, respectively. The Coulombic interaction were used to account for

interaction between the anionic endgroups of Nafion (SO−

3 ) and counterions.

The bonding interactions between adjacent beads in the Nafion chain were

modeled via a finitely extensible nonlinear elastic (FENE) model as:

UFENE(rib) = =
1

2
kR2

0ln

[

1−
(

rib

R0

)2
]

rib 6 R0

= ∞ otherwise (5.12)

where, rib is the inter-bead distance, k the spring constant, and R0 the max-

imally extended bond length. In addition, the intra-molecular interactions

within a water molecule model were accounted via the simple point charge

(SPC) model [Krishnan et al., 2001], which accounts for intramolecular vibra-

tions observed experimentally in water molecules [Walbran and Kornyshev,

2001]. The parameters cited in Eqs. (5.11) & (5.12) can be found in Jinnouchi

and Okazaki [2003]. The counterions used in our simulation were sodium ions

chosen for the feasibility of the MD simulation and verification with previous

experimental data [Jinnouchi and Okazaki, 2003]. The simulation comprised of

one polymer chain, 70 sodium ions, and water molecules corresponding to the

water uptake in the unit cell. The periodic boundary conditions were applied
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5.3.1 Molecular dynamics (MD) simulation

to mimic the bulk PEM behavior.

The MD simulation, via equations of motion, provides the trajectory of

particles and allows for microscopic understanding of system dynamics. We

apply the Langevin equation as the equation of motion for the ith bead in the

αth Nafion molecule as:

m
d2rαi

dt2
= − ∂U

∂rαi

− ζ · drαi

dt
+ fαi(t) for i = 1, ..., Nm, and α = 1, ..., Np

(5.13)

where, rαi is the position vector at time t, Nm and Np the number of beads

per molecule and the number of Nafion molecules, respectively, m the bead

mass, and U the total potential energy of the system. ζ = ΓI is the fric-

tional tensor, where I is the unit tensor and Γ = 0.5τ−1 (τ = σ
√

m/ǫ) [Grest,

1996, Aoyagi et al., 2001]. fαi is Brownian random force generated from the

fluctuation-dissipation theorem [Grest, 1996]. Unlike reversible Newton’s me-

chanics, Eq. (5.13) is irreversible dynamic equation. The irreversibility is con-

sequent from the coarse grained nature of Langevin equation.

We performed the MD simulations in NPT (constant particle number, pres-

sure, and temperature) ensemble setting the pressure tensor P at 0.1 MPa,

temperature T at 300 K, and varying the water uptake (λ, which is num-

ber of water molecules per SO−

3 group) in the electrolyte from 1.4 to 14.3

[H2O]/[SO−

3 ]. The Langevin equation of motion (Eq. (5.13)) was integrated

with the time step, 0.5 or 1.0 fs. Since polymer structuralization requires

large time scales, the initial configuration of the polymer membrane for MD
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5.3.1 Molecular dynamics (MD) simulation

simulation was computed via the Metropolis Monte Carlo (MC) algorithm.

The molecular configurations generated after 200,000 MC steps under NVT

(constant particle number, volume, and temperature) ensemble were used to

initialize the particle positions in MD simulations. The initial velocities were

determined via Boltzmann statistics. The typical relaxation time for our MD

simulations was 200 ps, as determined from the stable macroscopic properties

such as the potential energy, after which physical properties of the system were

deduced.

Preliminary results

Through MD simulations, we investigated the effect of water uptake λ, on

PEM structure including hydrophilic/hydrophobic clustering, as well as the

counterion transport mechanism. Figure 5.6 (a) illustrates variation of PEM

system density with λ. The density decreases with increasing λ in both simu-

Figure 5.6: (a) PEM density and (b) radius of gyration for different water
uptakes. σ = 0.2 nm is the reference length.

lations (our MD simulation and Jinnouchi and Okazaki [2003]) and experiment
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5.3.1 Molecular dynamics (MD) simulation

(Gierke et al. [1981]), and predicted values are in qualitative agreement with

experiment. Our simulation predicts, the commonly observed swelling phe-

nomena of the PEM in a humidified atmosphere, which leads to a decrease in

density. It is believed this swelling process leads to construction of pathways

for water and counterion transport. The PEM swelling phenomena is also

observed through Fig. 5.6 (b), which shows an increase in radius of gyration

(Rg) with λ. This indicates that as area occupied by water molecules around

the branch ends increases, PEM molecules tend to be geometrically stretched,

leading to unfolding of the polymer.

We further confirmed the coherence of polar particles (water and counte-

rions) in the PEM leading to cluster generation in our simulation, using pair

correlation functions (PCFs, g(r)) between particles (Fig. 5.7). The PCFs

Figure 5.7: PCFs for (a)Na+-H2O, (b) Na+-S, and (c) Na+-CF2

were calculated as the time average of the distance between particles, which is

same as ensemble average due to ergodic hypothesis. A sharp peak in PCFs

between polar particles indicates that almost all the counterions and the water

molecules always exist within the cluster region. However, peaks between po-

lar particles and nonpolar particles are not observed. We further examined the

effect of λ on structuralization of hydrophilic clusters within the hydrophobic
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5.3.1 Molecular dynamics (MD) simulation

PEM backbone. Figure 5.8 shows the two-dimensional snapshot of simulation

cell for three values of λ, demonstrating that the high-water-density regions

(hydrophilic clusters) increase with λ. The alignment of these clusters is dis-

Figure 5.8: Water density distributions in a cross section of the simulation cell

orderly, and as λ increases, these clusters cohere to form tortuous pathways.

In order to examine the transport processes of counterions with λ, we cal-

culated the mean square displacement (MSD), which is proportional to the

diffusion coefficient via Einstein’s relation [Jinnouchi and Okazaki, 2003]. Fig-

ure 5.9 shows that the MSD increases, and counterion motion is enhanced as

λ increases. This result in conjunction with the discussion before establishes a

qualitative relationship between water uptake, water structure, and counterion

motion. As discussed, an increase in λ leads to PEM swelling and expansion

in hydrophilic clusters, which join together and form tortuous pathways. Also,

the counterions and water molecules cohere together within this clustered re-

gion, as was observed through PCFs. Therefore, we can conclude that as water

uptake increases, counterion motion is enhanced due to increase in number of

clustered hydrophilic pathways. Moreover, this counterion motion takes place
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5.4 System integration

Figure 5.9: MSD of counterions

along with water molecules in a “vehicular” fashion. Is is also noted that the

cluster size and connection may strongly affect the transport properties in the

electrolyte, and the low diffusivity in the electrolyte, as compared to ions in

solution, is due to the tortuous shape of the clustered region.

5.4 System integration

As discussed before, achieving commercialization of PEFC devices requires

several subcomponent- and system-level issues of cost, performance, and life-

time to be resolved. In an operating PEFC, multi-physical phenomena occur

within each subcomponent at time and length scales different from its neigh-

boring sub-components. There occur, fuel and oxidant flows represented via

continuum theory within GCs, two phase gas liquid flow represented through

meso-scale theories within GDLs, electrochemical reaction phenomena repre-

sented through ab initio methods to address catalytic issues within CLs, and

proton & water transport processes represented via molecular-level theories
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5.4 System integration

within PEM, In addition, these phenomena are represented through different

kinds of mathematical structures including non-linear ordinary and partial

differential equations as well as algebraic equations.

For addressing the PEFC technological issues at system-level, one attrac-

tive methodology will be to construct a ‘holistic’ integrated PEFC model in

an efficient optimization framework, comprising of subcomponent descriptions

at these different time and length scales. In Chapters 2-4, we stretched our

integrated continuum modeling framework extensively to include mesoscopic

information. However, for actual particle level descriptions introduced in this

Chapter, novel strategies are required for integration.

In this dissertation, we introduce a novel reduced order model (ROM)

framework for integrating systems of different time and length scale phenom-

ena. Figure 5.10 illustrates the essence of our ROM framework, where we desire

to integrate phenomena within two systems A and B. Integration here loosely

Figure 5.10: Schematic of the proposed ROM methodology.
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5.4 System integration

means determining states within systems A and B, such that the continuity

of states and fluxes at the interacting boundary of A and B are satisfied. The

phenomena in either A or B can be represented through descriptions spanning

from ‘top’ or the most coarse-grained to ‘bottom’ or the most fine-grained

(Fig. 5.10). While the descriptions at the bottom-most level comprise of most

detailed information, these may not be suitable for predicting overall system

performance, especially for design. On the other hand, the descriptions at the

top-most level, most suited to systems design, are least representative of system

behavior and may be limited in accuracy as well as capabilities of controlling

system performance via molecular tuning. In moving from bottom-to-top, the

conventional scientific approach, termed as coarse graining process, involves

information averaging which leads to loss in degrees of freedom in describing

a system. One could more effectively define this ‘degree of coarse graining’ or

loss in information in terms of increase in entropy of the system. Conversely,

moving from top-to-bottom involves retrieving the detailed fine-grain infor-

mation from the coarse-grained system, which may not be possible to achieve

exactly. Both these approaches may be extremely time consuming, and an al-

ternative ‘middle-out’ approach, which refers to starting from a ‘middle’ level

and moving out towards ‘top’ or ‘bottom’ directions may be attractive.

We propose to integrate systems A and B described through phenomena at

some arbitrary ‘m’ and ‘n’ levels (m 6= n) in the multi-scale hierarchy. Conven-

tional approaches perform model integration for systems A and B described

at the same ‘horizontal’ level descriptions (Case III in Fig. 5.10) however,
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5.4 System integration

‘cross-linking’ strategies (Cases I, II, and IV) are not easily available.

One clever methodology for cross-linking is to project the ‘relevant’ three-

dimensional system A information onto the two-dimensional interacting bound-

ary, i.e., developing a ROM for the interacting boundary from level m to a

coarse-grained level p, which can be coupled to level n of system B (a level

p to n linkage, denoted via p ←→ n (Case I in Fig. 5.10)) through avail-

able integration approaches. Alternatively, if p←→ n linkage methodology is

not available, we may project the system B information onto the interacting

boundary, developing a ROM from level n, to level p, which may be linked to

level m description of system A (m ←→ p, Case II). If none of p ←→ n or

m←→ p linkage methodologies are available, ROMs for the interacting bound-

ary may be constructed from both systems A & B and a p←→ p linkage (Case

III) may be made.

It is worth mentioning that a choice between Cases I-IV relies not only on

the possibility of integration, but also on the desired computational expense

and accuracy. For example, computational expense for Case I involves devel-

oping ROM from levels m to p and solving the resulting p ←→ n system.

Similarly, expense for case III involves developing ROM from levels m to p &

n to p, and solving the p ←→ p system. The latter method (Case III) may

be less computationally expensive however, it possesses lower accuracy in the

linking process.

Through linkage processes in Cases I-IV for given systems A & B, we

finally aim to generalize linking rules at other multi-scale hierarchy levels where
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5.4.1 Proposed ROM integration strategy

linkage methodologies are unavailable.

In the following we propose an integrating strategy for systems A & B. We

also present a test example for ROM development for the case where although

integration method between A & B is available, using ROM may be attractive

from the standpoint when integrated system optimization is computationally

expensive.

5.4.1 Proposed ROM integration strategy

We first present our ROM integration strategy specific to Case I (p ←→ n

linkage) in detail, through which integration for Cases II and III are demon-

strated. Figure 5.11 shows the interacting systems A and B. The problem

Figure 5.11: A schematic of two interacting systems A and B.

statement may be stated as follows:

Given: System A with description at level m via modelMAm (where,MXy

denotes model for system X at level y), with interacting boundary ΓA; System

B with description at level n via model MBn, with interacting boundary ΓB.

pA ∈ PA and pB ∈ PB denote the vector of input & design parameters within
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systems A and B, respectively, within domains PA and PB. The states within

systems A & B, sA & sB can be determined by the solutions ofMAm &MBn

once ΓA & ΓB and pA & pB are specified. It is desired to integrate systems A

and B, which implies determining sA and sB satisfying:

Continuity: ΓA = ΓB, and

Flux continuity: FA = −FB.

Here, FA and FB denote an appropriate representation for the fluxes through

boundaries ΓA and ΓB, respectively, which can be determined once sA) &

sB) are known. In addition, it is desired to minimize the objective func-

tion φ(pA,pB, sB). This specific case where we ignore dependence of φ on

sA, resembles our GDL-CL modeling case, where objective function is current

density dependent on design parameters within both GDL and CL, and states

within CL only.

Our proposed solution comprises of the following three steps:

1. Boundary representation: We first assume a functional representa-

tion for the boundary ΓA, as ΓA = g(y, z, α), where α ∈ A is the vector

of adjustable parameters and y & z represent the co-ordinate axes. We

assume that appropriate choices for g and dimension of vector α are

available such that g spans all possible boundary profiles resulting from

different parametric inputs pA and pB within PA and PB.

2. ROM generation: We sample values of α & pA, and generate snapshots

for output flux FA for each sampled set, calculated from the solution of
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MAm. Through these snapshots, we construct a ROM based on princi-

pal component analysis (PCA) [Lang et al., 2009] for FA at level p as

MFAp(α,pA).

3. Integrated system solution: The system B modelMBn is solved via

ROM MFAp and g(y, z, α) as inputs to the flux FB and boundary ΓB,

respectively, to obtain sB and α, for specified values of parameters pA

and pB. This process is illustrated as Case I in Fig. 5.12.

Figure 5.12: A schematic of linkages in Cases I, II, and III, and the resulting
equation systems.
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Remarks:

• Once α is obtained, sA can be obtained through solution of modelMAm,

through, ΓA = g(y, z, α).

• The optimization problem may be solved by minimizing φ(pA,pB, sB)

satisfying equation system in Case I in Fig. 5.12.

• If a p←→ n coupling is not available, integrated solution may be found

through m←→ p coupling (Case II in Fig. 5.12), in which a ROMMFBp

for FB is constructed and fed toMAm for obtaining sA and α. It is noted

that optimization problem however, is not trivial in this case, as a direct

linkage of objective function φ(pA,pB, sB) and states in system B is not

present in the resulting equation system.

• If neither p ←→ n, nor m ←→ p couplings are available, integrated so-

lution may be found through p←→ p coupling (Case III in Fig. 5.12), in

which ROMsMFAp &MFBp for FA & FB, respectively, are constructed

to obtain α. sA and sB are obtained once α is determined, through

solutions ofMAm andMBn, respectively.

5.4.2 ROM methodology when integrated system solu-

tion is available

Before actual system integration, we performed a small case study for PCA

based ROM strategy for our integrated GDL-CL system [Jain et al., 2008b].
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Here, we explore this strategy to develop reduced representations for the inter-

acting boundary to test the accuracy and computational times of the resulting

optimization problem. This test example also forms a basis for strategies out-

lined for actual system integration.

Assuming systems A and B are described via models at same level l here

asMAl andMBl; the procedure is outlined as the following two steps:

1. ROM for boundary: For sampled values of pA and pB, we generate

multiple snapshots for the boundary ΓA, calculated from the integrated

solution of systems A and B. We construct ROM for ΓA at level p as

MΓAp(pA,pB).

2. Optimization: The optimization problem may be solved by minimizing

φ(pA,pB, sB) w.r.t. model equations MBl with boundary ΓB set to

MΓAp(pA,pB).

It is noted that flux continuity condition here was implicitly assumed, as

the ROMMΓAp(pA,pB) was generated through snapshots of integrated system

solutions.

We apply this methodology to the two-dimensional GDL-CL system re-

ported in Jain et al. [2008b]. The details of ROM development have been

thoroughly discussed in Lang et al. [2009], and only details specific to our

system are presented here.

We first construct ROMs for the GDL-CL boundary, for state variables

oxygen mole fraction xβ
O2

(y) and solid phase potential φcl,β
s (y) (where super-
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script β is used to denote the boundary values), as a function of set of decision

variables p comprising platinum loading (mPt(mg/cm2)), platinum to car-

bon ratio (Pt/C), PEM volume fraction (ǫagg), and GDL void fraction (ǫgdl
v ).

Fifteen grid points along y direction were used. For generating snapshots,

we uniformly sampled 5 data values each within the following ranges of de-

cision variables: mPt ∈ [0.2, 1.25], Pt/C ∈ [0.2, 0.75], ǫagg ∈ [0.2, 0.8], and

ǫgdl
v ∈ [0.7, 0.9]. The data sets violating physical constraints represented via

algebraic equations in the model were discarded leaving 395 feasible data sets.

For determining the principal components (PCs), we performed singular value

decomposition of the resulting snapshot matrix. Via two PCs each for xβ
O2

(y)

and φcl,β
s (y), entire snapshot matrices could be represented within 99.9% ac-

curacy. The reduced data set was re-mapped via a kriging method [Lophaven

et al., 2002] to obtain ROMs x̄β
O2

(y,p) and φ̄cl,β
s (y,p).

We then solved the optimization problem for maximizing current density

I, with only CL region modeling equations, with boundaries from GDL side as

x̄β
O2

(y,p) and φ̄cl,β
s (y,p). Table 5.3 shows the results for optimization for a full

GDL-CL system and the proposed ROM-CL systems. Excellent agreement is

Table 5.3: Optimization results comparing proposed ROM and full GDL-CL

model.

I∗(A/cm2) m∗

Pt (mg/cm2) (Pt/C)∗ ǫ∗agg ǫgdl∗
v CPU (s)

Full-model 0.912 0.534 0.467 0.635 0.794 106

Proposed ROM 0.968 0.527 0.467 0.639 0.784 10
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found between the optimal values of decision variables, where as the optimal

current densities are within 5% error. This error may further be reduced

through other sampling methods such as Latin hypercube sampling [Lophaven

et al., 2002], or via larger number of sampling points. Furthermore, the CPU

time taken for the optimization problem reduces by an order of magnitude,

indicating the promising nature of the proposed ROM methodology.

5.5 Summary

In this Chapter, we introduced particle level descriptions within the GDL and

PEM sub-components, i.e., one level detailed descriptions in the multi-scale

hierarchy. We introduced an LBM for predicting effective transport within

non-homogenous porous media, which was verified for the cases where analyt-

ical solution exists, and extended for various porous media configurations. We

further investigated the PEM structure, water uptake, and counterion trans-

port relationships via MD simulations on the PEM. Finally, we proposed a

novel multi-scale integration strategy based on reduced order methods.

126



5.5 Summary

Notation

A = Domain of α

c = Lattice speed, m/s

e = Electronic charge, C

eα = Discrete velocity vector, m/s

f = Evolution variable

fαi = Brownian force term, N

Fi = Flux from system i

g = Functional representation for boundary

g(r) = Radial distribution function

k = Spring constant, J/m2

K = Thermal conductivity, W/m−K

L = Length, m

m = Bead mass, kg

MXy = Model for system X at level y

N = Number of discrete particle velocities

pi = Input or decision variables of system i

Pi = Domain of pi

qi = Charge on ith bead, C

q = Heat flux, J/m2

r = Position vector , m

rib = Inter-bead distance, m

Ro = Maximally extended bond length, m
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Rg = Radius of gyration, m

si = State variables of system i

t = Time, s

T = Temperature, K

U = Potential energy, J/C

xO2
= Oxygen mole fraction

Greek Symbols

α = Vector of adjustable parameters in g

δx = Grid spacing, m

δt = time step, s

ζ = Friction tensor, kg/s

Γi = Interacting boundary of system i

λ = Number of water molecules per SO−

3 group

φ = Objective function

φcl
s = Solid phase potential in catalyst layer, V olt

ρCp = Heat capacity, J/m3 −K

σij,ǫij = Lennard-Jones potential parameters

τ = Relaxation time, s
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Subscripts and Superscripts

A, B = Subscripts for systems A and B

α = Discrete particle velocity direction

β = Superscript for boundary values

cl = Catalyst layer

eq = Equilibrium value

f = Fluid

m, n, p = Subscripts for multi-scale hierarchical levels

rand = Random configuration

s = Solid
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Chapter 6

Conclusions

In this Chapter, we first present conclusions of the thesis and highlight our

specific contributions Chapter-wise, and present recommendations for future

work.

6.1 Thesis conclusions and contributions

In Chapter 2, we propose a generalized modeling and optimization framework

for rigorous computational fluid dynamics (CFD) models in PEFC systems.

We develop a comprehensive multi-dimensional PEFC model that takes into

account major transport processes in the gas channels (GCs) and the mem-

brane electrode assembly. A detailed water transport equation, accounting

for electro-osmotic drag, diffusion, and hydraulic permeation, is also incorpo-

rated into the model assuming single-phase flows. The resulting system of

partial differential algebraic equations is fully discretized using a finite vol-

ume scheme leading to a large-scale non-linear system of equations which is

linked to IPOPT [Wächter and Biegler, 2006] solver. Using this framework,

parameter estimation is performed to estimate catalyst layer (CL) fitting pa-
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rameters and polymer electrolyte membrane (PEM) water diffusion coefficient,

thus illustrating the utility of parameter estimation as a tool complementary

to modeling for the regions where system is modeled with a lumped parame-

ter approach. We employ errors-in-variables-measured formulation to multiple

I-V data point cases that yield parameter estimates such that model predic-

tions are accurate for wide operation ranges. The proposed methodology leads

to fast and efficient solution of large-scale non-linear programs in a few CPU

seconds and a small number of iterations. The parameters from different data

point cases are determined uniquely.

We further employ this framework to perform water management paramet-

ric studies to examine water transport mechanisms and distribution, especially

within the PEM, and to examine the overall system performance. We observe

that counter-flow arrangement leads to better performance than the co-flow

arrangement, especially for the conditions of low inlet humidity and low pres-

sure, due to an internal water recirculation mechanism which facilitates higher

PEM hydration. Moreover, as inlet gas humidity increases, the overall water

uptake in the system increases which improves the ionic conductivity of the

PEM and enhances the overall system performance. Also, thin PEMs perform

significantly better than thicker PEMs due to their smaller resistance path

to proton transport, and due to a more uniform water distribution along the

x-direction.

Specific contributions/accomplishments in this Chapter include:
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• Construction of an integrated modeling and optimization framework for

multi-physical, multi-component (including open channel, porous media,

and membrane systems) energy systems.

• Incorporation of CFD models in an efficient optimization framework.

• Demonstration of optimization as a parameter estimation tool comple-

mentary to modeling, with focus on PEM water management in PEFCs.

In Chapter 3, we replace the phenomenological description of CL in Chap-

ter 2 through a more realistic continuum/mesoscopic description, providing

control over actual physical parameters. Specifically, we reformulate an ag-

glomerate model of CL into a condensed form, for the optimization of PEFC

cathodes. This model accounts for gas diffusion layer (GDL) species and charge

transports. It also describes species and charge transports, as well as reaction

phenomena within the CL and individual agglomerates. The governing equa-

tions are discretized using a finite difference method and resulting nonlinear

program is linked to the IPOPT optimization solver.

We perform Pt minimization for a specified voltage for several current den-

sity values. The results indicate that the optimal Pt mass increases with both

current density and voltage of operation. The relationship between optimal

Pt mass and current density obeys a power law at low to medium current

densities of operation.

We first verify our results for I maximization, with those of Secanell et al.

[2007] and further extend our methodology for obtaining the optimal Pt distri-
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bution along the CL width by systematically subdividing CL in 2N zones, and

solving the multi-zone PDE-constrained optimization problem. Our results

indicate that significant improvement in current density can be obtained by

placing higher amounts of Pt adjacent to the PEM-CL interface.

Specific contributions/accomplishments in this Chapter include:

• Construction of an integrated modeling and optimization framework for

multi-physical (including charge & mass transport, and electrochemical

reaction), multi-component energy systems.

• Obtaining of a novel relationship between minimum amount of Pt re-

quired and current density of operation.

• Introduction of non-homogeneity within CL agglomerate model in an

optimization framework, to obtain Pt distribution.

In Chapter 4, we expanded our continuum CL description to include as

much micro-structural information as possible within our existing optimization

framework, with the goal of examining the sensitivity to cell performance

for different CL micro-structures. We first examined the shape sensitivity of

agglomerates by introducing spherical (3-D), cylindrical (2-D), and plate-like

(1-D) agglomerates. The shape effect on intra-agglomerate transport processes

was examined via effectiveness factors, and on inter-agglomerate transport

processes through different effect transport models. We obtained significant

differences in both simulation and optimization results, with sphere model

predicting the highest performance.
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We also examined the relationship between self-similar CL structures via

systematic variation in particle number and size, conserving the other physical

properties. We obtained up to 3 times enhancement in the current density for

an order of magnitude lower agglomerate size. We further examined polydis-

perse systems, through effectiveness of mixture of particle sizes, for several

particle mixtures. Interestingly, for bi-modal distributions, the optimal cur-

rent density obeys a cubic relationship with fraction of small agglomerates in

the mixture.

We further introduced a spherical shell agglomerate model where, we first

verified the effectiveness expression with existing empirical result, and further

derived a general effectiveness expression with Biot number as a parameter.

We obtained the limiting performance for this shell model in between the

spherical agglomerate model and the pseudo-homogenous model in literature,

in which CL is described as a homogenous system without any agglomerates.

Via this shell model, we also relaxed the commonly employed assumption,

in both microscopic and macroscopic CL descriptions, of uniformly available

triple phase boundaries for electrochemical reaction, through a 2 zone agglom-

erate where different zones possess different rates of reaction.

Specific contributions/accomplishments in this Chapter include:

• Introduction of micro-structural (mesoscopic) information within the

state-of-the-art continuum description of CL, suitable for system op-

timization, through examination of several CL morphologies.
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• Demonstration of large sensitivity in simulation and optimization results

for different CL structures.

• Introduction of non-homogenous distribution of triple phase boundary

within agglomerate CL model.

In Chapter 5, we geared from field descriptions to actual particle descrip-

tions, moving one level down in the multi-scale hierarchy. We first introduced

the lattice Boltzmann methods (LBMs) for estimating transport through non-

homogenous porous media via effective thermal conductivity. We verified our

LBM for series and parallel arrangements of pure solid and fluid phases with

existing analytical solution, and further extended our methodology for com-

posite porous media structures including series, parallel, diagonal and random

arrangements, for different porosities. The series arrangement gave the lowest

values for effective conductivity.

We also constructed a coarse-grained bead spring molecular model for

PEM, for performing molecular dynamics simulations, with the goal of un-

derstanding the relationship between PEM structure, water uptake and coun-

terion motion. Our preliminary results indicated that an increase in water

uptake leads to swelling of PEM. Also, hydrophilic clusters around the PEM

side-chain ends grow in size, which connect to form tortuous pathways for

counterion transport along with other water molecules.

We further proposed a novel multi-scale system integration strategy for

systems described via different time and length scale phenomena, based on re-
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duced order models (ROMs). The methodology involves projecting the entire

relevant information of one of the systems on to the interacting boundary, and

constructing a ROM for the boundary information at such a coarse-grained

level, where linkage methodology with the other system is available. We also

presented a small test example for principal component analysis based ROM

for integrated systems, which showed significant improvement in computa-

tional times.

A large breadth of topics were explored in this Chapter. Specific achieve-

ments which are promising for future research include:

• Construction of framework for predicting effective transport in non-

homogenous porous media via mesoscopic theories.

• Successful qualitative prediction of PEM structure dynamics and coun-

terion transport mechanism via molecular theories.

• Introduction of novel multi-scale system integration methodology based

on reduced order methods.

6.2 Recommendations for future work

In this dissertation, we have proposed a generalized modeling and optimiza-

tion framework for multi-scale, multi-phenomena energy systems, with focus

on PEFCs. We believe the following recommendations will further improve

our understanding in PEFC behavior, which at the same time, pose great

challenges in both numerical and physical aspects.
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6.2.1 Model sophistication (Continuum)

We have presented rigorous modeling and optimization strategies for integrated

continuum descriptions, therefore, model sophistication to unravel PEFC be-

havior at continuum level is a natural leading step. Following enhancements

to the continuum descriptions presented in Chapters 2-4 are recommended:

• Two phase flows and thermal management: At high current den-

sities, due to excess water generation in the electrochemical reaction,

partial pressure of water vapor may exceed the saturation pressure and

water may condense in the cathode region. The liquid water formed ad-

versely effects the performance by blocking the oxygen transport in GDL

from GC to the reaction sites, and by blocking the active sites on the

CLs. Efficient water removal, is therefore a key issue to PEFC perfor-

mance. This issue is coupled with the thermal management issue, which

refers to efficient heat removal strategies. Also, due to the sensitivity of

PEM to temperature fluctuations, and strong dependence of water sat-

uration pressure, transport and kinetic properties to temperature, heat

transport becomes a crucial phenomena to consider. The processes that

need to be described here are: Liquid water coverage of CL active sites,

two-phase porous media flow, the droplet formation and removal at the

GDL / GC interface, and two phase gas-liquid flow in the GC; as well as

convective and conductive energy transports through GCs & GDLs and

heat generation in CLs & PEM.

137



6.2.2 Multi-scale modeling and system integration

• Transient behavior: Analysis of transient response in PEFCs is criti-

cal to automotive applications. There are several sub-processes in PEFC

which have different dynamic response times, such as the GDL gas trans-

port (with time constant τ ∼ 0.1−1s), PEM hydration/dehydration pro-

cess (τ ∼ 10s), and water accumulation and removal in CLs and GDLs.

As an example, a step increase in current density causes voltage to drop

gradually to a new steady state value, as the O2 concentration in the CL,

and PEM hydration levels gradually decrease and increase, respectively.

Particularly the following questions need to be answered: (i) How dif-

ferent parameters affect the start-up times and characteristics of PEFC?

(ii) How PEFC responds to sudden changes in operating parameters?

and (iii) What may be the most important control parameters? One of

the methods to address these would be introducing accumulation terms

in the balance equations for all sub-components and examining the re-

sponse of both system output and the different sub-processes w.r.t. the

operation parameters. This would isolate the transient behavior of each

subsystem, and would identify the specific critical processes which may

require control action.

6.2.2 Multi-scale modeling and system integration

The multi-scale modeling and system optimization strategies presented in

Chapter 5 are promising yet were preliminarily examined, and require sig-

nificant future investigation.
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• PEM molecular modeling: Several modifications may be made to

the MD simulation framework presented for examining the effect of wa-

ter uptake on PEM structure and proton motion. First, the sodium ion

employed in the simulation needs to be replaced by an actual proton

requiring modeling of additional interaction states (e.g., Zundel, Eigen)

which a proton possesses with surrounding water molecules. The SPC

model used for water may be replaced by 4-point charge models such as

the TIP4P, to determine their effect on water clustering behavior. Fur-

thermore, different structures of PEM, e.g., which possess different chain

and branch lengths may be examined, which affect the water clustering

and proton motion. Finally, the transport properties calculated in the

MD simulation (diffusion coefficient and conductivity) can be fed to the

continuum description of PEM presented in Chapter 2, providing a tool

to manipulate the cell output performance via molecular tuning.

• Effective transport in non-homogenous porous media: In Chap-

ter 5, we examined the standard geometrical structures of composite

porous structures, i.e., the series, parallel, diagonal, and random ar-

rangements, however, effective transport properties may be also be corre-

lated with generalized structures via radial distribution functions. Also,

the two-dimensional analysis presented here needs to be generalized to

three-dimensional systems closer to realistic scenarios. For application

to a PEFC GDL, fluid flow model may be introduced in conjunction
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with the effective transport model. Especially, our LBM formulation is

attractive for describing multi-phase, multi-species (oxygen and water)

transport phenomena within the cathode GDL.

• System integration: The ROM strategy introduced in Chapter 5 first

needs to be benchmarked through integrated systems examples, e.g.,

the GDL-CL system introduced in Chapter 3. The GDL and CL sub-

systems here, were both described via continuum descriptions and inte-

gration methodologies for these are readily available; an application of

ROM based integration acts as a validation to our proposed methodol-

ogy. Specific to the methodology itself, followings may be examined:

– Better sampling methods instead of uniform sampling, such as Latin

hypercube sampling, for reducing the number of snapshots required

for similar or better representation of the interacting boundary.

– Exploring of other data reduction and mapping methods.

Also, examination of ROM based integration for all the cases I-IV pre-

sented in Fig. 5.10, may provide general integration rules for the levels

where integration methodologies are not readily available. Furthermore,

an examination of computational cost and accuracy obtained in each of

the cases I-IV needs to be done. Once successfully tested on benchmark

systems, this ROM strategy may be applied in integrating multi-scale

sub-systems frequently found in energy systems.
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