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Abstract

With expanding areas of applications, increasing needs for efficient cycles, and growing de-

mands for efficient modeling, it has become essential to develop new systematic strategies for

optimal design and operation of PSA systems. Although industrial usage of PSA is widespread,

we observe a drought of any systematic methodology to design PSA cycles in PSA literature

due to inherent complexity of cyclic PSA processes. We present a generic PSA superstruc-

ture to synthesize optimal PSA configurations. The superstructure is rich enough to predict

a number of different PSA operating steps, and their optimal sequence by solving an optimal

control problem.

Because of low operating costs and high performance, PSA is considered as a promising op-

tion for both post-combustion and pre-combustion CO2 capture. Since commercial PSA cycles

consider CO2 as a waste stream, cycle development specifically targeted towards high-purity

CO2 separation is essential. We utilize superstructure approach for this purpose and succeed

in synthesizing optimal cycles which can separate CO2 at a purity as high as 95%, or with a

low power consumption of 465 kWh/tonne CO2 captured, for post-combustion capture. When

applied for pre-combustion capture, superstructure approach yields cycles with an extremely

low power number of 46.8 kWh/tonne CO2 captured.

Large number of spatial nodes required to capture steep adsorption fronts lead to a large

set of DAEs, and thus to a challenging PSA optimization problem. We generate reduced-order

models (ROMs) which are not only orders of magnitude smaller, but also reasonably accurate.

Consequently, replacing DAEs with these ROMs yields a cheap optimization problem. How-

iii



ever, a trust-region envelope is essential for optimization as a ROM is accurate only around the

point where it is constructed. Optimization with a trust-region is successfully demonstrated

for a H2-CH4 PSA case study. Promising preliminary results encourage us to formally devise

a systematic adaptive trust-region strategy. We first develop an exact penalty trust-region al-

gorithm and devise correction schemes to ensure convergence to actual local optimum. When

demonstrated for the Skarstrom cycle for CO2 capture, penalty algorithm converges in 92 iter-

ations and 1.88 CPU hrs. To circumvent the difficulty of determining a penalty parameter, we

also devise a hybrid filter-based trust-region framework. When applied to the PSA case study,

filter algorithm converges within 51 iterations consuming 1.36 CPU hrs. Thus, initial results

are quite promising and reveal the potential of using ROMs for optimization.
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Without mathematics we cannot penetrate deeply into philosophy

Without philosophy we cannot penetrate deeply into mathematics

Without both we cannot penetrate deeply into anything

— Leibniz

Philosophy is written in this very great book

which always lies open before our eyes (I mean the universe),

but one cannot understand it unless one first learns to understand

the language and recognize the characters in which it is written.

It is written in mathematical language and

the characters are triangles, circles and other geometrical figures;

without these means it is humanly impossible to understand a word of it;

without these there is only clueless scrabbling around in a dark labyrinth.

— Galileo



Chapter 1

Introduction

Synopsis

Over the last few decades, pressure swing adsorption (PSA) processes have emerged success-

fully as cost-effective alternatives to the traditional gas separation processes, and thus have

gained widespread acceptance. Although commercial utilization is widespread, PSA processes

still present stiff research challenges in terms of process development, accurate modeling of

mass transfer and adsorption phenomena, and adsorbent design, especially for emerging new

applications. In this chapter, we highlight such challenges in brief, describe our approach in

order to address a few of these, and define the scope of our research. An outline of this thesis

is presented in the final section of this chapter.

Chapter 1. Introduction 1



1.1 PSA Overview

1.1 PSA Overview

Separation of gases accounts for a major fraction of the production cost in chemical, petro-

chemical, and related industries. There has been a growing demand for economical and energy

efficient gas separation processes. The new generation of more selective adsorbents developed

in recent years has enabled adsorption-based technologies to compete successfully with tra-

ditional gas separation techniques, such as cryogenic distillation and absorption. The last

few decades have seen a considerable increase in the applications of adsorptive gas separation

technologies, such as pressure swing adsorption (PSA). Pressure swing adsorption is a versa-

tile technology for separation and purification of gas mixtures. While initial applications of

PSA included gas drying and purification of dilute mixtures, current industrial applications

include solvent vapor recovery, air fractionation, production of hydrogen from steam-methane

reformer (SMR) and petroleum refinery offgases, separation of hydrocarbons such as carbon

monoxide-hydrogen, carbon dioxide-methane, and n-paraffins separation, and alcohol dehy-

dration. Advent of commercial PSA operations started with the early patents on this subject

granted to Skarstrom [176] and Guerin de Montgareuil and Domine [60]. Since then, PSA has

become the state-of-the-art separation technology for applications like air fractionation and

hydrogen production. Many of these processes are described in published books and review

articles on this subject [31, 92, 106, 154, 156, 166, 169, 181, 206]. Moreover, Sircar [167] has

given an extensive list of publications on PSA which highlights growth in the research and

development of PSA technology.

PSA processes involve selectively adsorbing certain components of a gas mixture on a

microporous-mesoporous solid adsorbent at a relatively high pressure, via gas-solid contact

in a packed column, in order to produce a gas stream enriched in less strongly adsorbed

components of the feed gas. The adsorbed components are then desorbed from the solid by

lowering their gas-phase partial pressures inside the column to enable adsorbent re-usability.

Desorbed gases, as a result, are enriched in the more strongly adsorbed components of the feed

gas. No external heat is generally used for desorption. The selectivity in a PSA process comes
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from differences in either adsorption equilibrium or adsorption kinetics between the components

to be separated. While a PSA process carries out adsorption at superambient pressure and

desorption at near-ambient pressure level, a vacuum swing adsorption (VSA) process undergoes

adsorption at near-ambient pressure, while desorption is achieved under vacuum. Practical

PSA/VSA processes are substantially sophisticated with multiple adsorber columns executing

a wide variety of non-steady-state operating steps in a non-trivial sequence. Besides adsorption

and desorption, such a sequence also involves a multitude of complementary operating steps

essential to control product gas purity and recovery, and optimize overall separation efficiency.

Each bed undergoes this sequence of steps repeatedly, and thus the entire PSA system operates

in a cyclic manner.

Some of the advantages of PSA systems and key reasons for recent growth of this technology

are as below [31, 168]:

• PSA and VSA processes operate at ambient temperatures and do not require any solvent

for product recovery or adsorbent regeneration. As a result, their capital expenditure is

quite less compared to cryogenic technologies. Primary operating cost for these processes

comes from the energy requirements for compression and vacuum generation. Hence,

PSA processes are cost-effective compared to traditional technologies, and are especially

desirable when lower production rates or lower product purities are required.

• Pressure manipulation serves as an extra degree of thermodynamic freedom, thus intro-

ducing significant flexibility in process design as compared with conventional technologies

such as distillation, extraction or absorption.

• Numerous microporous-mesoporous adsorbents are available which are specifically tai-

lored and engineered for a particular application, thus exhibiting high selectivity and

adsorption capacity which leads to extremely high purity and recovery separation.

• Optimum marriage between a material and a process while synthesizing the separation

scheme drives innovation and leads to highly efficient designs for PSA processes.
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Theoretical modeling of PSA systems has also been extensively studied to gain a clear

understanding of this rather complex process. A summary of the published dynamic models

has been compiled by Ruthven [156] and Nikolic̀ et al. [136]. In general, PSA bed model

is a set of fairly complex partial differential and algebraic equations (PDAEs) which reflect

the transient nature of the process and capture the underlying physics in detail. With such

models, it is now possible to accurately predict the dynamic behavior of a PSA process, and

to adequately account for all the factors that affect the performance of any given PSA system.

1.2 Research Challenges with PSA

Although commercial applications of PSA processes have grown rapidly, existing as well as

emerging new applications present exorbitant research challenges in terms of developing a

systematic formulation for synthesizing multibed PSA cycles, obtaining optimal operation

strategy with detailed PSA bed models, and obtaining exhaustive experimental data for the

kinetic and equilibrium behavior for novel adsorbents to accurately model multicomponent

adsorption isotherm and mass transfer phenomena. Ruthven [155] and Sircar [169, 170] have

summarized the current and future research trends.

1.2.1 Process Development

Although high-performance cycles have been developed for individual commercial applications,

design and synthesis of a PSA system for given commercial specifications has largely remained

an experimental effort. It is not clear why a particular cycle is chosen or one performs bet-

ter than other configurations. More importantly, so far no systematic algorithm or method

has been developed in the literature to design and evaluate a PSA cycle configuration due to

the inherent complexity of the process which involves a number of sequential but interacting

unsteady-state cycle steps. A priori design of a practical cycle that can guarantee commercial

specifications without the use of supporting data from a bench- or pilot-scale process is con-

sidered less desirable because of the expense and computational time involved in solving the

Chapter 1. Introduction 4



1.2 Research Challenges with PSA

rigorous mathematical models.

Very few studies in the literature have tried to address this issue. All of these studies suggest

simplistic formulations to determine minimum number of beds required in a PSA process for

given kinds and fixed sequences of operating steps. Chiang [46] proposed simple arithmetic-

based heuristics, while Smith et al. [177] extended Chiang’s work to propose a mixed-integer

nonlinear programming (MINLP) based approach to obtain optimal number of beds required

to execute a fixed sequence of operating steps. Smith et al. [178, 179] also suggested a 3-step

scenario to design an industrial PSA system, but again with a known cycle of operating steps.

Recently, Nikolic̀ et al. [136, 137] proposed a state-task network (STN) based framework to

determine optimal number of beds. However, STN developed wasn’t exhaustive and missed

many basic steps.

It is clear that novel PSA cycle sequences are anticipated for upcoming applications as well

as for high-efficiency separation for current applications. Although process designers commonly

resort to simplified and specific models for the PSA process of interest, and utilize simplistic

descriptions in order to achieve satisfactory designs, accurate and reliable industrial design

requires more challenging effort which is systematic and rigorous.

1.2.2 Computationally-efficient Simulation/Optimization

Another research challenge, as briefly mentioned in the previous section, relates to developing

computationally-efficient strategies to simulate and optimize PSA systems goverened by rig-

orous mathematical models. The behavior in each bed is described by partial differential and

algebraic equations (PDAEs) in space and time, constructed from conservation of heat, mass,

and momentum augmented by transport and equilibrium equations. Such hyperbolic equa-

tions involve high nonlinearities arising from non-isothermal effects and nonlinear adsorption

isotherms, with solution profiles represented by steep adsorption fronts. As a result, opti-

mization of PSA systems for either design or operation presents a significant computational

challenge to current optimization techniques and nonlinear programming algorithms [31].
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Sophisticated optimization strategies have been developed and applied to PSA systems

with significant improvement in the performance of the process. For optimization of a bench-

scale and a rapid PSA process, Nilchan et al. [138, 139] proposed a complete discretization

approach for the PDAEs. Smith et al. [177, 178, 179] suggested a mixed-integer nonlinear

programming based approach to minimize number of beds. Ko et al. [110, 111] used an SQP-

based approach for optimization of PSA and fractionated vacuum PSA (FVPSA) processes.

Ko et al. [109] also formulated a multiobjective optimization problem for rapid PSA and

temperature swing processes. Rajasree et al. [145] developed a simulation based approach for

synthesis, design and optimization of PSA processes. Kapoor et al. [104] developed a simple

optimization scheme for PSA systems based on black-box models and an interior penalty

approach, and demonstrated it for three different PSA case studies. Kvamsdal et al. [118, 119,

120] optimized a PSA process for trace separation, and analyzed the effect of mass transfer and

cyclic steady state convergence. Jiang et al. [99] used an SQP-based approach to solve PSA

optimization problems and computed direct sensitivities to obtain derivatives. However, even

the most efficient of these approaches can still be time consuming for large systems, which

gives us a strong motivation to develop cost-efficient and robust optimization strategies for

PSA processes.

Moreover, there is a strong need to incorporate spatially & temporally distributed models

within flowsheet simulators, such as ASPEN and HYSYS, as they currently deal with lumped-

parameter models which suffer from accuracy limitations. Inclusion of dynamic PDAE-based

PSA model with other steady-state flowsheet models for overall flowsheet optimization is chal-

lenging, non-intuitive, and requires development of integrated optimization strategies which

are convergent and robust [214].

1.2.3 Modeling Equilibrium and Kinetic Behavior

It is critical to develop reliable, analytical models for accurate prediction of the core properties

(multicomponent gas adsorption equilibria, kinetics, and heat of adsorption) using a limited
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data source, since they govern the performance of an adsorptive process and are vital for process

design. Basic understanding of multicomponent gas-solid interactions is often very limited,

especially for the heterogeneous adsorbents used in practice [169, 170]. An accurate knowledge

of these interactions under all conditions of pressure, temperature, and gas compositions, which

can vary widely in a practical PSA process, is needed for a reliable solution of the process

models. In particular, there is a strong need to generate and compile a multicomponent

adsorption database which can validate adsorption models used for PSA process design, and

can compute aforementioned core properties. Although such databases exist [188, 105], they

are quite old, not exhaustive and do not account for newly developed adsorbents for existing

and emerging applications.

1.2.4 Adsorbent Materials

Synthesizing novel high-performance adsorbents presents research challenges of its own. Ad-

sorbents are desired to provide large specific surface area for a large adsorption capacity, and

to be selective enough to retain one or more components from the gaseous feed mixture. Be-

ginning with amorphous adsorbents like silica gel and activated carbon, the range of industrial

adsorbents have grown to include synthetic molecular sieves and next generation zeolites with

symmetric and crystalline pore structures [155, 156]. The challenge is to synthesize significantly

heterogeneous adsorbents which can provide substantially high selectivity for high-purity pro-

duction, and to develop methods for quantitative characterization of adsorbent heterogeneity.

1.3 Problem Statement and Scope of Work

In this work, we address the challenges related to systematic PSA process synthesis, and devel-

oping computationally cheap strategies for simulation and optimization of PSA bed models, as

listed in sections 1.2.1 and 1.2.2, respectively. Development of new adsorbent materials, models

that compute adsorbent properties, and multicomponent adsorption database is beyond the

scope of this work.
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To address the issue of developing a systematic framework to develop novel PSA cycles, we

present an optimization-based framework to generate optimal PSA cycles from a 2-bed PSA

superstructure. The interconnections between the two beds are governed by time-dependent

control variables. Different PSA operating steps are realized by varying these control variables.

We achieve an optimal sequence of operating steps by solving an optimal control problem with

the PDAEs of the PSA system. To demonstrate this framework, we limit the scope of this

work to binary feed mixtures. Extending the formulation to multicomponent feed streams and

multibed cycles is straight-forward.

In order to address the challenge associated with efficient computation of PSA bed models

and optimization problem, we develop a model reduction based framework that systematically

generates cost-efficient low-order representations of such large-scale PSA models. In partic-

ular, we obtain these reduced-order models (ROMs) using proper orthogonal decomposition

(POD). POD basis functions are used within a Galerkin’s projection framework to derive a

low-order DAE system that accurately describes the dominant dynamics of the PDAE system.

Further, these ROMs are used as surrogate models to define much smaller and computationally

efficient optimization problem. Finally, we develop a novel trust-region framework to formu-

late a convergent and robust optimization algorithm which utilizes these ROM-based smaller

optimization problems. In this work, we illustrate this framework with manageable two-bed

PSA systems. However, the algorithm developed is generic and can be extended to multibed

PSA systems with multicomponent feed mixtures.

1.4 Thesis Outline

In this thesis, our main focus is to introduce and develop these two novel ideas mentioned above

(the 2-bed PSA superstructure to systematically generate optimal PSA cycles, and the novel

trust-region framework for optimization using reduced-order models), and present a proof of

concept for them using practical and computationally manageable PSA problems. We organize

our work in eight chapters, and present an outline of each chapter in this section.
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We begin with the concepts of Pressure Swing Adsorption (PSA) in Chapter 2. PSA is an

adsorption-based separation process in which separation is achieved when an adsorbent prefer-

entially adsorbs one or more components from a feed mixture. We provide a brief background

on the principles of adsorption and describe different kinds of cyclic adsorption processes. Then

we discuss mathematical modeling for a fixed bed PSA process, which involves characterizing

mass, energy, and momentum balances together with mass transfer phenomena and adsorption

equilibrium. In general, PSA processes are governed by coupled hyperbolic PDAEs. Numerical

methodologies to simulate such PDAEs are also discussed.

Chapter 3 introduces the novel two-bed PSA superstructure to determine optimal PSA

configurations. The superstructure consists of two beds, one of which acts as an adsorbing bed

and the other as a desorbing bed. The interconnections between the two beds are governed by

time-dependent control variables, such as fractions of the light and the heavy product recycle.

The superstructure predicts different PSA operating steps by varying these control variables.

An optimal sequence of operating steps is achieved by solving an optimal control problem. We

realize that it is a singular control problem as the controls appear linearly. Solution strategy

to solve this PDAE-constrained singular control problem is then discussed.

In Chapter 4, we demonstrate the superstructure approach for case studies related to post-

combustion CO2 capture. PSA is a promising option to effectively capture CO2 from flue gas

streams. However, most commercial PSA cycles do not focus on enriching the strongly adsorbed

CO2 as a product. It is necessary to develop PSA processes specifically targeted to obtain

pure strongly adsorbed component. We present a fairly comprehensive review of the previous

studies on PSA cycles for CO2 production. This review highlights the difficulties associated

with choosing one PSA cycle over another, and motivates development of a structured approach

for PSA cycle design. Hence, we use the superstructure to synthesize optimal PSA cycles which

maximize CO2 recovery and minimize overall power consumption. Results obtained are quite

encouraging and promising.

Chapter 5 illustrates the superstructure approach for case studies related to pre-combustion
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CO2 capture. PSA processes offer significant advantages for pre-combustion CO2 capture in

terms of performance, energy requirements and operating costs since the shifted synthesis gas

(syngas) is available for separation at a high pressure with a high CO2 concentration. Since

the industrial PSA cycles focus on recovering H2 at a very high purity but consider CO2 as a

waste stream, novel PSA cycle designs are anticipated which recover both H2 and CO2 at a

high purity. With the help of the superstructure approach, we successfully synthesize optimal

PSA configurations which maximize CO2 recovery and minimize overall power consumption.

This chapter, hence, demonstrates the versatility of the superstructure approach.

After this, the thesis focuses on addressing the challenge associated with efficient compu-

tation of PSA bed models and optimization problem. Chapter 6 describes a reduced-order

modeling technique that can circumvent such computational challenges by generating cost-

efficient low-order models which can be used as surrogate models in optimization problems.

In particular, with method of snapshots, singular-value decomposition, and Galerkin’s frame-

work, we describe how proper orthogonal decomposition (POD) can be successfully used to

construct reduced-order models which can be orders of magnitude smaller than the original

model without losing accuracy. Further, we discuss ROM-based optimization, and describe how

ROMs can be utilized to optimize in a trust-region around the point where it is constructed.

Optimization strategy is illustrated with a hydrogen PSA case study.

In Chapter 7, we formally develop a trust-region framework for ROM-based optimization.

First we develop an exact penalty-based trust-region algorithm, and develop correction schemes

for objective and constraints to ensure global convergence with POD-based approximate mod-

els. Then we illustrate this algorithm with correction schemes for a two-bed four-step PSA

case study for post-combustion capture. Next, highlighting drawbacks of penalty approach and

benefits of a filter, we develop a hybrid filter trust-region algorithm for constrained ROM-based

optimization. Filter algorithm is then demonstrated for the PSA case study.

Finally, we summarize the contributions of this thesis, and discuss directions for future

work in Chapter 8. Nomenclature is listed in Appendix A.
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Chapter 2

Pressure Swing Adsorption

Synopsis

Pressure Swing Adsorption (PSA) is an adsorption-based separation process where an adsor-

bent preferentially adsorbs one component (or a family of related components) from a feed

mixture, thus achieving separation. To understand the design and operation of PSA processes,

knowledge of adsorption principles and dynamic behavior of an adsorption column is vital. We

first provide a brief background on the adsorption phenomena and its fundamentals. Then we

discuss adsorption modeling in a fixed bed which, besides comprising mass, momentum and

energy conservation, also involves characterizing adsorption equilibrium behavior and mass

transfer resistances affecting adsorption kinetics. Further, we describe the transient cyclic op-

eration of a two-bed as well as a multi-bed multi-step PSA processes with examples. Numerical

methodologies to simulate PSA processes and obtain solution for the bed model are also dis-

cussed, which involve finite volume spatial discretization scheme which is mass conserving,

avoids unphysical oscillations, and thus, is essential to simulate PSA bed models.
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2.1 Adsorption Phenomena and Processes

As discussed by Coulson et al. [55], Yang [206], and Vermeulen et al. [190], adsorption involves

contacting a free fluid phase (gas or liquid) with a rigid particulate phase which has the property

of selectively taking up and storing one or more solute species originally contained in the fluid.

Besides adsorption, the conditions for desorption must also exist as it is usually necessary to

reuse the adsorbent. The fluid-solid interaction leads to a reduction in potential energy of the

fluid molecules in the vicinity of adsorbent surface. As a result, the fluid molecules concentrate

such that their molecular density in this region is substantially greater than the free fluid phase.

The strength of such a surface interaction depends on the nature of both the solid adsorbent

and the fluid adsorbate. Consequently, different substances adsorb with different affinities.

Such a selectivity provides the basis to achieve separation in adsorption separation processes,

such as Pressure Swing Adsorption.

If the fluid-surface interactions involves weak forces, such as van der Waals, we observe

physical adsorption or physisorption. In contrast, if the forces are strong and involve electron

transfer, the phenomena is called chemisorption. As highlighted by Ruthven et al. [156],

adsorption separation processes utilize physisorption as it leads to economically viable desorp-

tion and regeneration of the spent adsorbent by manipulating external operating conditions.

Adsorbent regeneration is an important aspect of adsorption separation processes. A given

adsorbent has a finite solute uptake capacity from the free fluid phase and must be cleaned

for re-utilization. Thus, the adsorption phenomena should be reversible. Such reversibility is

economically achieved in case of physisorption compared to chemisorption.

Based on the principle of adsorption and adsorbent regeneration, adsorption separation

processes are designed to operate in a cyclic manner. Often two fixed-bed adsorbers are

provided, such that one is used for adsorption while the other is being regenerated. For

separating components from gaseous mixtures, following two kinds of adsorption separation

processes are generally employed [181]:

• Temperature Swing Adsorption (TSA): In this process, bulk separation of a mixed

Chapter 2. Pressure Swing Adsorption 12



2.2 Adsorbent Properties

gas is achieved by repeating adsorption at a lower temperature and desorption at a higher

temperature. The cyclic operation in this case typically takes a rather long time because

of a relatively large time constant of heat transfer due to poor thermal conduction in the

adsorbent packed bed.

• Pressure Swing Adsorption (PSA): In this process, bulk separation of a mixed gas is

achieved by repeating adsorption at a higher pressure and desorption at a lower pressure.

In this case, the step time for desorption is of the same order of magnitude as that of

the adsorption (sometimes even smaller). Hence, this process enjoys shorter cycle time

and more productivity compared to TSA, and thus, is preferred.

An alternative to manipulate pressure and temperature is to alter the composition of the fluid

phase to control the direction of adsorption. This operation, called Concentration Swing

Adsorption (CSA), is utilized when the free fluid phase is a liquid. Such aforementioned

processes are collectively viewed as Periodic Adsorption Processes (PAPs).

2.2 Adsorbent Properties

As mentioned before, physisorption is caused mainly by weak forces between fluid molecules

and adsorbent surface. Thus, adsorbents are characterized by surface properties such as surface

area. Moreover, the role of an adsorbent is to provide surface for selective adsorption of certain

components from the fluid phase. Hence, the desirable properties which an adsorbent should

possess are as follows [138]:

• Capacity: An adsorbent is desired to provide a large specific surface area for a large

adsorption capacity. A low capacity adsorbent leads to longer and expensive adsorbent

beds. The creation of a large internal surface area in a limited volume is commercially

achieved by casting adsorbents from microporous materials. In addition to micropores,

some adsorbents have larger pores called macropores which result from aggregation of

fine powders into pellets. A typical porous adsorbent particle is illustrated in Figure 2.1.
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Figure 2.1: A composite adsorbent pellet with different mass transfer resistances [156]

Macropores function as diffusion paths of adsorbate molecules from outside the pellet to

the micropores. As a result of such porous network, adsorption/desorption kinetics is

controlled by intra-particle diffusion.

• Selectivity: An adsorbent must selectively retain one or more adsorbates from the fluid

phase. This can be achieved either by equilibrium selectivity, in which species adsorb

differently as a consequence of different equilibrium affinities, or by kinetic selectivity,

in which relative adsorption depends on the difference of intra-particle diffusion rates

among different adsorbate species.

2.3 PSA Modeling

2.3.1 Mass Transfer

At the microscopic level (see Figure 2.1), process of adsorption involves following steps in

sequence (desorption step follows these steps in reverse):

1. The adsorbate diffuses from the bulk fluid phase to the external surface of the adsorbent

pellet

2. From the external surface, adsorbate diffuses into and through the macropores.
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3. If micropores exist, adsorbate diffuses further in the micropores before getting adsorbed

onto the surface of the micropores, otherwise it adsorbs on the surface of macropores.

Consequently, the adsorbate encounters three different kinds of mass transfer resistances at

each of the steps in this sequence, which are described as below:

• External film resistance: This exists in the external liquid film surrounding the ad-

sorbent pellet. It can be characterized by using the system’s Sherwood, Reynolds and

Schmidt number. Typically this resistance is negligibly small in PSA systems [181, 156].

• Macropore diffusive resistance: This mass transfer resistance exists in the macrop-

ores of the adsorbent particle, and usually is the rate-controlling step. It depends on the

relative magnitude of the pore diameter and the mean free path of the adsorbate under

the operating conditions in the pores. When the pore diameter is much greater than

the mean free path, Bulk diffusion (Dm,i) dominates the transport, and is estimated by

Chapman-Enskog equation [181]. When the mean free path is much larger than the pore

diameter, Knudsen diffusion dominates the transport, and is characterized by

DK = 48.5dp

√
T

Mw
(2.1)

Knudsen diffusion is usually dominant when the total pressure is quite low. In the

intermediate case, effective diffusivity is obtained from Bosanquit’s equation

Deff,i =
Dm,iDK

Dm,i +DK
i = 1, . . . , Nc (2.2)

Finally, macropore diffusivity (called Pore diffusion) is characterized by following equa-

tion

Dp,i =
εpDeff,i

τ
i = 1, . . . , Nc (2.3)

• Micropore diffusive resistance: Also known as Surface diffusion, this resistance exists

in the micropores of the adsorbent pellet. For the adsorbents considered in this work,
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either micropores don’t exist or this resistance is negligible, i.e., adsorption occurs in the

micropores instantaneously.

Depending on the mathematical complexity desired, mass transfer phenomena in an adsorption

process can be described using either of the three models below.

• Instantaneous equilibrium model

This model is applicable when all the mass transfer resistances between the gas and the

solid phases are negligible. As a result, equilibrium is attained instantaneously in the

system with no mass transfer losses. It can be characterized as

∂qi
∂t

=
∂q∗i
∂t

i = 1, . . . , Nc (2.4)

• Pore diffusion model

In the pore diffusion model, following detailed diffusion equation within the spherical

adsorbent particle is solved to obtain the local rate of change of solid loading [207].

∂qi
∂t

=
1

r2
∂

∂r

(
Dp,ir

2∂qi
∂r

)
, ∀r ∈ (0, dp/2), i = 1, . . . , Nc (2.5)

Boundary condition is obtained by comparing internal flux with the external flux at the

boundary of the pellet.

• Linear driving force model (LDF)

The LDF model [84] is obtained by assuming a parabolic solution profile for the pore

diffusion model and then using an average solid loading for the entire adsorbent particle.

It is expressed as

∂qi
∂t

= ki(q
∗
i − qi) i = 1, . . . , Nc (2.6)

while the mass transfer coefficient is given by

ki =
60Dp,i

d2p
i = 1, . . . , Nc (2.7)
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Figure 2.2: Adsorption isotherms and change in equilibrium solid loading with pressure and
temperature

2.3.2 Adsorption Isotherm

An adsorbent in contact with the surrounding gaseous mixture for a sufficiently long time

eventually attains equilibrium. In this state the amount of a component adsorbed on the

surface is determined as shown in Figure 2.2 [154]. The relation between the equilibrium

amount adsorbed and the total pressure of the fluid phase at a particular temperature is called

an adsorption isotherm. In a general mathematical form, it is expressed as [q∗]T = f(P ).

Figure 2.2 also shows how adsorption/desorption is facilitated by changing total pressure or

temperature of the system. We note that an adsorption process is always exothermic while

desorption is always endothermic. Since the overall change in system’s entropy is negative

during adsorption, enthalpy change must be negative to ensure a net negative change in the

Gibbs free energy (vice-versa for desorption). Consequently, adsorption is favored at a lower

temperature, while desorption at a higher one. Similarly, at a high pressure, more adsorbate

molecules interact with the molecules at the adsorbent surface leading to a higher adsorbent

surface coverage and higher equilibrium solid loading. Hence, adsorption is favored at a high

pressure while lowering the pressure facilitates desorption.
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At sufficiently low adsorbate concentration (or partial pressure), adsorption isotherm at-

tains a linear form, called Henry’s Law:

q∗i = kHi Pi i = 1, . . . , Nc (2.8)

Here kHi is Henry’s constant and is inversely related to temperature (kHi = k0e
∆Hads

i /RT ).

In general, nonlinear equlibrium relationship is described in numerous different mathemati-

cal forms, some of which are based on a simplified physical picture of adsorption/desorption

phenomena while others are purely empirical and intended to correlate the experimental data.

Commonly used mathematical models include single- and dual-site Langmuir model, Freundlich

model, and Langmuir- Freundlich model.

• Langmuir adsorption isotherm

The Langmuir isotherm model is derived from mass action considerations and by bal-

ancing the occupied and unoccupied sites on the surface. It shows correct asymptotic

behavior as it reduces to Henry’s Law in the low-concentration region, and approaches

saturation limit at high concentrations, which is a requirement for thermodynamic con-

sistency in any physisorption-based system [156]. Single-site model

q∗i =
qsi biPi

1 +
∑

j bjPj
where qsi = k1i + k2i T bi = k3i exp(k

4
i /T ) i = 1, . . . , Nc

(2.9)

and dual-site model

q∗i =
qs1ib1iPi

1 +
∑

j b1jPj
+

qs2ib2iPi
1 +

∑
j b2jPj

i = 1, . . . , Nc (2.10)

where qsmi = k1mi + k2miT bmi = k3miexp(k
4
mi/T ) m = 1, 2

are the commonly used formulations for Langmuir model.

• Freundlich and Langmuir-Freundlich isotherms
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Depending on the separation system, Freundlich model

q∗i = qsi biP
1/n
i n > 1, i = 1, . . . , Nc (2.11)

or Langmuir-Freundlich model

q∗i =
qsi biP

1/n
i

1 +
∑

j bjP
1/n
j

i = 1, . . . , Nc (2.12)

are occasionally used as adsorption isotherms. Both these models are empirical in nature

with no sound theoretical basis, and both of these do not reduce to Henry’s Law in the

low-concentration region. However, they can cogently represent the behavior of several

systems over a wide range of conditions.

2.3.3 Material Balance

PSA processes are generally carried out with packed adsorption columns. The dynamic be-

havior of an adsorption column is governed by the coaction of adsorption kinetics, adsorption

equilibrium, and fluid dynamics, and its understanding is vital for process modeling and anal-

ysis [106, 156, 169, 206].

Assuming an axially dispersed plug flow pattern in a fixed bed adsorption column, the

transient component material balance for the bulk gas phase is given by

εb
∂Ci
∂t

+ (1− εb)ρs
∂qi
∂t

+
∂vCi
∂x

= DL
∂2Ci
∂x2

i = 1, . . . , Nc (2.13)

We often omit the axial dispersion term from this equation while numerically integrating it

because the numerical dispersion resulting from spatial discretization of the flux term always

exists for any discretization scheme. Thus, considering physical dispersion, together with

the inevitable numerical dispersion, causes additional smearing of the solution profiles. Hence,

instead of a parabolic formulation, the following hyperbolic form is used for component material
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balance in the bulk gas phase

εb
∂Ci
∂t

+ (1− εb)ρs
∂qi
∂t

+
∂vCi
∂x

= 0 i = 1, . . . , Nc (2.14)

Here we assume no radial dependence for concentration and solid loading. Thus, in the equa-

tion above, Ci and qi represent cross-sectional average values. Numerical dispersion in such

hyperbolic systems is generally mitigated by considering a large number of spatial discretization

nodes or by utilizing high-resolution spatial discretization techniques.

2.3.4 Energy Balance

As mentioned before, an adsorption process is accompanied by the evolution of heat, and

temperature changes influence the adsorption equlibrium behavior. Thus, accounting for heat

generation and transfer in adsorbent beds is essential for accurate modeling of PSA processes.

The heat generated on the adsorbent surface is transported through conduction between ad-

sorbent particles and through convection in the bulk gas phase. The extent of temperature

variation in an adsorption chamber depends primarily on the heat of adsorption, bulk-phase

transport properties, and heat transfer characteristics of the packed bed such as thermal con-

ductivity and heat transfer coefficient [67].

In general, temperature difference is neglected and thermal equilibrium is assumed between

the bulk gas phase and adsorbent particles. Moreover, heat transfer in the axial direction by

thermal conduction is often negligible unless the operation is adiabatic at a very high flow rate.

Based on these assumptions, the energy balance for the system is given by

(
εb
∑
i

Ci(C
i
pg −R) + ρbCps

)
∂T

∂t
− ρb

∑
i

∆Hads
i

∂qi
∂t

+
∂vh

∂x
+ UA(T − Tw) = 0 (2.15a)

Cipg = aic + bicT + cicT
2 + dicT

3 i = 1, . . . , Nc (2.15b)

h =
∑
i

(
Ci

∫
Cipg dT

)
(2.15c)
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Here we also consider temperature dependence of heat capacities and heat transfer through the

wall of the column. As in the case of material balance, here T represents average temperature

across cross-section. The effective heat transfer coefficient UA comprises contributions from

both fluid-to-wall as well as fluid-to-particle heat transfer coefficients. Fluid-to-particle heat

transfer coefficient can be obtained from Carberry equation and it depends on system’s Nusselt

number, Prandtl number, and Reynolds number [181]. Fluid-to-wall heat transfer coefficient

is usually obtained from empirical correlations. If only fluid-to-wall heat transfer is assumed,

UA reduces to

UA =
4hw
D

(2.16)

where D is the column diameter and hw fluid-to-wall heat transfer coefficient.

2.3.5 Momentum Balance

As the bulk fluid flows through the void spaces between adsorbent particles, it experiences

a pressure drop due to viscous energy losses and drop in kinetic energy. Ergun equation is

commonly used to describe such a pressure drop along the bed length

−∂P
∂x

=
150µ(1− εb)

2

d2pε
3
b

v +
1.75

dp

(
1− εb
ε3b

)(∑
i

M i
wCi

)
v|v| (2.17)

The first term on the right-hand side represents losses due to viscous flow (laminar part), while

the second term accounts for the drop in kinetic energy (turbulent part).

Often pressure drop across the bed is assumed negligible and is not considered in the

analysis of the dynamic behavior of a PSA process [48, 47, 144]. Cruz et al. [58] suggest

that such an assumption is valid for bench-scale PSA processes. They suggest that an overall

material balance to obtain velocity profile along the bed length can be avoided and a constant

or linear velocity profile is acceptable for PSA processes with low Reynolds number.
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Figure 2.3: A 2-bed 4-step Skarstrom cycle [176]

2.4 PSA Operation

As described in section 2.1, fixed-bed pressure swing adsorption processes typically operate

in a cyclic manner undergoing adsorption and desorption steps periodically in one or more

packed beds. Desorption step renders clean beds re-usable for adsorption step. In PSA,

bulk separation is achieved by “swinging” between high and low pressure levels for adsorption

and desorption, respectively. Adsorption is carried out at a superambient pressure while the

desorption is achieved at a near-ambient pressure level. In a vacuum PSA process (VPSA),

desorption is carried out under vacuum. Larger pressure difference allows efficient separation

as well as less adsorbent usage [206, 156].

2.4.1 Operation Scheme

A typical two-bed operation mode of PSA cycle is shown in Figure 2.3. The early PSA cycles

developed by Skarstrom [176] and Air Liquide [60] utilized such an operating strategy. The
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operation consists of four distinct steps, pressurization, adsorption, depressurization (counter-

current), and light reflux (or desorption). In the first step (Step 1), bed 1 is pressurized

by high-pressure feed gas from feed end, while bed 2 is depressurized in a counter-current

fashion (Step 3) and strongly-adsorbed component (heavy product) is removed. Next, high-

pressure feed gas is continued through bed 1 where adsorption of heavy product (Step 2) takes

place while product gas enriched in weakly-adsorbed component (light product) leaves the top.

During this period, a fraction of the light product gas is drawn out to bed 2 at low pressure to

purge and further desorb the accumulated heavy adsorbate counter-currently, called the light

reflux step (Step 4). Further, the beds interchange roles and execute previous steps of the

other bed. Eventually, both beds repeat all the four steps in a cyclic manner.

The idea behind the light reflux step is to flush the void spaces within the bed and to

ensure that at least the upper end of the bed, where light product is withdrawn, is completely

free of the heavy product. Moreover, counter-current operation during depressurization and

light reflux steps prevents retention of the heavy product at least at the upper end of the bed,

thereby reducing the amount of purge used in Step 4. Increasing the purge amount increases

the light product purity but inevitably reduces its recovery. Also, the operating pressure during

Step 2 substantially influences light product losses during Step 3 and 4. Higher adsorption

pressure increases losses during Step 3, while low pressure increases losses during Step 4 [156].

The Skarstrom cycle represents the most basic operation of a PSA process. To improve

the purity and recovery of light or heavy products or both, as well as to design PSA processes

for multi-component feed mixtures, several modified configurations have been proposed in the

literature with a multitude of distinct operating steps such as light product or heavy product

pressurization, desorption with heavy product as purge gas, co-current depressurization, pres-

sure equalization etc. [43, 62, 129, 196, 213, 202]. The processes differ from one another with

respect to the kinds of operating steps as well as the sequence in which these steps are carried

out.

Industrial PSA operations adopt more sophisticated modes to increase product purity and

Chapter 2. Pressure Swing Adsorption 23



2.4 PSA Operation

Figure 2.4: Time chart for a 5-bed 11-step H2 PSA process [100]

recovery or minimize overall power consumption and operating costs. A practical PSA/VPSA

process can be fairly complex with a multicolumn design executing a wide variety of nonisother-

mal, nonisobaric, and non-steady-state operating steps in a non-trivial sequence. For instance,

Figure 2.4 shows the time chart for a 5-bed 11-step PSA process which separates hydrogen

from a multicomponent feed mixture at a purity of more than 99.9999% [100]. Besides the

conventional feed (adsorption) and purge (light reflux) steps, the cycle comprises multiple pres-

sure equalization steps (EQ) and unconventional blowdown (depressurization) with pressure

equalization step.

2.4.2 Cyclic Steady State

PSA processes are no more complex than most of the conventional separation processes, but

they are different in one essential feature: the process always operates under transient condi-

tions. Since the time intervals for operating steps are usually short and boundary condition

around the PSA beds change as we switch from one operating step to another, the process

never reaches a steady state. Consequently, behavior of a transient PSA process is always de-

scribed by a set of partial differential equations (PDEs) which requires more complex solution

procedure.

PSA processes differ from the conventional separation processes in one more feature: they

operate under cyclic steady state (CSS). At CSS, conditions in each bed at the end of each

cycle are exactly the same as those at the beginning of the cycle. In other words, although

the process remains dynamic within a cycle, the transient behavior of the entire cycle remains
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Figure 2.5: Boundary matchings required for the two-bed four-step PSA process

constant and repeats itself invariably from cycle to cycle. Mathematically, CSS is represented

by matching the inital conditions of the PDEs with the solution obtained at the end of the

cycle. Thus, we note that the initial conditions required to solve the set of PDEs of a PSA

process are themselves parametric and should be computed simultaneously with the solution

of PDEs.

The number of cycles required by an actual PSA process to go from start-up to CSS are

system dependent, but typically quite large. For instance, the number of cycles required to

reach CSS are around 500 for H2 PSA while 2000 for O2 VPSA process [114]. Normally, CSS

is determined by solving the PDE system repeatedly for each step of the cyclic process in

sequence, using the final concentration profile for each step as the initial condition for the next

step in the cycle. Such computations are bulky since the procedure is repeated sufficiently for

a large number of cycles.

2.4.3 Boundary-matching for Multi-bed Operation

In a multi-bed PSA operation, beds interact with each other over the cycle as material flows

from one bed to another, such as during the reflux and pressure equalization steps. We need to

capture such an interaction at the boundary of the beds while simulating the multi-bed system.
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Figure 2.6: Approaches to match boundary values while simulating multi-bed PSA operations

Moreover, due to CSS, conditions for the same bed should be matched at the beginning and

the end of the cycle. For instance, Figure 2.5 illustrates such boundary matchings with the

spatial domain and time chart of the two-bed four-step process shown in Figure 2.3. First,

since a small amount of the light product exiting during the adsorption step is recycled as

a reflux to the second bed for desorption, the conditions at the ends of the beds need to be

matched. Next, since the final bed conditions at the end of an operating step serve as the intial

condition for the next step, bed profiles should be matched. Finally, for CSS, bed profiles at

the beginning and the end of the cycle should be matched. The boundaries where conditions

need to be matched are shown in bold in Figure 2.5.
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Unibed and Multibed formulations are two different strategies to implement aforementioned

boundary matchings. As shown in Figure 2.6(a), Unibed approach involves simulating a single

bed for all the operating steps in a cycle. Since all the PSA beds follow same sequence of steps

and demonstrate identical dynamic behavior, one bed is sufficient to simulate the entire PSA

process. Hence, only one set of bed equations are solved with varying boundary conditions for

all the steps. To simulate bed interactions and match boundary information for different beds,

storage buffers are used in the model implementation. In contrast, in Multibed approach we

simulate all the beds in the PSA flowsheet but only for a portion of the cycle. As illustrated

in Figure 2.6(b) for a 2-bed 4-step process, this portion of the cycle is selected such that it

covers all the operating steps of the cycle among all the beds. Thus, we solve bed equations

for all the beds but only for one set of operating steps. Such an approach accurately simulates

bed interactions by matching boundary information simultaneously. By imposing a bed profile

match at the beginning of one bed and end of another bed, solution of the entire PSA cycle is

eventually obtained. Ling Jiang [99] provides a detailed description of Unibed and Multibed

approaches.

2.5 Simulation Methodologies

As discussed in section 2.3, PSA processes are mathematically modeled by coupled hyperbolic

partial differential and algebraic equations (PDAEs) distributed in both space and time. Ob-

taining analytical solution without making any approximation is close to impossible for such

a highly coupled set of PDAEs. Low dimensional PDAEs of this type (with simplifications)

can be solved analytically or directly by the PDE package CLAWPACK [123]. However, for

large-scale systems numerical methods employing discretization for the spatial or the temporal

or both domains are essential. There are two distinct approaches to numerically simulate the

set of PDAEs:

• Method of Lines (MOL)

Method of Lines is a two-step approach [160]. First, PDAEs are discretized in the spatial
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domain thus converting them to a set of differential algebraic equations (DAEs). Next,

DAEs are integrated using standard time integration routines. One of the advantages

with MOL is that with a high-resolution spatial discretization as well as with the er-

ror checking mechanisms present in the commercial time integration routines, we can

achieve high order accuracy in both dimensions. A solution of the hyperbolic PDAEs

defining PSA systems is usually characterized by steep adsorption fronts in the spa-

tial domain, which is aggravated with higher adsorption pressure. In order to capture

such steep fronts, it is essential to use a spatial discretization scheme which not only

avoids physically unrealistic oscillations, but also ensures minimal numerical dispersion

and negligible smearing (damping) with fewer discretization nodes. Moreover, it should

also ensure extreme accuracy with mass, momentum, and energy conservation, which is

vital for PSA-based separations. Because first- and second-order finite difference and

finite element methods do not often mitigate such numerical noise with hyperbolic sys-

tems, high-resolution schemes such as upwind-based finite volume methods are utilized

for spatial discretization [57, 124, 125, 197].

• Complete Discretization (CD)

In Complete Discretization approach, we discretize both spatial and temporal domains

simultaneously, which leads to a large set of nonlinear algebraic equations. Such an

approach allows seamless addition of the CSS condition to the discretized bed model, thus

allowing entire system to be solved simultaneously by a Newton-based equation solver.

Hence, CD is attractive and efficient for simpler PSA models. Nilchan and Pantelides

[138, 139] successfully demonstrated this approach for small-scale PSA problems and

solved the resulting algebraic system using a nonlinear equation solver inside gPROMS

[2]. However, one of the drawbacks of CD is that in the absence of any error checking

mechanism for temporal integration, pre-determined temporal discretization can lead to

an inaccurate solution due to an insufficient number of temporal discretization nodes.

While a large number of nodes can mitigate this drawback, it can consequently make the
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problem computationally challenging to solve. Moreover, initialization of thousands of

variables simultaneously also presents a significant challenge. Hence, after solving with

the CD approach with fewer nodes, we verify the accuracy of the results with a more

accurate MOL approach for our case studies.

We present a brief description of the spatial and the temporal discretization schemes used in

this work in the subsequent sections.

2.5.1 Spatial Discretization

PSA processes are convection dominated and finding accurate discretization scheme that re-

solves sharp adsorption fronts is an additional challenge. Although higher-order methods

accurately predict behaviour for smooth regions, they introduce unrealistic oscillations around

steep zones in the spatial profile. First-order methods can be inherently bounded and can

ensure no oscillatory behavior for steep zones. However, due to low order accuracy, fronts lose

their sharpness (numerical smearing) unless hundreds of spatial nodes are used. Therefore,

high-resolution methods are utilized for convection dominated processes which ensure second

or higher order accuracy for smooth regions together with low order accuracy without oscil-

lations for steep regions and discontinuities in the spatial profile [124, 70]. In particular, we

use the finite volume method with flux limiters in this work since it not only avoids these

aforementioned issues but also is well suited to model hyperbolic conservation laws, given its

inherent conservative property [58, 114, 124].

Finite volume methods with flux limiters utilize the theory of flux-corrected transport

(FCT) which incorporates anti-diffusion to negate the effects of excessive smearing. FCT

removes numerical dispersion from the discretized equations to keep the fronts sharp ensuring

no oscillations [32]. On the other hand, finite volume methods with a flux limiter conceptually

are exact opposite of FCT. In other words, they introduce additional numerical dispersion

around steep zones to avoid oscillations. However, the theory of flux limiters has been derived

from FCT [91, 125].
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Figure 2.7: Finite volume discretization scheme

In a finite volume method, the spatial domain is divided into discrete volume elements (or

cells) and we define average values for state variables over each element. For instance, for

one-dimensional finite volume method, spatial division is done as shown in Figure 2.7, and

average density over each element j is defined as

∫ xj+1/2

xj−1/2

f(x)dx = ∆j f̄j (2.18)

Here j ± 1/2 are walls of volume j, ∆j is the length of the volume j, and f̄j is the volume

average of f(x) which for example can represent bulk phase mass concentration or enthalpy.

PDAEs are then integrated in the spatial domain and the state variables are replaced by their

cell average values. For instance, Equation (2.14) after applying finite volume discretization

becomes (for j-th cell and i-th component)

εb
dC̄i,j
dt

+ (1− εb)ρs
dq̄i,j
dt

+
1

∆j

(
vj+1/2Ci,j+1/2 − vj−1/2Ci,j−1/2

)
= 0 (2.19)

Here vj+1/2Ci,j+1/2 and vj−1/2Ci,j−1/2 are mass fluxes across the walls of volume j, resulting

from the approximation of the integral in Equation (2.18). Since Equation (2.17) (or any other

equation) always evaluates velocity at cell walls, only Ci,j+1/2, Ci,j−1/2 (or in general, wall

values of the densities) need to be approximated in terms of cell average values by interpolation.

For upwind finite volume methods, such an interpolation depends on the direction of the flux.

In this work, we use the following flux direction-based formulation to approximate wall values

of densities, such as bulk phase mass concentration or enthalpy [59, 91, 125]
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For vj+1/2 ≥ 0 fj+1/2 = f̄j +
1

2
θ(rj+1/2)

(
f̄j+1 − f̄j

)
(2.20a)

rj+1/2 =
f̄j − f̄j−1

f̄j+1 − f̄j
(2.20b)

For vj+1/2 < 0 fj+1/2 = f̄j+1 +
1

2
θ(rj+1/2)

(
f̄j − f̄j+1

)
(2.20c)

rj+1/2 =
f̄j+1 − f̄j+2

f̄j − f̄j+1
(2.20d)

Here f̄j is the cell average value for state variable such as gas-phase concentration C, solid

loading q, or temperature T , θ(r) is the flux limiter and rj+1/2 is a ratio which measures the

smoothness of the profile. If rj+1/2 is close to 1, the profile is presumably smooth. If rj+1/2 is

far from 1, there must be a sharp discontinuity at xj . Depending on the value of rj+1/2, θ(r)

applies proper correction. If the profile is smooth, θ(r) preserves second or higher-order nature

of the discretization, otherwise near steep regions θ(r) reduces the order of the discetization

to eliminate oscillations.

Flux limiters take various forms to perform aforementioned functions. Darwish et al. [59]

and Hirsch [91] give a detailed description of several flux limiters such as Minmod, Superbee,

and Van Leer limiters. While Minmod limiter is too diffusive and Superbee doesn’t perform

adequately for smooth regions, Van Leer has properties between the two and thus is more

desirable. Hence, we use the Van Leer flux limiter for our case studies, which has the following

form

θ(r) =
r + |r|
1 + |r|

(2.21)

Boundary conditions are incorporated in the finite volume scheme with the help of “ghost

cells”, as illustrated in Figure 2.7. Ghost cells are required because Dirichlet or Neumann

boundary conditions specified for the problem apply to the walls of the first or N th finite

volume and they need to be translated to corresponding cell average value to get accounted

for in the discretization scheme. Thus, boundary conditions at the walls are usually translated

to the average values of fictitious ghost cells using some form of extrapolation. For instance, if

finlet and foutlet are given as boundary conditions and a linear extrapolation scheme is chosen,
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they get translated as

f̄0 = 2finlet − f̄1 (2.22a)

f̄−1 = 4finlet − 3f̄1 (2.22b)

f̄N+1 = 2foutlet − f̄N (2.22c)

f̄N+2 = 4foutlet − 3f̄N (2.22d)

where f̄0, f̄−1, f̄N+1, and f̄N+2 are average values for ghost cells.

2.5.2 Temporal Discretization

For temporal discretization of the DAE system obtained after spatial discretization, we employ

orthogonal collocation on finite elements (OCFE) technique for our work [40, 69]. OCFE is a

discretization scheme which combines the method of weighted residuals with the finite element

methods. The state temporal profiles are approximated at a finite number of points - the

collocation points - by a family of polynomials.

To illustrate the concept, we consider the following set of ordinary differential equation

(ODE)

dy

dt
= f(y(t), t), y(t0) = y0 (2.23)

For discretization, the time domain is partitioned into nE finite elements of length hi, i ∈

[1, . . . , nE ] such that
∑nE

i=1 hi = tf − t0, where t0 and tf are initial and final time, respectively.

Thus, time at the end of each element i is defined as ti = t0 +
∑i

m=1 hm. Next, we represent

the time derivative of the state as a Lagrange polynomial of order nC , where nC is the number

of collocation points, for each element i [17]. This leads to

t = ti−1 + hiτ, τ ∈ [0, 1], t ∈ [ti−1, ti], i = 1, . . . , nE

y(t) = yi,0 + hi

nC∑
j=1

Ωj(τ)

(
dy

dt

)
i,j

(2.24)

Here τj , j = 1, . . . , nC are the collocation points which are usually the roots of an orthogonal

polynomial of degree nC , yi,0 is the value of the state at the beginning of the element i,
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dy
dt i,j

= dy
dt (ti,j) with ti,j = ti−1 + hiτj , and Ωj(τ) is a polynomial of order nC , satisfying

Ωj(τ) =

∫ τ

0
lj(τ)dτ, τ ∈ [0, 1], t ∈ [ti−1, ti] i = 1, . . . , nE

where lj(τ) =

nC∏
k=1,6=j

τ − τk
τj − τk

, j = 1, . . . , nC

Ωj(0) = 0,
dΩj
dτk

= δj,k, j, k = 1, . . . , nC

(2.25)

Here we use Radau collocation points with τj < τj+1, j = 1, . . . , nC − 1, and τnC = 1 for every

element. Since the last collocation point lies at the end of the finite element i, continuity of

the state profiles is easily ensured by setting yi,0 = y(ti−1,nC ) = y(ti−1).

yi,0 = yi−1,0 + hi−1

nC∑
j=1

Ωj(1)

(
dy

dt

)
i−1,j

(2.26)

While state variables are continuous across the finite elements, control variables can present

discontinuities at the boundaries of the elements. We prefer Radau collocation points because

they allow us to set constraints easily at the end of each element in an optimization problem,

and to stabilize the system more efficiently if high index DAEs are present [33, 28]. To de-

termine polynomial coefficients dy
dt i,j

, we substitute Equation (2.24) into Equation (2.23) and

enforce the resulting algebraic equations at the collocation points τj , which leads to

(
dy

dt

)
i,j

=
dy

dt
(ti,j) = f(y(tij), tij), j = 1, . . . , nC , i = 1, . . . , nE (2.27)

where y(tij) is obtained from Equation (2.24).

2.6 Concluding Remarks

Beginning with a review of the fundamentals of adsorption phenomena, we described how

the physics of pressure swing adsorption processes can be modeled mathematically in the

form of PDAEs. It is clear from the description that the fundamentals at the molecular

level are relatively well understood and characterized, and it is possible to construct fairly
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accurate models to predict dynamic behavior of pressure swing adsorption processes. Currently,

research efforts are aimed at improvements in multicomponent mixture isotherms, and better

understanding of mass transfer phenomena, axial dispersion and fluid transport within packed

beds [169, 206].

We also discussed operation strategies for two-bed as well as multi-bed PSA processes, and

mentioned that industrial PSA systems carry out high purity separations with the help of so-

phisticated cycles involving complex sequences of operating steps. Designing such complicated

sequences and PSA processes is generally non-intuitive, and thus a systematic methodology

is desired which can ameliorate the arduous task of synthesizing PSA cycles. In the next

few chapters, we present a novel optimization-based framework to design optimal PSA cycles,

and illustrate it with the help of examples motivated from the application of PSA for carbon

capture.

Finally, we showed that bed model for PSA processes is defined by hyperbolic partial differ-

ential and algebraic equations (PDAEs) with high nonlinearities arising from non-isothermal

effects and nonlinear adsorption isotherms, and with solution profiles represented by steep ad-

sorption fronts. Optimization of such systems presents a significant computational challenge

to current algorithms. To address this, we present in subsequent chapters a novel optimization

algorithm based on reduced-order modeling.
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Chapter 3

PSA Superstructure

Synopsis

This chapter presents a systematic optimization-based formulation to synthesize optimal PSA

cycles for a given application. In particular, we present a novel PSA superstructure to simul-

taneously determine new configurations and design parameters. The superstructure consists

of two beds, one of which acts as an adsorbing bed and the other as a desorbing bed. The

interconnections between the two beds are governed by time-dependent control variables, such

as fractions of the light and the heavy product recycle. The superstructure is rich enough to

predict a number of different PSA operating steps, which are accomplished by varying these

control variables. An optimal sequence of operating steps is achieved by solving an optimal

control problem for the superstructure with the partial differential and algebraic equations of

the PSA system and the cyclic steady state condition. We also present the PDAEs for the bed

model with the connectivity equations of the superstructure. Large-scale optimization capa-

bilities have enabled us to adopt a complete discretization methodology to solve the optimal

control problem as a large-scale nonlinear program.
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3.1 Motivation

Industrial PSA/VSA systems are quite intricate involving multiple adsorber columns which

execute a non-intuitive complex sequence of nonisothermal, nonisobaric, and non-steady-state

operating steps. Synthesizing such configurations for given commercial specifications has so

far relied on thumb rules, past experiences in adsorption design, or immense experimental

effort with bench- or pilot-scale processes. A systematic methodology to design, evaluate and

optimize novel PSA cycle configurations hasn’t been reported in the literature to date due to

the inherent complexity of the process. Cycle design with accurate, reliable, and rigorous PSA

bed models is considered prohibitive because of the expense and computational time involved.

Very few studies in the literature have tried to address this issue. All of these studies

suggest simplistic formulations to determine minimum number of beds required in a PSA

process for given kinds and fixed sequences of operating steps, but do not discuss how these

steps should be chosen to form a cycle. Zhang and Webley [211] outlined an approach for

cycle development by understanding the roles of individual operating steps and adsorption

fronts. However, they identified optimal configurations with the help of a pre-decided set of

operating steps and a simplified mathematical model. Chiang [46] proposed simple arithmetic-

based heuristics, while Smith et al. [177] extended Chiang’s work to propose a mixed-integer

nonlinear programming (MINLP) based approach to obtain optimal number of beds required

to execute a fixed sequence of operating steps. Smith et al. [178, 179] also suggested a 3-step

scenario to design an industrial PSA system, but again with a known cycle of operating steps.

Recently, Nikolic̀ et al. [136, 137] proposed a state-task network (STN) based framework to

determine optimal number of beds, with operating steps forming the states of the network. The

kinds and sequences of operating steps chosen were fixed in their case as well. Moreover, STN

developed wasn’t exhaustive and missed many basic steps such as product repressurization,

co-current depressurization, and desorption with purge stream coming from another bed.

In contrast, we present a novel superstructure-based approach to obtain optimal sequence

of operating steps in a PSA cycle without any assumption on the kinds of steps that should
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Figure 3.1: A 2-bed PSA Superstructure

be included in the cycle. With development of optimization strategies for process synthesis, it

is natural to consider a superstructure based approach to design PSA processes. As discussed

in the next section, this approach relies on the formulation of an optimal control problem.

3.2 Methodology

3.2.1 Superstructure

Figure 3.1 illustrates the proposed 2-bed PSA superstructure. It has a co-current bed (CoB)

and a counter-current bed (CnB) that determine co-current and counter-current operating

steps in the cycle, respectively. We consider only two beds to ensure that the direction of

the flow, and thus the superficial velocity, remains co-current for CoB and counter-current

for CnB. This strategy avoids flow reversals in the bed, and does not require additional bed

connections with embedded logical conditions in order to realize different operating steps. This
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superstructure is consistent with the concept of unibed models [114], where no more than two

beds interact at the same time, and the steps can be grouped into adsorbing steps and desorbing

steps. Consequently, it can accomplish a wide variety of operating steps with just a single bed

connection, as shown in Figure 3.1. Furthermore, this helps to avoid discrete variables and

uses only continuous variables for the optimization problem.

The superstructure is designed to get the light product from the upper end (light end) of

CoB and heavy product from the lower end (heavy end) of CnB. The time dependent variables

β(t) and α(t) determine the fraction of the light product and the heavy product streams that

go in the top and the bottom reflux, respectively. If the feed gas (or inlet gas) comes at a

low pressure which is close to atmospheric, it is first compressed from its pressure Pinlet to

Pfeed through the optional inlet compressor, before being compressed from Pfeed to Pa using

the feed compressor. The time dependent feed fraction φ(t) determines the feeding strategy.

For CoB, pressure is specified at the light end by Pads, while the pressure at the other end

Pa is determined from the pressure drop in this bed. The velocity va, concentration for ith

component Ca,i, and temperature Ta at the light end are determined from the outlet flux.

Similarly for CnB, pressure is specified at the heavy end by Pdes, while Cd,i, Td and vd are

obtained from the output flux, and Pd is obtained from the pressure drop. The superstructure

also incorporates compressors and valves to account for different pressure levels in the beds,

and a vacuum generator to extract the strongly-adsorbed component.

3.2.2 Cycle Realization

It is possible to accomplish a wide variety of different operating steps of a PSA process by

varying control variables α(t), β(t), φ(t), Pads(t) and Pdes(t). For instance, as shown in Figure

3.2, if we set α = 0.5, β = 0 and φ = 0 then the feed and the top reflux are turned off, and

a part of the heavy-product is recycled back to the co-current bed as a bottom reflux. Thus,

this results in a counter-current depressurization (CnD) step for the counter-current bed and

a heavy reflux (HR) step for the co-current bed. Similarly, if we set α = 0, β = 0.5 and φ = 0
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then we realize a co-current depressurization (CoD) step and a light reflux (LR) step, or if

we set α = 0, β = 0 and φ = 1 then we get an adsorption step (F) and a counter-current

depressurization (CnD) step.
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Figure 3.3: Realization of 4-step Skarstrom cycle from the superstructure

As a consequence, temporal profiles of α(t), β(t), φ(t), Pads(t) and Pdes(t) result in a se-

quence of operating steps. By translating these temporal profiles into a sequence of meaningful

operating steps, we eventually obtain a complete PSA cycle. For instance, the profiles of α(t),
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β(t), and φ(t) shown in Figure 3.3 translate into the classical 2-bed 4-step Skarstrom cycle

(FP,F,CnD,LR) [176]. CoB generates pressurization (FP) and feed (F) steps, while CnB si-

multaneously generates depressurization (CnD) and light reflux (LR) steps. Thus, the overall

cycle includes these four steps (FP,F,CnD,LR). In an actual 2-bed PSA unit, after performing

its steps, CoB will follow the steps of CnB and vice-versa. However, in the mathematical

framework, this is realized by giving final conditions of CoB as the initial conditions for CnB

and vice-versa, thus modeling the true 2-bed behavior. In other words, we utilize Multibed

approach and simulate both beds simultaneously (cf. section 2.4.3).

3.2.3 Optimal Control Problem

It is possible to obtain a plethora of distinct PSA configurations with this superstructure

because of an endless number of shapes that the profiles of α(t), β(t), φ(t), Pads(t) and Pdes(t)

can take. As a consequence of this, we obtain an optimal sequence of operating steps, along

with other decision variables such as cycle time, step times and bed dimensions, by solving the

following optimization problem.

min Φ(z(x, tf ), y(x, tf ), α(tf ), β(tf ), φ(tf ), Pads(tf ), Pdes(tf ), z0, p)

s.t. f

(
∂z

∂t
,
∂z

∂x
, z(x, t), y(x, t), α(t), β(t), φ(t), Pads(t), Pdes(t), z0, p

)
= 0

zCoB(x, 0) = zCnB(x, tf )

zCnB(x, 0) = zCoB(x, tf )

s(z(x, t), y(x, t), α(t), β(t), φ(t), Pads(t), Pdes(t), p) = 0

g(z(x, t), y(x, t), α(t), β(t), φ(t), Pads(t), Pdes(t), p) ≤ 0

0 ≤ (α(t), β(t), φ(t)) ≤ 1

bL ≤ (Pads(t), Pdes(t), p) ≤ bU

(3.1)

Here Φ is the objective function related to overall power consumption, component purity or

recovery. It can depend upon differential variables z(x, t), algebraic variables y(x, t), control

variables α(t), β(t), φ(t), Pads(t), and Pdes(t), initial conditions z0 and other decision variables
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p. The first equation represents the PDAE-based model for the PSA system, while the second

equation is the cyclic steady state (CSS) condition (see Table 3.1). As mentioned before, the

CSS condition is implemented by giving the final conditions of CoB as the initial condition

for CnB and vice versa. Additional constraints for the optimization problem are given by the

algebraic equations s and the inequalities g. The control variables α(t), β(t) and φ(t) are

fractions bounded between 0 and 1. Other control variables, Pads(t) and Pdes(t), and decision

variables p are bounded between their respective bounds bL and bU .

It is important to note that although optimal 2-bed PSA configurations are construed from

the optimal profiles of α(t), β(t), φ(t), Pads(t) and Pdes(t), multibed cycles (with more than

two beds) follow immediately from these solutions. These are generated by staggering the

steps over multiple beds and ensuring that a bed with a product flow step occurs at all points

in time.

3.3 Model Equations

We consider a detailed PDAE-based mathematical model for the optimal control problem. The

model is fairly general and can also be extended beyond the following assumptions:

1. All of the gases follow the ideal gas law.

2. There are no radial variations in temperature, pressure and concentrations of the gases

in the solid and the gas phase.

3. The gas and the solid phases are in thermal equilibrium and bulk density of the solid

phase remains constant.

4. Pressure drop along the bed is calculated by the Ergun equation.

5. The adsorption behaviors are described by the dual-site Langmuir isotherm.

6. The adsorption rate is approximated by the linear driving force (LDF) expression. Sircar

and Hufton [172] demonstrated that the LDF model is sufficient to capture the kinetics
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Table 3.1: PSA Model Equations

Component mass balance

εb
∂Ci
∂t

+ (1− εb)ρs
∂qi
∂t

+
∂(vCi)

∂x
= 0 i ∈ {L, H} (3.2)

LDF equation

∂qi
∂t

= ki(q
∗
i − qi) i ∈ {L, H} (3.3)

Energy balance(
εb
∑
i

Ci(C
i
pg −R) + ρbCps

)
∂T

∂t
− ρb

∑
i

∆Hads
i

∂qi
∂t

+
∂(vh)

∂x
+ UA(T − Tw) = 0 (3.4)

Cipg = aic + bicT + cicT
2 + dicT

3 i ∈ {L, H}

h =
∑
i

(
Ci

∫
Cipg dT

)
Dual-site Langmuir Isotherm

q∗i =
qs1ib1iCiRT

1 +
∑
j

b1jCjRT
+

qs2ib2iCiRT

1 +
∑
j

b2jCjRT
i ∈ {L, H} (3.5)

qsmi = k1mi + k2miT bmi = k3miexp(
k4mi
T

) i ∈ {L, H} m = 1, 2

Ergun equation

−∂P
∂x

=
150µ(1− εb)

2

d2pε
3
b

v +
1.75

dp

(
1− εb
ε3b

)(∑
i

M i
wCi

)
v|v| (3.6)

Ideal gas equation

P = RT
∑
i

Ci (3.7)

Bed connection equations (see Figure 3.1)

Fi(t) = φ(t)vfeedCfeed,i + α(t)(−vd(t))Ci,d(t) i ∈ {L, H} (3.8)

TRi(t) = β(t)va(t)Ca,i(t) i ∈ {L, H} (3.9)

LPi(t) = (1− β(t))va(t)Ca,i(t) i ∈ {L, H} (3.10)

BRi(t) = α(t)(−vd(t))Cd,i(t) i ∈ {L, H} (3.11)

HPi(t) = (1− α(t))(−vd(t))Cd,i(t) i ∈ {L, H} (3.12)

Cyclic Steady State (CSS) condition for beds CoB and CnB

zCoB(x, 0) = zCnB(x, tf ), zCnB(x, 0) = zCoB(x, tf ), (3.13)

z(x, t)T = [CL(x, t), CH(x, t), qL(x, t), qH(x, t), T (x, t)]
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of adsorption because estimation of the separation performance of an adsorptive process

requires several sets of averaging of kinetic properties and the effect of local characteristics

are lumped during integration.

Based on the above assumptions, the mathematical model for the PSA superstructure is listed

in Table 3.1. The equations are written for light product L and heavy product H. Here we

consider a lumped mass transfer coefficient for the LDF equation. Since a smaller magnitude of

UA makes energy balance a weak function of the ambient temperature, Tw is assumed constant.

As a convention, flow in the counter-current bed is considered negative and a minus sign is

used for vd. Since the bed model is based on fluxes, the feed throughput and the bed diameter

can be adjusted as long as the specified feed flux is achieved and the model assumptions are

not violated. The purities and recoveries of light (L) and heavy (H) products are calculated

by the following equations.

purityL =

∫
(1− β(t))va(t)Ca,L(t) dt∫

(1− β(t))va(t)
∑
i

Ca,i(t) dt

(3.14a)

purityH =

∫
(1− α(t))(−vd(t))Cd,H(t) dt∫

(1− α(t))(−vd(t))
∑
i

Cd,i(t) dt

(3.14b)

recoveryL =

∫
(1− β(t))va(t)Ca,L(t) dt

Qfeed,L

(3.14c)

recoveryH =

∫
(1− α(t))(−vd(t))Cd,H(t) dt

Qfeed,H

(3.14d)

Qfeed,i =

∫
φ(t)vfeedCfeed,i dt i ∈ {L, H} (3.14e)

Here Qfeed is the feed flux. The total power consumption, given by the following equations,

is the sum of the work done by the compressors and the vacuum generator. We note that in

the following equations we do not consider the compression work for the light or the heavy
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product. If required, it can be directly included in the following equations.

Wtotal =

∫
γRTd
γ − 1

[∑
i (φ(t)vfeedCfeed,i + α(t)(−vd)Cd,i)

ηc

((
Pa
Pfeed

) γ−1
γ

− 1

)

+

∑
i α(t)(−vd)Cd,i

ηh

(
min

{(
Pfeed
Patm

) γ−1
γ

,

(
Pfeed
Pdes

) γ−1
γ

}
− 1

)

+

∑
i(−vd)Cd,i
ηv

max

{
0,

((
Patm
Pdes

) γ−1
γ

− 1

)}]

+
γ

γ − 1

φ(t)vfeedPfeed
ηfg

((
Pfeed
Pinlet

) γ−1
γ

− 1

)
dt (3.15a)

Power =
Wtotal∫

(1− α(t))vd(t)Cd,H(t) dt

(3.15b)

Here, the max function ensures that the work done by the vacuum generator is zero when Pdes

is more than the atmospheric pressure Patm. Similarly, since the vacuum generator discharges

heavy reflux at Patm, the min function ensures a proper upstream pressure for the heavy

product compressor. Since min and max functions introduce non-differentiability, the following

smoothing approximations are adopted [20]. A value of 0.01 is used for ε in the following

equations.

min(f1(x), f2(x)) = f1(x)−max(0, f1(x)− f2(x)) (3.16a)

max(0, f(x)) = 0.5
(
f(x) +

√
f(x)2 + ε2

)
(3.16b)

3.4 Solution Strategy

We adopt a complete discretization approach to solve the system of PDAEs in Table 3.1. The

PDAEs are converted into a set of algebraic equations by discretizing the state and the control

variables both in space and time. As a result, the PDAE-constrained optimal control problem

(3.1) gets converted into a large-scale nonlinear programming (NLP) problem. One of the

advantages of this approach is that it directly couples the solution of the PDAE system with

the optimization problem. The model equations are solved only once at the optimum and the
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excessive computational effort of getting intermediate solutions is avoided [28]. However, the

performance of this approach substantially depends upon the optimization solver, and therefore

it is crucial to choose an efficient NLP solver. Hence, we use the state-of-the-art NLP solver

IPOPT 3.4 for our case studies. This interior point solver uses a barrier method to handle

inequalities and exact second derivative information for faster convergence to the optimum

[195].

To capture steep adsorption fronts, avoid oscillations in the solution, and model conser-

vative properties of the system, we apply a first-order finite volume method for spatial dis-

cretization. For the temporal domain, we apply orthogonal collocation on finite elements with

a Radau collocation scheme. Radau collocation allows us to set constraints at the ends of

the finite elements [103]. A 3-point collocation scheme is used for state variables while con-

trol variables are considered to be piecewise constant. While control variables are allowed to

be discontinuous, we ensure state variables demonstrate continuity in their profiles. We also

consider a moving finite element strategy in which the size of each temporal finite element is

considered a decision variable. With moving finite elements, it is possible to locate optimal

breakpoints of the control variables with variable element lengths. Appropriate bounds are

imposed on the variable element lengths of each finite element to guarantee accuracy of the

discretization.

Because spatial discretization together with a pre-determined temporal discretization with-

out any error checking mechanism for temporal integration can cause inaccuracies to creep in

the NLP solution obtained from IPOPT, verification of the solution with an accurate dynamic

simulation is essential. Therefore, we perform dynamic simulations in MATLAB [1] at the

optimal values of the decision variables obtained from IPOPT. The DAE system obtained af-

ter applying method of lines is integrated in MATLAB at the optimal values of the decision

variables. The profiles and performance variables obtained from MATLAB are then compared

with those obtained from IPOPT. For the method of lines approach in MATLAB, we use a

first-order finite volume method for spatial discretization and ode15s for temporal integration.
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Finally, because all of the control variables appear linearly, problem (3.1) is a singular

optimal control problem. In singular control problems, the optimal control profiles cannot be

determined directly from the stationarity condition of the Hamiltonian. The Euler-Lagrange

equations obtained after applying the maximum principle to (3.1) are high index in nature and

ill-conditioned. This doesn’t affect optimal controls that lie at their bounds where solution

is “bang-bang”. However, a bang-bang solution may not always be guaranteed with complex

nonlinear state equations of PSA system as the Hamiltonian derivative w.r.t. controls can be

zero for some time interval, leading to a singular control profile. Repeated time differentiations

of the Hamiltonian derivative can recover the control, but identifying the beginning and the

end of a singular arc is often difficult. Applying orthogonal collocation to singular problems can

also reflect this behavior with an ill-conditioned reduced Hessian and solutions characterized

by oscillations that do not abate with increasing mesh refinement [102]. To address singular

problems, several approaches have been suggested which propose regularizations to improve

eigenvalues of the reduced Hessian, and to guarantee a unique solution [97, 180, 101]. In

particular, regularizations have been performed through coarse discretization of the control

profile [161]. Applying a coarse control discretization hampers rapid decay of the eigenvalues

of reduced Hessian, thus allowing a reasonable solution to the singular problem. Hence, we

adopt this relatively simple regularization heuristic to ameliorate the singular nature of the

control problem (3.1). Such an approach, coupled with moving finite element strategy, improves

the bang-bang nature of the optimal solution, locates singular arcs and minimizes their length

with fewer finite elements.
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Chapter 4

Superstructure Case Study:

Post-combustion CO2 Capture

Synopsis

Recent developments have shown PSA/VSA to be a promising option to effectively capture

CO2 from flue gas streams. In most commercial PSA cycles, the weakly adsorbed component

in the mixture is the desired product, and enriching the strongly adsorbed CO2 is not a

concern. On the other hand, it is necessary to concentrate CO2 to high purity to reduce

CO2 sequestration costs and minimize safety and environmental risks. Thus, it is necessary

to develop PSA processes specifically targeted to obtain pure strongly adsorbed component.

We demonstrate the superstructure approach for case studies related to post-combustion CO2

capture. In particular, optimal PSA cycles are synthesized which maximize CO2 recovery and

minimize overall power consumption. The results show the potential of the superstructure to

predict PSA cycles with up to 98% purity and recovery of CO2. Moreover, for purity of over

90%, these cycles can recover CO2 from atmospheric flue gas with a low power consumption of

465 kWh/tonne CO2 captured. Superstructure approach is, therefore, quite useful for assessing

PSA for post-combustion CO2 capture.
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4.1 Introduction

Today, fossil fuels provide about 85% of the global energy demand and the outlook is that they

will remain the dominant source of energy for decades to come. Consequently, global energy-

related CO2 emissions, especially from power plants that burn fossil fuels, have increased,

thereby increasing CO2 concentration levels in the atmosphere [93]. One option to mitigate

the emission of CO2 is to capture it from emission sources, store it in the ocean or underground,

or use it for enhanced oil or coal bed methane recovery. Before CO2 can be sequestered it must

be separated and concentrated from flue gas with a low CO2 concentration.

There are a variety of approaches to CO2 separation from other flue gas components, such

as gas absorption, membranes, cryogenic distillation, gas adsorption and others, each with their

own pros and cons [3]. Absorption is a well-established method for separating CO2. Currently,

absorption based technologies are commercially utilized for CO2 capture, in which different

kinds of amines are used as solvents for absorbing CO2 from flue gas. The greatest advantage

of absorption processes is that these amine-based solvents can be easily regenerated. Moreover,

these processes can capture CO2 with purity higher than 95% which is enough for sequestration.

However, solvent regeneration energy is quite high for absorption processes. Typical values of

energy requirement for the leading absorption technologies range from 765 to 950 kWh/tonne

CO2 captured (excluding energy requirement for CO2 compression) [94]. Moreover, solvent

can form corrosive solutions with the flue gas. Another technology is cryogenic distillation

in which CO2 is captured by liquefying. One of its biggest advantage is that its product is

liquid CO2 which is ready for transport for sequestration. Moreover, CO2 recovery can exceed

99.9%. However, these processes are extremely energy intensive and cannot tolerate H2O, O2,

SOx, and NOx in the feed stream [3]. Membrane separation processes, on the other hand,

though being simple, suffer from the lack of membranes which are either not selective enough

or not very permeable to CO2. This results in a low-purity CO2 product. Recent developments

have shown pressure/vacuum swing adsorption to be a promising option for separating CO2.

PSA/VSA operate at ambient temperatures and do not require any solvent or thermal energy

Chapter 4. Superstructure Case Study: Post-combustion CO2 Capture 48



4.1 Introduction

for CO2 recovery or sorbent regeneration. Only feed compression and vacuum generation

constitute the key energy requirements which can be quite low. Moreover, sorbents can be

designed which can withstand H2O, O2, SOx, and NOx in the flue gas stream.

PSA processes have been widely applied for the removal of CO2 from various feed mixtures,

such as CO2 in the steam reformer off-gas, natural gas and flue gas mixtures [173]. They are

also commercially used to remove trace amounts of CO2 from air [113]. In these commercial

PSA cycles, the weakly adsorbed (or light) component in the mixture is the desired product

and enriching the strongly adsorbed (or heavy) component (in this case, CO2) is not a concern.

On the other hand, for CO2 sequestration, it is necessary to concentrate CO2 to a high purity

to reduce the compression and the transportation cost. Moreover, safety and environmental

issues are additional reasons for concentrating CO2 to a high purity.

Typically adsorbents preferentially adsorb CO2 from a flue gas mixture, consequently mak-

ing it a heavy product. The conventional PSA cycles are inappropriate for concentrating heavy

product because the light product purge step (or the light reflux step) in these cycles uses a

portion of the light product gas, which necessarily dilutes the heavy component in the heavy

product stream. As a result, a pure light component is easy to attain from such cycles, but not

a pure heavy component. Thus, it is necessary to develop PSA processes specifically targeted

to obtain pure strongly adsorbed component, CO2 in this case.

Because the product purity of the heavy component is limited by the gas mixture occupying

the void spaces in the bed, its purity can be increased by displacing the gas mixture in the void

spaces with a pure heavy product gas. For instance, for the separation of N2-CO2 mixture,

the displacement can be accomplished by purging the bed with CO2 after the adsorption step

in the PSA cycle. Hence, to obtain a pure heavy product gas, a heavy product pressurization

step or a heavy reflux step is necessary in the cycle, similar to a light product pressurization

step or a light reflux step in the conventional PSA cycles. This idea was first suggested in a

patent by Tamura [183], and has been incorporated in most of the PSA cycles that have been

suggested in the literature for high purity CO2 separation from flue gas.
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A fairly comprehensive review of the previous studies on PSA cycles for concentrating

CO2 from flue gas is presented in the next section. This review highlights the difficulties

associated with choosing one PSA cycle over another for a given application. From these

studies it is not clear why a particular cycle was chosen or one performed better than other

configurations. Hence, we apply more structured superstructure approach to develop optimal

PSA configurations to separate CO2 from a flue gas mixture.

4.2 Literature Review

Since 1992, when the Japanese power industry started investigating flue gas CO2 removal using

gas adsorption [90, 95, 96, 158, 209], a multitude of PSA/VSA cycles have been developed in

the literature to produce pure CO2 from a flue gas mixture. We provide a summary of these

studies in Table 4.1. In this table, yf is the CO2 % in feed, while pCO2 and rCO2 are CO2 purity

and recovery in the heavy product stream, respectively, and Pl is the vacuum/low pressure

used to extract CO2 at high purity. The terminology for various operating steps in a cycle

is adopted from Reynolds et al. [151]. Most of these studies are bench-scale and deal with

extremely small feed throughput.

Ritter and co-workers have studied numerous PSA cycles for CO2 capture from a feed

at high temperature using K-promoted Hydrotalcite as the adsorbent [151, 149, 150]. They

have emphasized the importance of including heavy reflux step to obtain heavy product at a

high purity. They compared seven different 4-bed 4-step, 4-bed 5-step and 5-bed 5-step cycle

configurations with and without heavy reflux step. In another work [148], they analyzed nine

different PSA configurations and achieved better purities and recoveries for CO2, although, at

an extremely small feed throughput. Kikkinides et al. [107] studied a 4-bed 4-step vacuum

swing process and improved CO2 purity and recovery by allowing significant breakthrough of

CO2 from the light end of the column undergoing heavy reflux, and then recycling the effluent

from this light end back to the column with the feed. Chue et al. [52] compared activated

carbon and zeolite 13X using a 3-bed 9-step VSA process. They suggested that despite a
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Table 4.1: PSA cycles suggested in the literature for post-combustion CO2 separation

PSA cycle yf pCO2 rCO2 Pl Feed throughput
configuration operating step sequencea Adsb (%) (%) (%) (kPa) (kgmol/hr) Ref.

5-bed 5-step F,HR,CnD,LR,LPP HTlc 15 72 82 11.49 0.001 [151]d

5-bed 5-step F,HR,CnD,LR,LPP HTlc 15 76 49 11.49 0.003 [151]d

4-bed 4-step F,HR,CnD,LPP HTlc 15 83 17 11.49 0.001 [151]d

5-bed 5-step F,HR,CnD,LR,LPP HTlc 15 98.7 98.7 11.64 0.00052 [148]d

5-bed 5-step F+R,HR,CnD,LR,LPP HTlc 15 98.6 91.8 11.64 0.00052 [148]d

4-bed 4-step F,HR,CnD,LPP HTlc 15 99.2 15.2 11.64 0.006 [148]d

4-bed 4-step F+R,HR,CnD,LPP HTlc 15 99.2 15.2 11.64 0.006 [148]d

4-bed 4-step LPP,F+R,HR,CnD AC 17 99.9 68 10.13 16.19 [107]d

3-bed 8-step FP,F,CoD,R,N,HR,CnD,N 13X 16 99 45 6.67 0.049 [52]
4-bed 8-step FP,F,HR,LEE,CnD,LR,LEE,N NaX 13 95 50 10 1.116 [182]c,d

2-bed 4-step FP,F,CnD,LR 13X 10 70 68 4 0.331 [142]d

2-bed 6-step LEE,FP,F,LEE,CnD,LR 13X 10 82 57 6.67 0.331 [142]d

3-bed 5-step FP,F,HR,CnD,LR 13X 10 83 54 6.67 0.331 [142]d

2-bed 4-step FP,F,CnD,LR 13X 8.3 78 50 101.3 0.004 [85]c

3-bed 8-step FP,F,CoD,LEE,HPP,HR,CnD,LEE AC 17 99.8 34 10.13 0.027 [132]c,d

3-bed 7-step FP,F,LEE,HR,N,CnD,LEE AC 13 99 55 10.13 0.204 [133]c,d

3-bed 8-step FP,F,CoD,LEE,HPP,HR,CnD,LEE 13X 13 99.5 69 5.07 0.025 [50]c,d

2-bed 4-step HPP,FP,CoD,CnD 13X 20 48 94 5.07 — [51]
2-bed 5-step HPP,FP,F,CoD,CnD 13X 20 43 88 5.07 — [51]
3-bed 4-step LPP,F,CnD,LR 13X 20 58 75 5.07 — [51]
3-bed 6-step LPP,FP,F,HR,CoD,CnD 13X 20 63 70 5.07 — [51]
2-bed 4-step FP,F,CnD,LR 13X 15 72 94 90 30.35 [111]
1-bed 4-step FP,F,CoD,CnD 13X 15 90 94 70 1.741 [111]
2-bed 4-step LPP,F,CnD,LR 13X 15 52 66 10 0.007 [86]c

3-bed 5-step LPP,F,HR,CnD,LR 13X 15 83 66 10 48.57 [86]c

3-bed 6-step F,LEE,CnD,LEE 13X 12 83 60 4 0.193 [44]c,d

3-bed 9-step F,LEE,HR,CnD,LEE 13X 12 95 60 5 0.193 [212]c,d

3-bed 9-step F,LEE,I,LEE,CnD,LEE,FP 13X 12 92.5 75 3 0.327 [203]d

aCycle-step legend: CnD-counter-current depressurization; CoD-co-current depressurization; FP-feed pressurization;
F-feed or adsorption; HPP-heavy product pressurization; HR-heavy reflux; LEE-light end equalization; LPP-light
product pressurization; LR-light reflux; N-null or idle; R-recycle. bAdsorbent legend: HTlc-K-promoted Hydrotalcite;
NaX, 13X-molecular sieve zeolites; AC-activated carbon. cStudies with experimental results. dMulticomponent study.

high heat of adsorption of CO2, zeolite 13X is better because of its higher working capacity,

lower purge requirement, and higher equilibrium selectivity. PSA cycle sequences that took

advantage of both light and heavy reflux steps were explored by Takamura et al. [182] and Park

et al. [142]. Takamura et al. studied a 4-bed 8-step VSA process while Park et al. analyzed

three different cycle configurations for VSA processes. While the pure CO2 rinse step and the

equalization step in the 3-bed 5-step cycle improved their CO2 purity and recovery, it didn’t

decrease their power requirements, which were 106.91 kWh/tonne CO2 for the 2-bed 6-step

cycle, and 147.64 kWh/tonne for the 3-bed 5-step cycle. Though the power consumption was

quite low, the feed throughput of 0.331 kgmol/hr was also on the lower side. The conventional

2-bed 4-step Skarstrom cycle was also studied by Gomes et al. [85], in which they didn’t apply

vacuum to recover CO2. Their work also showed that the light reflux step itself is not sufficient

to obtain pure heavy component.
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Na et al. [132, 133] and Choi et al. [50] studied 3-bed 8-step and 3-bed 7-step VSA

configurations experimentally as well as numerically. Light reflux step was not used for any of

these configurations, while heavy reflux was used in all of them. The 2-bed cycles of Chou and

Chen [51] did not use any kind of reflux steps while the 3-bed cycles used both light and heavy

reflux steps. The 2-bed cycles were unconventional as flow reversal was implemented in between

the pressurization and depressurization steps. Similarly, the 3-bed 6-step cycle incorporated

an unusual co-current light product pressurization step. They couldn’t go beyond 63% CO2

purity, which was achieved using the 3-bed 6-step cycle. Ko et al. [111] optimized a 2-bed

4-step PSA process to minimize power consumption, and a 1-bed 4-step fractionated VPSA

process to increase CO2 purity to 90% and recovery to 94%. Grande et al. [86] studied a

classical Skarstrom cycle with light product pressurization and a 3-bed 5-step process which

included a pure CO2 rinse step after the adsorption step. Their scale-up study showed that a

purity of 83% and a recovery of 66% is possible with the 3-bed 5-step process at a much higher

feed throughput of 48.57 kgmol/hr.

Webley and co-workers [44, 212, 203, 211] have done an extensive research in the field

of CO2 separation by adsorption. Chaffee et al. [44] and Zhang et al. [212] studied two

different VSA processes. For a low feed throughput of 0.193 kgmol/hr for both the cycles,

they achieved a low power consumption of 192 kWh/tonne CO2 for the 3-bed 6-step and 240

kWh/tonne CO2 for the 3-bed 9-step cycle. Xiao et al. [203] studied a similar 3-bed 9-step

cycle and were able to increase CO2 recovery to 75%. In another study, Zhang and Webley [211]

compared numerous VSA cycle configurations, and showed that CO2 purity can be increased

by particularly incorporating heavy reflux and equalization steps.

While this review offers some trends and guidelines, a fully systematic methodology is

still required to design PSA cycle configurations. In the subsequent sections, we demonstrate

application of the superstructure approach to obtain optimal PSA cycles for post-combustion

carbon capture.
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Table 4.2: Zeolite 13X properties and model parameters [111]

Parameter Value

Bulk porosity (εb) 0.34
Particle diameter (dp) 0.002 m
Adsorbent density (ρs) 1870 kg m−3

Bulk density (ρb) 1234.2 kg m−3

Heat capacity of solid (Cps) 450.54 J kg−1 K−1

Heat transfer coefficient (UA) 926.7 J m−3 sec−1 K−1

Gas viscosity (µ) 1.7857×10−5 kg m−1 sec−1

Gas constant (R) 8.314 J mol−1 K−1

Mass transfer coefficient (k) CO2=0.1631 sec−1

N2=0.2044 sec−1

Heat of adsorption (∆Hads) CO2=23011.14 J mole−1

N2=14452.72 J mole−1

Ambient temperature (Tw) 298 K

Isotherm parameters

CO2 N2

k11 2.817269 1.889581
k21 -3.51×10−4 -2.25×10−4

k31 2.83×10−9 1.16×10−9

k41 2598.203 1944.606
k12 3.970888 1.889581
k22 -4.95×10−3 -2.25×10−4

k32 4.41×10−9 1.16×10−9

k42 3594.071 1944.606

4.3 Case Setup

We consider an 85%-15% N2-CO2 feed mixture which is a typical composition of a post-

combustion flue gas stream. As an initial study, the focus is on a binary feed mixture. A

multicomponent feed mixture also having water, oxygen and other trace components will be

considered in the future extensions of this work. We assume that the flue gas enters at at-

mospheric pressure at a temperature of 310 K, and a maximum velocity (vfeed) of 50 cm/sec.

Since the inlet pressure Pinlet is atmospheric, we assume optional inlet compressor is present

in the superstructure which compresses inlet gas to pressure Pfeed. Feed pressure Pfeed varies

with the case studies. Zeolite 13X is chosen as the adsorbent to separate CO2; Chue et al. [52]

suggested it to be a preferable adsorbent over others for this separation system. The adsorbent
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properties for 13X and other model parameters are listed in Table 4.2 [111].

Usually a large number of spatially discretized nodes are required to capture steep adsorp-

tion fronts. Such fine spatial discretization, together with temporal discretization, leads to a

very large set of algebraic equations which becomes extremely expensive to solve. Although a

large number of elements improve accuracy, it makes the problem computationally challenging

to solve. Hence, to get the solution in a reasonable amount of time, we consider 20 spatial

finite volumes and around 24-26 temporal finite elements for the optimization problem. NLP

solution from IPOPT is verified with more accurate dynamic simulations in MATLAB at the

optimum, as mentioned in section 3.4.

We consider three different cases to explore different facets of the superstructure approach.

The first case study optimizes the 2-bed 4-step Skarstrom configuration, obtained after fixing

the control variables in the superstructure, and shows the ineffectiveness of such traditional cy-

cles for high-purity CO2 separation. The second case then finds an optimal PSA configuration

which separates CO2 at high purity and recovery. Finally, in the third case, we find an optimal

configuration which achieves high-purity separation with minimal power requirements.

4.4 Case Studies and Computational Results

4.4.1 Case I: Optimization with a conventional configuration

First, we explore the potential of the conventional 2-bed 4-step Skarstrom cycle (cf. section

2.4.1) for post-combustion CO2 capture. For this, we fix the profiles of α(t), β(t) and φ(t)

over time, as shown in the Figure 3.3. While fβ is chosen as 0.3, fφ before tswitch is fixed to

0.35. This ensures that the superficial velocity is close to zero towards the light end of CoB

during the FP step. In this case, Pads and Pdes remain constant for the entire cycle. The inlet

pressure Pfeed is fixed to 300 kPa, as considered by Gomes et al. [85] as well.

With this configuration we maximize CO2 recovery. Since the lack of any heavy reflux step

in the configuration may not enable a high purity separation, a relatively low value of 40%
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is chosen for the lower bound on CO2 purity. Besides Pads and Pdes, we also consider bed

length BLen, and cycle time Tc as decision variables. Since a moving finite element strategy

is adopted, the length of each finite element is also considered as an optimization variable.

Because none of the decision variables are functions of time, the optimal control problem (3.1)

becomes a dynamic optimization problem, which becomes the following NLP after discretizing

PDAEs in both space and time.

max CO2 recovery (from Equation (3.14d))

s.t. c(w) = 0 (fully discretized Equations (3.2)-(3.13)) (4.1a)

CO2 purity ≥ 0.4 (from Equation (3.14b)) (4.1b)

Pads ≥ Pd (4.1c)

Pdes ≤ Pfeed (4.1d)

Pa ≥ Pfeed (4.1e)

1 m ≤ BLen ≤ 6 m (4.1f)

20 sec ≤ Tc ≤ 2400 sec (4.1g)

101.32 kPa ≤ Pads ≤ 1000 kPa (4.1h)

Pdes ≥ 10 kPa (4.1i)

Here w and c(w) = 0 represent the set of completely discretized variables and model equations,

respectively. Constraint (4.1c) ensures that the pressure always drops around the pressure

reducing valve in the superstructure. Similarly, constraints (4.1d) and (4.1e) ensure that the

gas is never expanded by the heavy gas and the feed compressors, respectively. The rest of the

inequalities are bounds on the decision variables.

With 24 temporal finite elements and 20 spatial finite volumes, we solved the NLP in

AMPL [78] using IPOPT. Table 4.3 includes a summary of the optimization results. With

35,022 variables and 29 degrees of freedom, we were able to solve it to optimality in around

3 CPU hours on an Intel Quad core 2.4 GHz machine with 8 GB RAM. Optimal moving

finite element lengths and cycle time of 2140 sec. yield an optimal step time of 760 sec. for

the pressurization (and depressurization) step, and 410 sec. for the feed (and light reflux)

step. Such a long pressurization step is due to a small amount of feed during that step, which

requires longer time for bed to get pressurized and CO2 to adsorb. At the optimum, the cycle
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Table 4.3: Optimization results for Case I

No. of variables 35022
No. of equations 34993
CPU time 176.94 min.
Optimal step times

Step 1 (and 3) 760 sec
Step 2 (and 4) 410 sec

Optimal parameters BLen=5.51 m Tc=2140 sec
Pads=276.43 kPa Pdes=21.75 kPa

Accuracy check

Full discretization MATLAB verification
N2 purity 91.25% 90.74%
N2 recovery 85.88% 85.94%
CO2 purity 40% 38.65%
CO2 recovery 53.36% 50.22%

handles a feed flux of 96.4 kgmol m−2 hr−1, which is higher than the corresponding 2-bed

4-step case studies in Table 4.1. At a purity of 40%, a maximum CO2 recovery of only 53.4%

was achieved. Such poor performance proves the point made in the introduction; classical

cycles without heavy reflux cannot produce heavy product at high purity since a light reflux

step dilutes the heavy product and decreases its purity. Table 4.3 also lists the MATLAB

verification of the AMPL results. We considered 20 spatial finite volumes for MATLAB as

well. A comparison of the purities and the recoveries indicates reasonable accuracy for the

complete discretization approach.

4.4.2 Case II: Cycle synthesis to maximize CO2 recovery

Since a high-purity CO2 separation wasn’t achieved by the Skarstrom cycle, in this case we

solve the optimal control problem (3.1) to obtain an optimal configuration which yields better

performance. For this, a few modifications are essential to the optimization problem presented

in the previous case. The control variables α(t), β(t) and φ(t) are freed to let them achieve

an optimal sequence of operating steps. The pressures Pads and Pdes are converted back to

time dependent control variables. To keep this case comparable to the previous one, we fix
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the bed length to 5 meters. A desired CO2 purity of at least 95% is chosen. Besides this, we

impose a lower bound on feed flux Qfeed, in the absence of which the optimizer may force the

feed fraction φ(t) to zero in order to maximize CO2 recovery. Finally, we add the equation for

power consumption (3.15b) to the optimal control problem. A 72% efficiency is assumed for

all the compressors and the vacuum generator unit [30]. As in the previous case, we fix the flue

gas inlet pressure Pfeed to 300 kPa to achieve a reasonable Qfeed. The following large-scale

NLP results after complete discretization of state and control variables in the optimal control

problem.

max CO2 recovery (from Equation (3.14d))
s.t. c(w) = 0 (fully discretized Equations (3.2)-(3.13))

CO2 purity ≥ 0.95 (from Equation (3.14b))
Qfeed,L +Qfeed,H ≥ 80 kgmolm−2hr−1

Pads ≥ Pd
Pdes ≤ Pfeed
Pa ≥ Pfeed
0 ≤ α(ti), β(ti), φ(ti) ≤ 1 ∀ti
20 sec ≤ Tc ≤ 2400 sec
101.32 kPa ≤ Pads(ti) ≤ 600 kPa ∀ti
Pdes(ti) ≥ 50 kPa ∀ti

(4.2)

As in the previous case study, c(w) is the set of completely discretized PDAEs with CSS

condition. We choose a lower bound of 50 kPa for the vacuum generated, which is not a

substantially high vacuum. Similarly, the chosen upper bound of 600 kPa for Pads is also not

substantially high. No bounds are specified for the purity and the recovery of nitrogen. We

impose a lower bound of 80 kgmol m−2 hr−1 on the total feed flux. Because the bound is not

on the feed throughput, a bigger diameter PSA bed will be able to handle much higher feed

throughput and the optimal configuration need not change. For instance, for a 3 meter bed

diameter, one PSA column will be able to handle a significantly high feed throughput of 565

kgmol/hr for the same optimal configuration. Also note that the value of 80 kgmol m−2 hr−1

is significantly higher than feed flux chosen in the literature studies in Table 4.1, as the focus

here is to synthesize industrial scale PSA systems.

The NLP was solved in AMPL with 26 temporal finite elements and 20 spatial finite

Chapter 4. Superstructure Case Study: Post-combustion CO2 Capture 57



4.4 Case Studies and Computational Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

B
ot

to
m

 r
ef

lu
x 

( α
 )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

T
op

 r
ef

lu
x 

( β
 )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Normalized cycle time

F
ee

d 
( 

φ 
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

450

500

550

600

P
ad

s (
kP

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

40

60

80

100

Normalized cycle time

P
de

s (
kP

a)

 
 

Figure 4.1: Optimal control profiles for case II

volumes. The optimal control profiles are shown in Figure 4.1. The profiles are drawn against

cycle time normalized between 0 and 1. These profiles suggest an optimal 2-bed 6-step VSA

process, illustrated in Figure 4.2.

(t) = 1

Low-pressure 

adsorption with 

heavy reflux

Pressurization + 

high-pressure 

adsorption

High-vacuum 

desorption
Total refluxLow-vacuum 

desorption

0 ≤ tnormalized ≤ 0.042

Feed Feed
CO2

N2 N2 N2

CoB CnB CoB CnB CoB CnB

(t) = 0

(t) = 1

(t) = 0

(t) = 0

(t) as 

profile

(t) = 1

(t) as 

profile

(t) = 0

0.042 ≤ tnormalized ≤ 0.42 0.42 ≤ tnormalized ≤ 1

(Step 1) (Step 4) (Step 2) (Step 5) (Step 3) (Step 6)

Figure 4.2: Optimal VSA configuration for case II

The cycle starts with α(t)=1, β(t)=0, and φ(t)=1. This suggests a bottom reflux from CnB

to CoB and feed being fed to CoB. From the profiles of Pads(t) and Pdes(t), CoB operates at
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around 450 kPa while CnB operates at around 85 kPa during this step. Thus, we have a low-

pressure adsorption step with a heavy reflux for CoB (step 1) and a low-vacuum desorption

step for CnB (step 4) with desorbed CO2 being sent as a heavy reflux from CnB to CoB.

After this step, both top and bottom reflux disappear, while φ(t) indicates continuation of the

feed to CoB. CoB gets pressurized to the upper bound of 600 kPa and N2 is withdrawn at

a high pressure, while CO2 is extracted from CnB at a vacuum of 50 kPa. This suggests a

pressurization and high pressure adsorption step for CoB (step 2) and a high vacuum desorption

step for CnB (step 5). The feed fraction φ(t) drops at the beginning of this step to facilitate

CoB pressurization. We observe a drop in the CO2 concentration in CoB (see step 2 in Figure

4.3) because of its low concentration in feed. Also, because of the application of vacuum, the

gas-phase CO2 concentration decreases sharply for both step 4 and 5, as evident in Figure 4.3.

Further, the pressures in the beds are held at their same respective levels, while α(t)

becomes 1, β(t) approaches 1, and the feed is stopped completely. Because there is no feed

nor product at this time, we have a total reflux step (step 3 and 6), in which both the beds

are connected to each other and a recirculation of the components occurs within the system.

A small amount of N2 is withdrawn at the beginning of this step, and is shown as a dotted

line in Figure 4.2. A decrease in Pads(t) and an increase in Pdes(t) towards the end of this step

halts this recirculation. After the total reflux step, the co-current bed follows the steps of the

counter-current bed and vice-versa. This completes the cycle.

From Figure 4.2 together with Figure 4.3, we observe a couple of key aspects of this cycle.

First, we observe an extensive use of heavy reflux in the cycle (step 1 and 3) to enrich gas-

phase CO2 concentration towards heavy end of CoB to ensure high-purity CO2 production.

During both steps 1 and 3, desorbed CO2 from CnB is sent as a heavy reflux to CoB which

enriches the adsorbed CO2 concentration towards the heavy end of CoB. This is evident from

the gas-phase CO2 concentration profile for steps 1 and 3 in Figure 4.3. Second, we observe a

completely novel total reflux step in the cycle. Moreover, this is the longest step and runs for

almost 60% of the total cycle duration. This is a vital step to improve CO2 purity as it eschews
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Figure 4.3: Gas-phase CO2 concentration profiles for case II
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Table 4.4: Optimization results for case II

No. of variables 50162
No. of equations 49956
CPU time 756.22 min.
Optimal step times

Step 1 (and 4) 50 sec
Step 2 (and 5) 405 sec
Step 3 (and 6) 685 sec

Optimal cycle time 2280 sec
Feed flux 80 kgmol m−2 hr−1

Power consumption 637.25 kWh/tonne CO2 captured
CO2 purity 95%
CO2 recovery 80.09%

external influence and re-arranges component distribution within the system. During steps 3

and 6, nitrogen from CoB to CnB purges CO2 out of CnB from its heavy end and enriches

itself towards the light end of CnB while pushing its front. Similarly CO2 from CnB to CoB

purges nitrogen out of CoB and enriches itself towards the heavy end of CoB and pushes its

front towards the light end of CoB. Step 3 in Figure 4.3 confirms such a movement of CO2

front.

The optimization results for this case are summarized in Table 4.4. With 50,162 variables

and 206 degrees of freedom, it was solved to optimality in approximately 12.5 CPU hours on

the Intel Quad core 2.4 GHz machine with 8 GB RAM. At the optimum, the feed flux attained

its lower bound of 80 kgmol m−2 hr−1. For such a high feed flux, we obtained a reasonable

power consumption of 637.25 kWh/tonne CO2 captured. Also, an optimum CO2 recovery of

80% at a purity of 95%, for such a high feed flux, is substantially better than the literature

studies for post-combustion capture that deal with high feed throughput. These results confirm

our assertion that steps like heavy reflux are essential for high-purity CO2 separation.

In Table 4.5 we provide a validation of the optimal results obtained from AMPL with

method of lines simulations in MATLAB for varying number of spatial finite volumes. The

results from AMPL are in good agreement with those from MATLAB, and the accuracy doesn’t

suffer as we consider a large number of finite volumes in MATLAB. This indicates that the
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Table 4.5: Accuracy validation for AMPL results of case II

AMPL results MATLAB verification

Spatial finite volumes 20 20 40 80

N2 purity 96.58% 96.28% 96.19% 96.16%
N2 recovery 99.26% 99.26% 99.28% 99.29%
CO2 purity 95% 94.95% 95.04% 95.07%
CO2 recovery 80.09% 78.26% 77.70% 77.51%
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Figure 4.4: Purity-recovery trade-off curve for case II

complete discretization approach is reasonably accurate.

Figure 4.4 shows a trade-off curve between CO2 purity and recovery. We construct this

curve by varying the lower bound on CO2 purity in the NLP (4.2), and then maximizing

CO2 recovery for each lower bound. As a result, it is possible that a different optimal cycle

configuration is achieved at each point plotted on the curve. However, each configuration

is the best possible cycle for a particular CO2 purity. Consequently, this yields an optimal

purity-recovery trade-off curve. The curve shows that if a very high purity CO2 separation is

desired then the recovery falls drastically. A similar trend is observed with the purity when a
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very high CO2 recovery is sought. The intermediate section of the curve is a preferable region

to operate.

4.4.3 Case III: Cycle synthesis to minimize power consumption

Although we achieved a high purity separation in the previous case, the power consumption

was also quite high. Therefore, the objective of this case is to obtain an optimal configuration

which yields a high-purity separation at minimal power requirements. To achieve this, few

minute modifications are done to the NLP (4.2). While the lower bound on CO2 recovery

is relaxed to 85%, the lower bounds on CO2 purity and feed flux are relaxed to 90% and 65

kgmol m−2hr−1, respectively. To minimize the work done in compressing flue gas from Pinlet

to Pfeed (in Equation (3.15a)), we consider Pfeed a decision variable instead of fixing it to 300

kPa. Appropriate bounds are imposed on Pfeed. The efficiency is kept same as 72% for all

compressors and vacuum generator. The rest of the optimization problem remains same, and

is as below. The NLP was solved in AMPL with 24 temporal finite elements and 20 spatial

finite volumes. The optimal control profiles are shown in Figure 4.5. Since optimal feeding

strategy and pressure profile are different compared to previous case, we obtain an entirely

different 2-bed 8-step VSA configuration, illustrated in Figure 4.6.

min Power (from Equation (3.15b))
s.t. c(w) = 0 (fully discretized Equations (3.2)-(3.13))

CO2 purity ≥ 0.9 (from Equation (3.14b))
CO2 recovery ≥ 0.85 (from Equation (3.14d))
Qfeed,L +Qfeed,H ≥ 65 kgmolm−2hr−1

Pads ≥ Pd
Pdes ≤ Pfeed
Pa ≥ Pfeed
0 ≤ α(ti), β(ti), φ(ti) ≤ 1 ∀ti
20 sec ≤ Tc ≤ 2400 sec
101.32 kPa ≤ Pfeed ≤ 600 kPa
101.32 kPa ≤ Pads(ti) ≤ 600 kPa ∀ti
Pdes(ti) ≥ 50 kPa ∀ti

(4.3)

The cycle begins with α(t)=1, β(t)=0 and φ(t) close to one. This suggests a heavy reflux

from CnB to CoB and feed being fed to CoB. From the profiles of Pads(t) and Pdes(t), the
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Figure 4.5: Optimal control profiles for case III

pressure rises in CoB and falls in CnB during this step. Thus, we have a pressurization step

for CoB (step 1) and a depressurization step for CnB (step 5), with heavy reflux increasing

the adsorbed-phase CO2 concentration towards the heavy end of CoB.

Depressu-

rization 

N2

Feed

(Step 1)

CO2

Pressu-

rization

Pressu-

rization + 

adsorption

Heavy 

reflux

Light 

reflux

High-vacuum 

desorption

Pressure 

equalization

CoB CnB CoB CnB CoB CnB CoB CnB

(t)=1

(t)=0

(t)=0.88 Feed

(t)=0

(t)=0

(t) as 

profile

N2

Feed

(t)=1

(t) as 

profile

(t) as 

profile

N2

(t)=1

(t)=1

(t)=0

(Step 5) (Step 2) (Step 6) (Step 3) (Step 7) (Step 4) (Step 8)

0 ≤ tnormalized ≤ 0.05 0.05 ≤ tnormalized ≤ 0.39 0.39 ≤ tnormalized ≤ 0.97 0.97 ≤ tnormalized ≤ 1

Figure 4.6: Optimal VSA configuration for case III

Next, both α(t) and β(t) go to zero, while Pads(t) and Pdes(t) attain their maximum and

minimum allowed values, respectively. This suggests an adsorption step with the removal of

light product for CoB (step 2), and a high vacuum desorption step for CnB (step 6), during
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Figure 4.7: Gas-phase CO2 concentration profiles for case III
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Table 4.6: Optimization results for case III

No. of variables 46313
No. of equations 46122
CPU time 273.08 min.
Optimal step times

Step 1 (and 5) 56.77 sec
Step 2 (and 6) 500.03 sec
Step 3 (and 7) 614.79 sec
Step 4 (and 8) 28.41 sec

Optimal cycle time 2400 sec
Optimal Pfeed 182.31 kPa
Feed flux 65 kgmol m−2 hr−1

Power consumption 464.76 kWh/tonne CO2 captured
CO2 purity 90%
CO2 recovery 85%

which high purity CO2 is collected. After this step we observe that both α(t) and β(t) go to 1.

However, unlike the total reflux step in previous case study, β(t) doesn’t go to 1 at once and

nitrogen is still constantly removed from the system. Feed is also fed to CoB for a considerable

amount of time at the beginning of this step. Therefore, this translates into a heavy reflux

step for CoB (step 3) and a light reflux step for CnB (step 7). Nevertheless, the intent of this

step is similar to that of the total reflux step: enrich the N2 front towards the light end of

CnB, and CO2 front towards the heavy end of CoB. The gas phase CO2 concentration profiles

for both these steps in Figure 4.7 validate this behavior. After this, α(t) and β(t) remain at

1, while Pads(t) starts to drop, Pdes(t) starts to jump sharply, and the two pressures come

very close to each other. In fact, Pads(t) and Pd(t) are approximately equal during this step.

This translates into a short pressure equalization step (step 4 and 8). Since the heavy reflux

from CnB is negligible, we show it as a dotted line for this step in Figure 4.6. Clearly, from

Figure 4.7, CO2 concentration drops substantially in CoB and rises steadily in CnB during the

equalization step. After this, CoB follows the steps of CnB and vice-versa.

Figure 4.6 together with the gas-phase CO2 concentration profiles in Figure 4.7 illustrate

several key aspects of the cycle. First, as in the previous case, heavy reflux step is used as
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Table 4.7: Accuracy validation for AMPL results of case III

AMPL results MATLAB verification

Spatial finite volumes 20 20 40 80

N2 purity 97.38% 97.16% 97.03% 96.99%
N2 recovery 98.33% 98.36% 98.40% 98.42%
CO2 purity 90% 90.01% 90.16% 90.22%
CO2 recovery 85% 83.72% 82.93% 82.68%

the only step to enrich adsorbed-phase CO2 concentration towards the heavy end of the bed.

For more than 60% of the cycle time, CnB provides heavy reflux to CoB for gas-phase CO2

enrichment, thus ensuring high-purity CO2 production. Such enrichment and movement of

CO2 adsorption front is evident from the gas-phase CO2 concentration profile for step 1 and

step 3 in Figure 4.7. Second, we observe that adsorption pressure Pads operates at a lower level

for most of the duration of the cycle and attains its upper bound only for a short duration.

This leads to savings in power consumption. The third key aspect of this VSA cycle is the

pressure equalization step (steps 4 and 8), which leads to additional power savings. Gas-phase

CO2 concentration profiles for step 4 and 8 in Figure 4.7 illustrate sharp CO2 desorption in

CoB while adsorption in CnB.

Table 4.6 summarizes the optimization results. With 46,313 variables and 191 degrees of

freedom in the NLP, the optimal solution was obtained in approximately 4.5 CPU hours. At

the optimum, the feed flux, CO2 purity, and CO2 recovery were at their respective lower bounds

of 65 kgmol m−2 hr−1, 90% and 85%. Under these conditions, and at an optimum Pfeed of

182.3 kPa, we achieved a power consumption of 464.76 kWh/tonne CO2 captured, which is

over 27% lower than Case 2. Table 4.7 lists a validation of the optimal results obtained from

AMPL with accurate simulations in MATLAB for varying number of spatial finite volumes.

As observed in the previous case, the purities and recoveries are in reasonable agreement, even

for a large number of finite volumes.

Figure 4.8 shows the trade-off curve between power consumption and CO2 recovery. As

in the previous case, we construct the curve by varying the lower bound on CO2 recovery,
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Figure 4.8: Power-recovery trade-off curve, at 90% CO2 purity

while keeping purity at 90%, and optimizing NLP (4.3) multiple times. Thus, we obtain an

optimal trade-off curve, although it is possible to obtain a different optimal cycle configuration

at each point plotted on the curve. As expected, the curve shows that the power requirements

increase if a high-recovery separation is desired. However, the increase is almost linear up to

a recovery level of 84%. The power requirements then start growing steeply if more than 84%

CO2 recovery is sought.

4.5 Comparison of Cycles from Case II and III

Case studies discussed in the previous section clearly demonstrate that we can obtain substan-

tially different PSA configurations after performing superstructure optimization with different

objectives. In all the case studies above, the final optimal cycle is governed by the required

specifications, constraints and objective function. However, optimal PSA configurations have

some similarities as well, which convey that the superstructure approach finds some common

features as a necessary requirement for optimal performance. For instance, the optimal cycles
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obtained in both case II and case III depend heavily on the heavy reflux step to enrich gas-

phase CO2 concentration towards the heavy end of the adsorber bed. Both case studies employ

this step to enhance CO2 purity in the final product, and run it for a substantial 60-65% of

the total cycle duration. This not only asserts that such a step is vital for producing heavy

product at a high purity, but also proves that the superstructure approach yields intuitive and

meaningful configurations since all of the literature studies have included heavy reflux step to

boost CO2 purity in the final product. Besides heavy reflux step, both cycles in case II and

III are similar in terms of the optimal cycle duration, which is close to 40 minutes for both

cases. Moreover, both cycles do not collect CO2 product when a light reflux stream is present

as it necessarily dilutes CO2 product, and both employ vacuum for almost entire duration of

the cycle to improve CO2 recovery.

Barring heavy reflux step and other minor similarities, optimal cycles obtained in case II

and III are quite different from each other, especially in the power consumption aspect. For

case II, Pads is at its upper bound while Pdes is at its lower limit for almost entire cycle. Hence,

the total power consumption is quite high for case II. In contrast, optimal profile for Pads takes

a lower value for the most part of the cycle and attains upper bound only for a short duration.

This leads to substantial power savings. One of the key differences between cycles of case II

and III is the pressure equalization step. This leads to additional power savings as it avoids

uneconomical pressure drop when cycle transitions from step 4 to step 5 in case III. However,

lack of a pressure equalization step causes such a pressure drop in case II between step 3 and

4 when pressure drops significantly from 450 kPa to 90 kPa. Only reason for such a contrast

in the optimal solution is the absence of any constraint on power consumption in the problem

formulation for case II. To avoid this, an upper bound on the power consumption can be used

for case II in future. Besides power aspect, cycles in case II and III differ in steps 3 and

6. Case III doesn’t incorporate a total reflux step unlike case II. Instead, that step is still a

combination of light and heavy reflux steps in case III with the presence of external feed and

nitrogen removal.
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To deduce multibed cycles for a continuous cycle operation from the optimal two-bed

solutions, a coordination of step times will be required which will depend upon whether we

need a continuous N2 removal, or a continuous product CO2 collection or a continuous feed

to the system. In any case, continuous flow can be maintained either through feed or product

buffer tanks, or by adding parallel beds and ensuring that step times are integral multiples of

each other to avoid overly complicated cycles.

4.6 Conclusions and Future Work

A fairly extensive review of the previous work on post-combustion CO2 capture reveals that a

systematic methodology is still required for the design of PSA cycles. To address this, we assess

the applicability of the superstructure approach in this context. It is illustrated for three case

studies of post-combustion CO2 capture. The first case study optimizes the standard 2-bed

4-step Skarstrom cycle, and shows that such conventional cycles, which focus on separating

light product at a high purity, fail to produce heavy product at a high purity because of

the absence of a heavy reflux step. To obtain high-purity separation, the superstructure is

optimized in the second case study. A 2-bed 6-step VSA cycle is derived from the solution of

the optimal control problem. With this configuration, we are able to recover about 80% of CO2

at a substantially high purity of 95%, and at a significantly high feed flux of 80 kgmol m−2

hr−1, but with a power consumption of 637 kWh/tonne CO2 captured. Thus, in the third case

study, we focus on developing optimal configuration which yields high-purity separation with

minimal power requirements. We construe a 2-bed 8-step VSA configuration from the optimal

profiles, with which, at 90% purity and 85% recovery, CO2 is extracted with a substantially low

power consumption of 465 kWh/tonne CO2 captured. Hence, with the proposed superstructure

approach, we are able to design optimal configurations that make pressure swing adsorption a

promising option for high purity CO2 capture from flue gas streams.

A complete discretization approach is used to solve the optimal control problem as a large-

scale nonlinear program, using the nonlinear optimization solver IPOPT. Verifications of the
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accuracy of the discretization scheme show this approach is reasonably accurate in capturing

the dynamics of PSA systems governed by hyperbolic PDAEs and steep adsorption fronts,

and can be used for PSA systems with efficient NLP solvers like IPOPT. To improve upon

the accuracy of the results and eliminate the verification step, a sensitivity-based sequential

approach, similar to Jiang et al. [100], will be developed in future to solve the optimal control

problem.

Finally, our superstructure based methodology, demonstrated for post-combustion capture

in this work, is quite generic and can be extended to many other PSA applications. In the

next chapter, we demonstrate it for pre-combustion carbon capture.
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Chapter 5

Superstructure Case Study:

Pre-combustion CO2 Capture

Synopsis

PSA/VSA technology has been widely applied for H2 production from the effluent streams of a

shift converter. It also offers significant advantages for pre-combustion CO2 capture in terms of

performance, energy requirements and operating costs since the shifted synthesis gas (syngas)

is available for separation at a high pressure with a high CO2 concentration. Most commercial

PSA cycles recover H2 at very high purity, but do not focus on enriching the strongly adsorbed

CO2. Thus, a major limitation exists with the use of these conventional PSA cycles for high

purity CO2 capture. Novel PSA cycle designs are anticipated which recover both H2 and CO2

at a high purity. We demonstrate the superstructure approach for case studies related to pre-

combustion CO2 capture. In particular, optimal PSA cycles are synthesized which maximize

CO2 recovery or minimize overall power consumption. The results show the potential of the

superstructure to predict PSA cycles with purities as high as 99% for H2 and 96% for CO2.

Moreover, these cycles can recover more than 92% of CO2 with a power consumption as low

as 46.8 kWh/tonne CO2 captured. Hence, this chapter demonstrates the versatility of the

superstructure approach.
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5.1 Introduction and Previous Work

Global energy-related carbon dioxide emissions are increasing by 1.7% every year and have

been estimated to reach 41 gigatonnes by 2030 [93]. Power generation accounts for about

one-third of CO2 emissions from fossil fuel use. Carbon dioxide capture and storage is a

critical technology to significantly reduce CO2 emissions, and is most applicable to large,

centralized emission sources such as power plants. The purpose of CO2 capture is to produce a

concentrated stream that can be readily transported to a CO2 storage site. One of the potential

capture systems that has gained recent popularity is the pre-combustion capture system. Pre-

combustion capture involves partial oxidation (gasification) of coal to produce syngas (or fuel

gas) composed mainly of carbon monoxide and hydrogen. The carbon monoxide is reacted

in a shift converter to increase carbon dioxide and hydrogen yield. CO2 is then concentrated

from this H2/CO2 mixture, resulting in a hydrogen-rich fuel and a CO2-rich stream available

for storage. Compared to post-combustion capture, a pre-combustion system is preferable for

CO2 capture because the fuel gas from the shift converter has a higher CO2 concentration in

the range 30-60%, and is also typically at a higher pressure, thus offering cost-effective means

for CO2 capture [163].

PSA offers significant advantages for pre-combustion CO2 capture in terms of performance,

energy requirements and operating costs. Voss [191] provides an overview of how the PSA units

can be integrated in complex flowsheets of power plants and steam reformers for pre-combustion

CO2 capture. Industrial PSA technology to remove CO2 and other trace components from

steam reformer off-gas and fuel gas primarily focuses on producing hydrogen at a high purity,

and considers CO2 as a waste stream [23, 79, 80]. The most frequently used PSA processes in

this area, the Polybed process and the Lofin process [81, 130, 171, 205], produce H2 with more

than 99.9999% purity, but consider CO2 as a by-product and reject it in the tail gas (i.e., the

desorbed gas containing H2O, N2, CO2, CO, and H2) at a much lower purity. The hydrogen

recovery in these processes ranges between 60-80%, with the tail gas generally being used as

a fuel for the reformer. Over the past few decades, researchers have focused on development,
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improvement and optimization of novel PSA cycle configurations for H2 purification and CO2

removal. Cen et al. [42] studied a bench-scale 1-bed 4-step PSA process, with activated carbon

as the adsorbent, to remove CO2 from a feed mixture comprising 24.75% CO2, 24.75% H2, and

0.0001% H2S. Whysall and Wagemans [199] increased the H2 production capacity by extending

the purge step in their 16-bed 13-step PSA cycle. Baksh et al. [18, 19] developed a simple 2-bed

12-step process which used layered beds packed with alumina, activated carbon and zeolite.

With this configuration they were able to recover 76% H2 at a very high purity level of 99.996%.

Xu et al. [204] developed a 6-bed 16-step PSA process in which only four pressure equalization

steps were incorporated. Zhou et al. [213] proposed a 4-bed 13-step PSA cycle and explored

the idea of using buffer tanks to carry out pressure equalization during the cycle. Jiang et

al. [100] optimized a 5-bed 11-step PSA process, using layered beds of activated carbon and

zeolite 5A, and were able to achieve a hydrogen recovery of around 89% with CO impurity

as low as 10 ppm in the hydrogen product stream. Jee et al. [98] studied the adsorption

characteristics of various permutations of mixtures composed of H2/CH4/CO/N2/CO2, on a

layered bed packed with activated carbon and zeolite 5A, and concluded activated carbon to

be a suitable adsorbent for CO2 extraction. Warmuzinski and coworkers [196] designed a 5-

bed 8-step PSA process through rigorous mathematical simulation, for which they obtained a

recovery of 74% for H2, as well as 92% for methane in the tail gas stream. They also verified

their results using bench-scale experimentation [184]. Yang et al. [208] studied a 4-bed 9-

step cycle experimentally and theoretically using layered beds of activated carbon and zeolite

5A, and recovered 66% of H2 from syngas at 99.999% purity. Ritter and Ebner [152] provide

a comprehensive review on the use of adsorption technologies for H2 production and CO2

removal.

In all the PSA cycles developed so far, the weakly adsorbed hydrogen (or the light-product)

in the mixture is the desired product, and enriching the strongly adsorbed CO2 (or the heavy-

product) is not a concern. On the other hand, for CO2 sequestration, it is necessary to

concentrate CO2 to a high purity. The adsorbents designed to date preferentially adsorb
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Table 5.1: Activated carbon properties and model parameters [100]

Parameter Value

Bed porosity (εb) 0.37
Particle diameter (dp) 0.00149 m
Adsorbent density (ρs) 544.64 kg m−3

Bulk density (ρb) 343.12 kg m−3

Heat capacity of solid (Cps) 711.75 J kg−1 K−1

Heat transfer coefficient (UA) 0.2839 J m−3 sec−1 K−1

Gas viscosity (µ) 1.2021×10−5 kg m−1 sec−1

Gas constant (R) 8.314 J mol−1 K−1

Mass transfer coefficient (k) CO2=0.45 sec−1

H2=1.45 sec−1

Heat of adsorption (∆Hads) CO2=24801 J mole−1

H2=8420 J mole−1

Ambient temperature (Tw) 298 K

Isotherm parameters

CO2 H2

k11 1.16 1.16
k21 0 0
k31 6.96×10−10 1.06×10−9

k41 3259.683 1012.75
k12 8.33 8.33
k22 0 0
k32 1.88×10−10 1.06×10−9

k42 2706.279 1012.75

CO2 from a flue gas or reformer off-gas mixture, consequently making it a heavy-product.

The conventional PSA cycles are inappropriate for concentrating heavy-product because the

light-product purge step (or the light reflux step) in these cycles uses a portion of the light-

product for purge. This necessarily dilutes the heavy component in the heavy-product stream.

Therefore, a pure light component is easy to attain from such cycles, but not a pure heavy

component. Thus, it is necessary to develop PSA processes specifically targeted to obtain pure

strongly adsorbed CO2. Very few examples of CO2 purification from a reformer off-gas mixture

using a PSA process can be seen in the literature. Sircar et al. developed a 5-bed 5-step PSA

process to extract methane and carbon dioxide both at a high purity from a feed mixture

having 40-60% CO2 and CH4 [174, 165]. A pure CO2 rinse step was used in the process to
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obtain a CO2 product containing 99.8-99% CO2. Schell et al. [159] suggested a dual-reflux

PSA process with a stripping and a rectifying section to obtain both light and heavy product at

high purities. Xiao et al. [202] studied single-stage and dual-stage 2-bed 8-step VSA processes

which could recover more than 90% of CO2, at 95% purity, from a feed mixture having 21.5%

CO2 and 76.8% H2. Air Products and Chemicals, Inc. have developed the Gemini process

to simultaneously produce H2 and CO2 at high purities and recoveries [164]. It consists of

6 adsorbers (A beds) to selectively adsorb CO2, which is then obtained by applying vacuum

depressurization, and 3 adsorbers (B beds) to purify hydrogen. Both beds undergo two entirely

different sequences of operating steps. However, one A bed and one B bed are connected in

series during the adsorption step. Sircar [173] provides more detailed information about the

process.

It is clear that novel PSA cycle sequences are anticipated which not only recover H2 at

a high purity, but simultaneously also produce a highly pure CO2 stream with a reasonably

high recovery. In this chapter, we demonstrate the versatility of the superstructure approach

by applying it to develop cycles for pre-combustion capture that produce both H2 and CO2 at

high purity and recovery.

5.2 Case Setup

Here the feed is considered to be a syngas mixture having 55% H2 and 45% CO2, arriving at a

temperature of 310 K after a single shift conversion in an IGCC [134]. The feed mixture also

consists of negligible amounts of CO, CH4, Ar and N2, besides H2 and CO2. However, hydrogen

and carbon dioxide together constitute around 97-99% of the mixture [134]. Therefore, we

consider a binary feed mixture for the case studies. We assume that the fuel gas enters at

a pressure of 700 kPa, and a maximum velocity (vfeed) of 50 cm/sec. Since feed pressure is

high, optional inlet compressor doesn’t exist in the superstructure for this case. Consequently,

work done by inlet compressor is omitted from Equation (3.15a). Since the PSA model doesn’t

require bed diameter to be specified, we specify superficial feed velocity for the model instead
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of a volumetric flow rate. The bed length is fixed and is assumed to be 12 metres. For all the

case studies, we also assume an efficiency of 72% for all compressors and the vacuum generator

in the superstructure [30]. Activated carbon is chosen as the adsorbent, especially to extract

CO2. Based on the breakthrough tests, Jee et al. [98] recommended activated carbon for high

recovery CO2 separation. The scope of this study is to explore the limits of the performance

of the PSA processes for this sorbent. We also note that other sorbents, such as alumina,

molecular sieves, zeolite (also in layers), are also applicable and these form the basis for future

study with this synthesis technique. The properties and other model parameters for activated

carbon are listed in Table 5.1 [100].

Although a large number of spatial and temporal discretization nodes are essential to

accurately capture the dynamic movement of the steep adsorption fronts, we consider only 10

spatial finite volumes and 10 temporal finite elements for the NLP to obtain the solution in a

reasonable amount of time. Because of such a small number of nodes, accuracy validation of

the optimal solution obtained from IPOPT by performing more accurate dynamic simulations

in MATLAB at the optimal values is extremely essential. Here we consider two different

approaches for accuracy verification. In the first approach, called the step-by-step approach,

each operating step of the cycle is simulated in MATLAB for only one cycle, and the purities

and recoveries are then compared with AMPL results. The initial condition for each step and

the time-dependent fluxes between the beds are taken from the AMPL solution. The number

of spatial finite volumes are kept same for both AMPL and MATLAB. Note that, depending on

the accuracy, the MATLAB solution may or may not be at CSS after simulating each step in

this approach. In the second approach, called the full-cycle approach, entire cycle is simulated

in MATLAB multiple times until CSS is achieved. In this approach, we consider more spatial

finite volumes for MATLAB simulation. While the step-by-step approach only verifies temporal

accuracy, the full-cycle approach validates both spatial and temporal accuracy. Although the

full-cycle approach yields more accurate comparison, the step-by-step approach is useful in

getting a quick assessment of the validity and physical correctness of the AMPL solution.

Chapter 5. Superstructure Case Study: Pre-combustion CO2 Capture 77



5.3 Case Studies and Computational Results

To illustrate the generality of the superstructure approach, we consider two different cases.

The first case involves superstructure optimization to obtain an optimal PSA configuration

which maximizes CO2 recovery for a given lower bound on both CO2 and H2 purity, while the

second case involves generating optimal cycle that minimizes overall power consumption for a

given lower bound on CO2 purity and recovery.

5.3 Case Studies and Computational Results

5.3.1 Case I: Cycle synthesis to maximize CO2 recovery

We solve the optimal control problem (3.1) to obtain an optimal cycle which maximizes CO2

recovery for a lower bound of 90% on both H2 and CO2 purity. Besides this, a lower bound on

feed flux Qfeed is also imposed. In the absence of this bound, the optimizer may force the feed

fraction φ(t) to zero in order to maximize CO2 recovery. Large-scale NLP that results after

complete discretization of state and control variables in the optimal control problem is shown

below. In the following problem, cycle time Tc is also a decision variable. Optimal values of

the moving temporal finite elements together with optimal Tc give the optimal step times.

max CO2 recovery (from Equation (3.14d))

s.t. c(w) = 0 (fully discretized Equations (3.2)-(3.13)) (5.1a)

H2 purity ≥ 0.9 (from Equation (3.14a)) (5.1b)

CO2 purity ≥ 0.9 (from Equation (3.14b)) (5.1c)

Qfeed,L +Qfeed,H ≥ 35 kgmolm−2hr−1 (from Equation (3.14e)) (5.1d)

Pads ≥ Pd (5.1e)

Pdes ≤ Pfeed (5.1f)

Pa ≥ Pfeed (5.1g)

0 ≤ α(ti), β(ti), φ(ti) ≤ 1 ∀ti (5.1h)

10 sec ≤ Tc ≤ 500 sec (5.1i)

101.32 kPa ≤ Pads(ti) ≤ 1000 kPa ∀ti (5.1j)

Pdes(ti) ≥ 50 kPa ∀ti (5.1k)

Equation (5.1a) is the fully discretized PDAE system with the cyclic steady state condition.

Constraint (5.1e) ensures that the pressure always decreases through the valve in the super-
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Figure 5.1: Optimal control profiles for case I

structure. Similarly, constraints (5.1f) and (5.1g) ensure that the gas is never expanded by the

heavy gas and the feed compressors, respectively. It should be noted that a lower bound of 50

kPa is chosen for the vacuum generated, which is not a substantially high vacuum. Similarly,

the chosen upper bound of 1000 kPa for Pads is also reasonably low. Also, it is important

to note that a lower bound of 35 kgmol m−2hr−1 is imposed on the total feed flux which is

independent of the bed diameter. Thus, with a bigger bed diameter, it will be possible to

handle a much higher feed throughput for the same cycle configuration. Hence, as in the case

of post-combustion capture case studies, the focus here is to synthesize industrial-scale PSA

systems.

With 10 temporal finite elements and 10 spatial finite volumes, the optimization problem

was solved in AMPL using IPOPT. The optimal profiles for the control variables α(t), β(t),

φ(t), Pads(t) and Pdes(t) are shown in Figure 5.1. They are drawn against the cycle time nor-

malized between 0 and 1. These profiles suggest an optimal 2-bed 8-step VSA cycle, illustrated

in Figure 5.2, which can be deciphered in the following manner. The cycle starts with α(t)=1,

β(t) close to 0.67, and φ(t)=1. This suggests bottom reflux from CnB to CoB, a 67% top

reflux from CoB to CnB and feed being fed to CoB. From the values of Pads(t) and Pdes(t) for

this step, it can be observed that CoB is operating at the feed pressure (700 kPa) while CnB

is operating at a vacuum of 50 kPa. Hence, this is an adsorption with a heavy reflux step for
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CoB (step 1) and a light reflux step at vacuum for CnB (step 5). After this, α(t) drops to

around 0.63 while both β(t) and φ(t) drop to zero. CnB continues to operate at vacuum while

the pressure in CoB rises to around 820 kPa. Thus, with no feed and around 63% bottom

reflux, we have a high pressure heavy reflux step for CoB (step 2) with H2 collection at the

light end, and, with no top reflux, we have a vacuum desorption step for CnB (step 6) in which

a part of the desorbed CO2 is collected, while the rest is sent as a heavy reflux to further

enrich its solid-phase concentration towards the heavy end of CoB. Next, α(t) goes to 1 while

β(t) and φ(t) remain at zero. The pressure further rises to 900 kPa in CoB while the vacuum
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is stopped in CnB and it starts operating in the atmospheric range. Therefore, we have an

atmospheric desorption step for CnB (step 7) in which desorption occurs at around 120 kPa.

The desorbed gas is sent to CoB which undergoes a heavy reflux step at further elevated pres-

sures (step 3). In the final operating step, the values of α(t) and β(t) both go to 1, indicating

no light or heavy product extraction from the system. The feed enters midway through the

step for a short duration, and is otherwise at zero. To reflect this, a dotted line is shown for

feed during this step in Figure 5.2. The profiles of Pads(t) and Pdes(t) show that the pressure

rises in both beds. Since the PSA system gets isolated during this step and a recirculation of

the components occurs within the system, we call it a total reflux step (step 4 and step 8).

After the total reflux step, the co-current bed follows the steps of the counter-current bed and

vice-versa. This completes the cycle.

Figure 5.2 together with the gas-phase CO2 concentration profiles in Figure 5.3 illustrate

several unconventional, but key, aspects of the cycle. First, the light reflux step at vacuum

(step 5) follows the total reflux step at around 950 kPa (step 4). Such a transition in the bed

pressure, although not economical, is essential to improve the purity and recovery of CO2 in

the final product. During the light reflux step, a large amount of CO2 desorbs in CnB which is

then sent to CoB. This is necessary to enrich the adsorbed-phase CO2 concentration towards

the heavy end of CoB. From step 1 in Figure 5.3, it can be observed that the CO2 front rises

significantly towards the heavy end due to this recycle. Such a significant rise is important

to achieve the desired CO2 purity and recovery. Since a large amount of CO2 is desired for

this enrichment, and since the duration of the light reflux step is short, the step operates at

vacuum and entire desorbed CO2 is sent to the other bed.

Second, the light reflux step at vacuum (step 5) precedes the vacuum desorption step (step

6), whereas conventionally it is vice-versa. Since the step duration for step 5 is small, the

hydrogen recycle helps in getting more CO2 desorbed in that interval. This hydrogen reflux

is obtained from the feed stream going in CoB. Also, since the hydrogen reflux dilutes the

product CO2, it is collected during the next vacuum desorption step and not during step 5.
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Figure 5.3: Gas-phase CO2 concentration profiles for case I
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Therefore, vacuum desorption succeeds the light reflux step. The third key aspect of the cycle

is the presence of heavy reflux from CnB to CoB during the entire cycle. From the CO2

concentration profiles of first four steps in Figure 5.3, it is clear that this CO2 reflux helps

push the CO2 front towards the light end of the adsorbing bed before we start desorbing and

collecting CO2. Thus, we infer that the heavy reflux step is essential for high purity CO2

production.

Another aspect of the cycle is the atmospheric desorption step (step 7) after vacuum des-

orption (step 6). Since CO2 is not collected as a product during step 7, we observe that the

purpose of this step is only to send CO2 reflux to CoB. The step is carried out at the atmo-

spheric conditions to ensure a controlled CO2 reflux to CoB such that the CO2 front doesn’t

break through CoB’s light end. Final aspect of the cycle is the total reflux step (steps 4 and 8).

It is a mutual reflux step in which the CO2 reflux from CnB to CoB helps push hydrogen out

of the light end of CoB to the light end of CnB while enhancing adsorbed CO2 concentration

in CoB, while the H2 reflux enriches its concentration in CnB and helps CO2 desorb out of the

heavy end of CnB. Such a step is important to ensure that both H2 and CO2 are collected at

a high purity in subsequent steps, and thus is the longest step in the cycle. The feed stream

in the middle of the step provides more hydrogen for the light reflux from CoB to CnB.

The optimization results for this case are summarized in Table 5.2. With 10,512 variables

and 78 degrees of freedom in the NLP, the optimal solution was obtained in approximately

52 CPU minutes on an Intel Quad core 2.4 GHz machine with 8 GB RAM. At the optimum,

the feed flux attained its lower bound of 35 kgmol m−2 hr−1. For this feed flux, and 72%

efficiency for compressors and vacuum generator, a power consumption of 536.16 kWh/tonne

CO2 captured was obtained after optimization. An optimum CO2 recovery of 98% at a purity

of 90% was obtained. Also, a reasonably high hydrogen purity of 98% and a recovery of 91%

was obtained simultaneously.

In Table 5.2 we also provide a validation of the optimal results obtained using full discretiza-

tion approach in AMPL with the method of lines simulations in MATLAB. As discussed in
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Table 5.2: Optimization results for case I

No. of variables 10512
No. of equations 10434
CPU time 51.59 min.
Optimal step times

Step 1 (and 5) 4.69 sec
Step 2 (and 6) 10.02 sec
Step 3 (and 7) 19.88 sec
Step 4 (and 8) 64.81 sec

Optimal cycle time 198.8 sec
Feed flux 35 kgmol m−2 hr−1

Power consumption 536.16 kWh/tonne CO2 captured

Accuracy check

Full discretization MATLAB verification

step-by-step full-cycle
Spatial finite volumes 10 10 40

H2 purity 98.20% 99.10% 95.92%
H2 recovery 91.09% 91.32% 91.73%
CO2 purity 90% 90.32% 90.99%
CO2 recovery 97.95% 98.99% 96.03%

section 5.2, AMPL results were validated using both step-by-step and full-cycle approaches in

MATLAB. The step-by-step validation was done with the same number of spatial finite vol-

umes as used in AMPL, i.e., 10, while full-cycle validation was done with 40 finite volumes. We

observe that the results from AMPL are in reasonable agreement with those from MATLAB

for both the approaches. The step-by-step verification is closer to the AMPL solution because

the initial conditions for each step and the time-dependent fluxes between the beds are taken

from AMPL, and MATLAB only verifies the temporal accuracy of the AMPL solution. On

the other hand, the full-cycle approach reflects more accurate comparison as it simulates the

entire cycle and verifies both spatial and temporal accuracy. We observe a reasonably good

comparison with the full-cycle approach as well. Moreover, we note that as we switch from

CoB to CnB or vice-versa during the cycle, it takes a short while for the flow to reverse entirely

in the bed. As a result, a flow of components from the heavy end of CoB or the light end of

CnB is observed during this short duration. Such a flow is accounted in the purity and re-
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Figure 5.4: Purity-recovery trade-off curve for case I

covery calculations in AMPL and the full-cycle approach, since they simulate the entire cycle,

but not in the step-by-step approach. Hence, we observe higher recoveries for H2 and CO2

in the step-by-step approach. We register this flow because in our formulation we control the

pressures Pads and Pdes and not the flow rates at the heavy end and the light end of CoB and

CnB, respectively. To avoid this, a valve-based superstructure formulation, which can control

the flows instead of pressures, will be considered in future extensions of this work.

Figure 5.4 shows a trade-off curve between CO2 purity and recovery. The curve is con-

structed by varying the lower bound on CO2 purity and solving the superstructure NLP re-

peatedly. As a result, each point plotted on the curve represents an optimal cycle which yields

the corresponding optimal CO2 recovery for the corresponding purity. In other words, it is an

optimum purity-recovery trade-off curve for the activated carbon adsorbent and the process

conditions assumed in this case study. The feed flux and the cycle time were fixed to their

respective optimal values of 35 kgmol m−2 hr−1 and 198.8 sec for the entire curve. Figure 5.4

also shows the power consumption for the corresponding optimal CO2 purity-recovery com-

bination. With activated carbon as the sorbent, we are able to obtain a maximum purity of
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around 96% with a recovery of 90%, but with a power consumption of around 700 kWh/tonne

CO2 captured. For this system, high CO2 purity (> 99%) is not possible with activated carbon

as the sorbent. The curve shows that if a very high purity CO2 separation is desired then the

recovery falls drastically. A similar trend is observed with the purity when a very high CO2

recovery is sought. The intermediate section of the curve is a preferable region to operate.

5.3.2 Case II: Cycle synthesis to minimize power consumption

Although we achieved a high purity separation in the previous case, the power consumption was

also quite high. Therefore, in this case, we modify the objective function of the optimization

problem from maximizing CO2 recovery to minimizing overall power consumption. A lower

bound of 92% is specified for CO2 recovery, while no lower bounds are specified for hydrogen

purity and recovery. The efficiency is kept same as 72% for all compressors and vacuum

generator. The rest of the optimization problem remains same as in the previous case, and is

as below.

min Power (from Equation (3.15b))
s.t. c(w) = 0 (fully discretized Equations (3.2)-(3.13))

CO2 purity ≥ 0.9 (from Equation (3.14b))
CO2 recovery ≥ 0.92 (from Equation (3.14d))
Qfeed,L +Qfeed,H ≥ 35 kgmolm−2hr−1 (from Equation (3.14e))
Pads ≥ Pd
Pdes ≤ Pfeed
Pa ≥ Pfeed
0 ≤ α(ti), β(ti), φ(ti) ≤ 1 ∀ti
10 sec ≤ Tc ≤ 500 sec
101.32 kPa ≤ Pads(ti) ≤ 1000 kPa ∀ti
Pdes(ti) ≥ 50 kPa ∀ti

(5.2)

As in the previous case, 10 temporal finite elements and 10 spatial finite volumes were

chosen for complete discretization in AMPL. The optimal control profiles obtained for α(t),

β(t), φ(t), Pads(t) and Pdes(t) are shown in Figure 5.5. These profiles translate in a 2-bed

10-step VSA cycle, illustrated in Figure 5.6, which can be deduced in the following manner.

The cycle starts with the first step similar to the first step of the cycle obtained in the previous

case. However, the duration of this step is extremely short in this case. With α(t)=1, φ(t)=1,
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Figure 5.5: Optimal control profiles for case II

and β(t) close to 0.72, CoB undergoes an adsorption with a heavy reflux step (step 1) at the

feed pressure, while CnB undergoes a light reflux step (step 6) at around 380 kPa. After this,

α(t) stays at 1 while β(t) and φ(t) drop to zero. Also, Pads(t) rises slightly while Pdes(t) drops

considerably. Therefore, we observe a high-pressure heavy reflux step for CoB (step 2) and

a counter-current depressurization step for CnB (step 7). Then we observe the longest step

of the cycle in which α(t) drops down to zero, β(t) rises slightly from zero towards the end

of the step, and the profile of φ(t) indicates near constant feed to CoB. From the pressure

profiles it can be inferred that the pressure rises steadily in CoB during this step, while CnB

first operates at atmospheric pressure and then at a vacuum of 50 kPa. Thus, we have a feed

pressurization with adsorption step for CoB (step 3) and a desorption step for CnB (step 8).

Both hydrogen and carbon dioxide are collected at high purity during this step. A small value

of β(t) towards the end of the step suggests a small amount of light reflux from CoB to CnB

to increase CO2 recovery. This small light reflux is shown as a dotted connection between CoB

and CnB in Figure 5.6. Next, a short step is observed in which the values of α(t) and β(t)

both go to 1 and feed rises to a value close to 1. Pads(t) hits the upper bound of 1000 kPa

while Pdes stays in the vacuum range. This suggests a feed pressurization with heavy reflux

step for CoB (step 4) and a light reflux step for CnB (step 9). In the final step, both α(t) and

β(t) stay at 1 while feed goes to zero. In addition CoB pressure drops CnB pressure rises so
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Figure 5.6: Optimal VSA configuration for case II

that Pa = Pdes. This leads to an energy-saving pressure equalization step for both beds (step

5 and step 10). Although α(t) is 1, not much flow is observed from CnB to CoB during this

step. Thus, this reflux is shown as a dotted connection in Figure 5.6. Further, the co-current

bed follows the steps of the counter-current bed and vice-versa. This completes the cycle.

The optimal VSA cycle obtained in this case incorporates conventional operating steps,

and in a conventional order. Figure 5.6 together with the gas-phase CO2 concentration profiles

in Figure 5.7 illustrate several key aspects of the cycle. First we observe that in this cycle

heavy reflux is not used as a major step to enrich adsorbed-phase CO2 concentration towards
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Figure 5.7: Gas-phase CO2 concentration profiles for case II
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the heavy end of the bed. The light reflux step (step 5) for CnB, since carried out at a high

pressure, doesn’t contribute much CO2 for enrichment for CoB during step 1, as observed

from the CO2 concentration profile for step 1 in Figure 5.7. Similarly, we observe from the

concentration profiles for step 2 in Figure 5.7 that the CO2 reflux from CnB to CoB during

step 2 and step 7 marginally pushes the CO2 adsorption front in CoB. This suggests that the

heavy reflux from CnB to CoB during steps 1 and 2 are specifically used to push hydrogen

out of the light end of CoB. However, though for a short duration, we do observe the use of

heavy reflux to concentrate CO2 towards the heavy end of CoB during the light reflux step at

vacuum (steps 4 and 9). This vindicates the use of vacuum conditions in CnB during this step

to provide a large amount of CO2 for heavy reflux. Moreover, since the duration of these steps

is short, the feed stream jumps in CoB to provide enough hydrogen for CnB as a light reflux.

Second aspect of the cycle is that the CO2 enrichment towards the heavy end of the bed

is mostly done with the feed stream. Unlike previous case, this optimal VSA cycle utilizes

the fact that the feed stream has a high concentration of CO2 at a high pressure. From the

concentration profile of step 3 in Figure 5.7, it is clear that the feed stream is primarily used to

push the CO2 adsorption front. This not only allows a higher feed throughput and enhanced

CO2 recovery for the process, but also reduces the specific power consumption. Such a step is

a conventional way of elevating CO2 concentration in the bed, and thus makes this VSA cycle

more conventional.

The final key aspect of the cycle is the pressure equalization step (steps 5 and 10) which

leads to savings in the power consumption. Although this step saves energy, it can be observed

from the concentration profiles of step 5 that as the pressure drops in CoB, CO2 starts diffusing

towards the light end of CoB. As a result, a small amount of CO2 breaks through the light end

of CoB and enters the light end of CnB, which is clear from the concentration profiles of step

10 in Figure 5.7. However, the amount is minimal and doesn’t lead to a loss in CO2 recovery.

The optimization results for this case are summarized in Table 5.3. With the same number

of variables and degrees of freedom as in the previous case we were able to get the optimal
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Table 5.3: Optimization results for case II

No. of variables 10512
No. of equations 10434
CPU time 66.45 min.
Optimal step times

Step 1 (and 6) 2.16 sec
Step 2 (and 7) 31.10 sec
Step 3 (and 8) 127.42 sec
Step 4 (and 9) 7.77 sec
Step 5 (and 10) 43.92 sec

Optimal cycle time 424.74 sec
Feed flux 96.61 kgmol m−2 hr−1

Power consumption 46.82 kWh/tonne CO2 captured

Accuracy check

Full discretization MATLAB verification

step-by-step full-cycle
Spatial finite volumes 10 10 40

H2 purity 93.33% 94.14% 94.22%
H2 recovery 91.64% 93.02% 91.05%
CO2 purity 90% 91.59% 89.42%
CO2 recovery 92% 92.92% 93.67%

solution in around 1 CPU hour. An optimal power consumption of 46.82 kWh/tonne CO2

captured was obtained which is an order of magnitude less than the one obtained in the

previous case. The low power consumption stems from an optimal feed flux, 96.61 kgmol m−2

hr−1 that is three times the feed flux of case I, and an optimal cycle time which is more than

twice as long as in case I. Since the cycle is handling three times the feed over longer time,

the amount of CO2 recovered increases which leads to a lower work done per tonne of CO2

captured. Another reason for the savings in power consumption is the pressure equalization

step, discovered by the NLP solver.

At the optimum, CO2 purity and recovery were at their respective lower bounds of 90%

and 92%. With this, a reasonable hydrogen purity of 93% and recovery of 91.6% was obtained.

Table 5.3 also lists the accuracy verification of the results obtained from the full discretization

approach in AMPL. The purities and recoveries obtained from MATLAB using both the step-
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Figure 5.8: Power-recovery trade-off curve at 90% CO2 purity for case II

by-step approach with 10 spatial finite volumes and the full-cycle approach with 40 finite

volumes are reasonably close to the ones obtained from AMPL. As observed in the previous

case, the step-by-step approach verification is closer to the AMPL solution. However, the

full-cycle verification depicts more accurate comparison since it compares both spatial and

temporal accuracy for the entire cycle.

Figure 5.8 shows the trade-off curve between power consumption and CO2 recovery. As in

the previous case, the curve is constructed by varying the lower bound on CO2 recovery, while

keeping the CO2 purity, feed flux and cycle time fixed to their respective optimal values of

90%, 96.61 kgmol m−2 hr−1 and 424.74 sec, and solving the superstructure NLP repeatedly.

As a result, each point on the curve represents the minimum power consumption that can be

obtained for the corresponding CO2 recovery. As expected, the curve shows that the power

requirements increase if a high-recovery separation is desired. However, the increase remains

reasonable even for a CO2 recovery as high as 98%.

Chapter 5. Superstructure Case Study: Pre-combustion CO2 Capture 92



5.4 Comparison of Cycles from Case I and II

5.4 Comparison of Cycles from Case I and II

From the case studies above, we observe that the superstructure optimization can yield entirely

different configurations with different objectives. The final configurations obtained match the

respective objectives sought in both case studies. The major difference between the optimal

cycles is the way they enrich the CO2 concentration towards the heavy end of the bed. Since the

objective of case I is to maximize CO2 recovery, the optimizer achieves it by minimizing the feed

input through the system, thus attaining the specified lower bound for feed flux. As a result,

minimal feed is used and the optimal configuration doesn’t use the high CO2 concentration

present in the feed to enhance the adsorbed-phase CO2 concentration. Consequently, we

observe the utilization of the heavy reflux step through the entire cycle to achieve desired

CO2 purity. In contrast, the optimal VSA cycle in case II utilizes the feed stream for CO2

enrichment. Thus, we infer that a heavy reflux step is not an absolute necessity to obtain

heavy component at a high purity when the feed to the PSA system is sufficiently rich in the

heavy component.

As a result of the CO2 enrichment through feed, although the lower bound on feed flux

is 35 kgmol m−2 hr−1 for both cases, the optimal feed flux for case II is almost three times

this value. Consequently, it also decreases the specific power consumption for the cycle. In

contrast, the optimal cycle in case I doesn’t incorporate any power saving step due to the lack

of any constraint on the power consumption in the problem formulation. Thus, unlike case II,

we do not observe a pressure equalization step in case I. In fact we observe an uneconomical

pressure drop from 950 kPa to 50 kPa when the cycle transitions from step 4 to step 5. To

avoid this, an upper bound on the power consumption can be used for case I in future.

To deduce multibed cycles for a continuous cycle operation from the optimal two-bed

solutions, a coordination of step times will be required which will depend upon whether we

need a continuous product H2 collection, or a continuous CO2 removal or a continuous feed

to the system. In both case I and case II, H2 is collected for a longer period in the cycle and

continuous flow can be maintained through product buffer tanks. Thus, the coordination can
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be achieved with a small number of beds. However, in case I, feed is given or CO2 is removed

for a short duration in the cycle. Such small step times, without feed and product buffer tanks,

can lead to a large number of parallel beds in the continuous operation. On the contrary, the

optimal cycle in case II handles a large amount of feed and removes CO2 for a long duration.

Consequently, a continuous cycle operation will require a small number of parallel beds. Thus,

the optimal cycle obtained in case II is more practical and implementable. To avoid the kinds

of steps obtained in case I, the step times can be constrained to avoid an overly complicated

cycle. One way to handle this is to set the step times as integer multiples of each other; this

can be enforced with a ”slot-based” formulation. Such a formulation will be considered in

future extensions of this work.

5.5 Conclusions and Future Work

A major limitation exists with the use of conventional PSA cycles for high purity CO2 capture

because they have been designed to recover H2 at an extremely high purity, and consider CO2

as a waste stream. Therefore, it is necessary to develop PSA processes which simultaneously

produce H2 and CO2 at a high purity. Complex dynamic behavior of PSA processes together

with the numerical difficulties of the model governed by PDAEs makes the evaluation of differ-

ent cycle configurations challenging and computationally expensive. In this work, we propose

a systematic optimization-based framework to address this issue. The proposed approach is

illustrated for two different case studies of pre-combustion CO2 capture using only activated

carbon as the sorbent. The first case study deals with obtaining optimal PSA cycle which

maximizes CO2 recovery for at least a desired amount of CO2 and H2 purity. Superstructure

optimization for this case results in a 2-bed 8-step VSA cycle which can produce both H2 and

CO2 at a substantially high purity of 98% and 90%, respectively. A significantly high CO2

recovery of 98% is achieved at a high feed flux of 35 kgmol m−2 hr−1. Changing the objective

to minimizing power consumption, in the second case study, yields an entirely different 2-bed

10-step VSA cycle. The cycle can produce CO2 at a purity of 90% and a recovery of 92%
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with a significantly low power consumption of 46.82 kWh/tonne CO2 captured. With these

results it can be inferred that PSA/VSA is a promising technology for pre-combustion capture

systems. It can produce highly concentrated CO2 streams with minimal energy requirements.

Both case studies were solved to optimality within 1 CPU hour in AMPL using IPOPT

with a reasonable accuracy. Thus, the proposed superstructure approach, with a complete dis-

cretization framework and efficient NLP solvers like IPOPT, is a computationally inexpensive

way to obtain optimal cycles. However, as briefly mentioned in section 4.6, to improve upon

the accuracy of the approach a sensitivity-based sequential approach, similar to [100], will also

be developed to solve the optimal control problem for the superstructure without a separate

verification step. Instead, the PDAEs for the PSA system will be decoupled from the opti-

mization problem, and the partially discretized PDAEs, together with the sensitivities of the

state variables with respect to decision variables, will be integrated outside the optimization

problem using a sophisticated dynamic simulator which is able to capture the state variable

profiles with high accuracy. The optimization problem will then be solved for the decisions

using these sensitivities.

Finally, as mentioned in section 4.6, our superstructure based methodology, is quite generic

and can be extended to many other PSA applications; no assumptions are made on the ad-

sorbent or feedstock, the operating steps that can be predicted, or details of the bed models.

This makes the approach fairly general. Moreover, the superstructure can also be used to

evaluate different kinds of adsorbents for the same feedstock and process conditions. While

the current superstructure involves only two beds, in future we plan to extend the formulation

to incorporate more beds with multiple layers of adsorbents, more complex flow patterns and

more challenging multi-component mixtures.
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Chapter 6

Reduced-order Modeling for

Optimization

Synopsis

Reduced-order modeling techniques can be used in order to circumvent computational diffi-

culties that arise due to large-scale state equations related to PDE-constrained optimization

problems. Model reduction is one approach to generate cost-efficient low-order models which

can be used as surrogate models in the optimization problems. This chapter develops a re-

duced order modeling framework based on proper orthogonal decomposition (POD), which is

a low-dimensional approximation to the dynamic PDE-based model. The proposed method

leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial

discretization and making the optimization problem computationally efficient. We explain the

concept of POD, the methodology to construct reduced-order models (ROMs), and motivate

it with an example of Burgers equation. Further, we discuss ROM-based optimization, and

describe how ROMs can be utilized to optimize in a trust-region around the point where ROM

is constructed. Optimization strategy is illustrated with a hydrogen PSA case study.
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It is clear that the mathematical model of pressure swing adsorption processes is described by

coupled nonlinear partial differential and algebraic equations distributed in space and time with

periodic boundary conditions that connect the processing steps together, and high nonlineari-

ties arising from non-isothermal effects and nonlinear adsorption isotherms. Also, the solution

of such convection dominated hyperbolic PDAEs is governed by steep adsorption fronts. Con-

sequently, a large number of spatial finite volumes are generally required to capture dynamic

behavior with steep fronts. As a result, optimization of such systems for either design or

operation represents a significant computational challenge to the current DAE optimization

techniques and nonlinear programming algorithms.

Although sophisticated optimization strategies have been developed and applied to PSA

systems with a significant improvement in the performance of the process (such as the complete

discretization based approach by Nilchan [138] for optimization of a bench-scale and a rapid

PSA process, a mixed-integer nonlinear programming based approach by Smith et al. [177,

178, 179] to minimize number of beds, an SQP-based approach by Ko et al. [110, 111] to

optimize PSA and fractionated vacuum PSA processes, an SQP-based approach by Jiang et

al. [99] with direct sensitivities to obtain derivatives for the optimization problem, and the

complete discretization approach with the interior-point nonlinear solver IPOPT applied in

chapter 4 and 5 for the case studies related to the superstructure optimization), even the most

efficient of these approaches can usually be quite expensive and prohibitively time-consuming.

For instance, we report a CPU time of 12.6 hrs. for case II, and 4.5 hrs. for case III of the post-

combustion capture case study in sections 4.4.2 and 4.4.3, respectively. Even for just 10,500

variables in the optimization problem, CPU time was as high as 52 min. for case I, and 66 min.

for case II of the pre-combustion capture case study in section 5.3.1 and 5.3.2, respectively.

Jiang et al. [100] reported a CPU time of 50-200 hrs. on a 2.4 GHz linux machine for a 5-bed

11-step PSA process optimization to maximize hydrogen recovery. Multiobjective optimization

of a simple single bed air drying PSA process by Sankararao et al. [157] took 720 hrs. on a 2.99
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GHz Pentium IV machine. This gives a strong motivation to develop cost-efficient and robust

optimization strategies for PSA processes. Moreover, for flowsheet optimization, incorporation

of dynamic PSA models with other steady-state models in the flowsheet requires much faster

approaches for integrated optimization.

Model reduction is a powerful tool that permits systematic generation of cost-efficient

representations of large-scale systems that, in particular, result from the discretization of the

PDEs. Antoulas et al. [11] provide an overview of numerous model reduction techniques

which can be applied to large-scale PDE based systems. In particular, over the past decade,

proper orthogonal decomposition (POD) has been developed as a powerful model reduction

approach that provides an accurate reduction of the large spatially distributed models to

much smaller models, and have resulted in an extensive list of articles. Berkooz et al. [27]

provide a detailed list of such articles. Chatterjee [45] explains the concept and applications

of POD in a clear and concise manner. POD (also known as Karhunen-Loéve approximation)

based reduced-order modeling technique is ubiquitous and has been applied for a multitude

of applications. It has been extensively used in obtaining low-dimensional models for efficient

simulation [116, 117, 128, 131, 153] and control [12, 26, 115, 147] in fluid dynamics. Yuan

et al. [210] developed reduced-order models for bubbling fluidized beds. Armaou et al. [13]

utilized the concept of POD for a diffusion reaction process, while Theodoropoulou et al. [185]

extended the applications of ROM-based modeling to chemical vapor deposition. Park et al.

[141] applied Karhunen-Loéve approximation to a nonlinear heat conduction equation defined

on an irregular domain. Shvartsman et al. [162] utilized POD for generating ROMs for MOVPE

reactor. Couplet et al. [56], Favier et al. [68], and Galletti et al. [82] developed calibrated

reduced-order modeling techniques using POD for the laminar and turbulent flow problems.

Cao et al. [39] developed a POD-based reduced order model for analysis of a detailed model

of the upper tropical Pacific Ocean. Gunzburger et al. [89] developed a generic framework to

incorporate boundary conditions having multiple parameters in a POD-based ROM of time-

dependent PDEs. The framework addresses both homogeneous and nonhomogeneous boundary

Chapter 6. Reduced-order Modeling for Optimization 98



6.1 Motivation

conditions. On similar lines, Rambo et al. [146] developed ROMs with parametric conditions

specifically for turbulent forced convection problems. Willcox has done extensive research in

the field of POD-based reduced-order models (see [200, 201, 15, 34, 35, 36]). In particular,

Bui-Thanh et al. [37] provided a goal-oriented framework for generating POD-based ROMs

by solving a model-constrained optimization problem.

ROMs are derived from solutions of detailed distributed models through the representation

of eigenfunction expansions. Using the singular value decomposition, spatially distributed

eigenfunctions can be derived empirically through a set of well-defined minimization problems.

ROMs are then formulated through the substitution of the eigenfunction expansion into the

PDE model using Galerkin projection. Truncation of those modes that have no significant

contribution to the solution profile then leads to a significant reduction in the number of

states which eventually leads to a much smaller optimization problem. Numerous studies

report use of reduced-order modeling for the purpose of optimization and optimal control.

Kunisch et al. [115] used it to control Burgers equation. Armaou et al. [14] applied the

concept of model reduction to the time-dependent parabolic PDEs and generated ROMs for

optimization of a diffusion-reaction process. Bendersky et al. [22] used it for optimization

of the transport-reaction processes, while Theodoropoulou [185] optimized the chemical vapor

deposition process using ROMs. Luna-Ortiz et al. [127] developed an input-output based

optimization scheme for large-scale systems. Fahl [65] applied a trust region proper orthogonal

decomposition algorithm for the optimal boundary control of a cavity flow. Bergmann et al.

[25] also applied the same algorithm for optimal control of the circular cylinder wake flow

considered in a laminar regime. Balsa-Canto et al. [21] solved a problem related to design and

optimization of thermal sterilization in the food industry, particularly conduction-heated foods,

using POD-based ROMs. LeGresley et al. [122] performed analysis and design optimization

of inviscid airfoils using ROMs for both subsonic and transonic flows. Weickum et al. [198]

developed extended ROMs for optimal design problems, in which ROMs are developed for

the whole design space before optimization and then a trust region based strategy is used for
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globalization. Recently, Varshney et al. [189] utilized ROMs to optimize multiscale systems.

However, until now ROM-based optimization has been used only for small-scale optimal control

or dynamic optimization problems, and its use for large-scale dynamic optimization problems,

especially PSA, has not been explored. For PSA, very few studies involve model reduction

or simplification. A compact representation developed by Chlendi et al. [49] using design

of experiments, short-cut models suggested by Chung et al. [53], and a model simplification

strategy chalked out by Zhang et al. [211], which relies on understanding detailed physics

behind each operating step, are the only known articles. Our focus is to develop systematic

model reduction strategies for PSA processes using POD.

In subsequent sections we describe the concept of proper orthogonal decomposition and

demonstrate construction of reduced-order models using POD. We also illustrate ROM con-

struction with the help of an example of Burgers equation.

6.2 Proper Orthogonal Decomposition (POD)

6.2.1 Concept

Proper orthogonal decomposition (POD), first introduced by Lumley [126] is now used in a wide

variety of disciplines such as turbulence, image processing, signal analysis, data compression,

oceanography, and process identification and control. The key idea of POD is to compute a set

of orthonormal functions, called POD basis functions, such that they can describe the dynamic

system under consideration with as few basis functions as possible. The set of basis functions

is optimal in the sense that it captures and describes the dynamic behavior of the system with

minimum number of basis functions. Given an ensemble of observations defined in a vector

space, we seek to find a subspace, much smaller than the original vector space, such that

the projection of all the observations on to that is maximal. The attractiveness of the POD

technique lies in the fact that the basis functions are derived from the numerical solutions or

experimental measurements of the system, thus exhibiting a local characteristic and ensuring
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that such a basis set inherently describes the dynamics in the best possible manner by being

closely linked to the accurate numerical solution of the system.

In particular, we use method of snaphots in this work to generate POD basis functions

[175]. POD-based model reduction begins with the collection of snapshot sets which consist of

solutions of the PDEs at several time instants during the evolution of the system. These snap-

shot sets are obtained by solving a rigorous, large-dimensional system obtained after spatial

discretization (and temporal also in some cases) of the PDEs. The determination of these sets

is crucial to the effectiveness of POD-based reduced-order modeling. Hence, they must contain

sufficient information to accurately represent the dynamics of the system. One then uses the

set of snapshots to determine a POD basis set which can accurately capture the information

contained in the snapshots using a much smaller set of basis functions.

Let the snapshot set (solution of PDEs) be given as

Y = {y1, . . . , yNt} (6.1)

with the fields yj = y(x, tj), where Nt is the number of snapshots and Nx is the number of spa-

tial discretization nodes. Here columns {Y:,j}Nt
j=1, known as snapshots, are the spatial profiles

of the state variable evaluated at time tj . Similary, rows {Yi,:}Nx
i=1 are the time trajectories of

the state variable evaluated at spatial location xi. Consequently, (1/Nt)
∑Nt

j=1 Yi,j is the time-

averaged mean of the trajectory at location xi. POD procedure computes an orthonormal set

of basis functions {φ1, . . . , φNx} which maximizes projection of each snapshot on to the first

M ≤ Nx basis functions. In other words, it solves

max
φ1,...,φM

M∑
i=1

Nt∑
j=1

|(yj , φi)|2 s.t. ‖φi‖ = 1, (φi, φj)i6=j = 0 i, j = 1, . . . ,M (6.2)

where (v, w) = (v, w)L2 denotes the L2-inner product with the corresponding norm ‖v‖ =

‖v‖L2 . Here (yj , φi) is the projection of jth snapshot on ith basis function φi. Instead of

maximing a convex problem, it is reformulated such that the sum of the error between each
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snapshot and its projection represented with a truncated first M ≤ Nx basis functions is

minimized.

min
φ1,...,φM

εPOD(M) =

Nt∑
j=1

∥∥∥∥∥yj −
M∑
i=1

(
yj , φi

)
φi

∥∥∥∥∥
2

=

Nt∑
j=1

∥∥∥∥∥
Nx∑

i=M+1

(
yj , φi

)
φi

∥∥∥∥∥
2

(6.3a)

s.t. ‖φi‖ = 1, (φi, φj)i6=j = 0 i, j = 1, . . . ,M (6.3b)

where each snapshot yj can be represented in terms of the new basis set using its projection

(yj , φi) in the direction of φi

yj =

Nx∑
i=1

(
yj , φi

)
φi , j ∈ {1, . . . , Nt} (6.4)

We choose M based on a subspace selection strategy (discussed in section 6.2.4). Usually, a

significant model reduction is achieved since the value of M is much smaller compared to the

value of Nx. Moreover, even with such lessM , generally the POD error in projection εPOD(M)

is significantly small. Thus, eventually we obtain a much smaller subspace spanned by a very

few basis functions.

6.2.2 Optimality Property

It can be shown that POD basis functions provide an optimal basis set for the representation

of the dynamics under consideration [65, 115]. Here, from a physical point of view, these

first M basis functions capture more “energy” of the snapshot field than any other set of M

orthonormal spatial basis functions. In other words, if we desire to represent each snapshot

with exactly M orthonormal basis functions, M POD basis functions will provide the best

representation and least error in projection, i.e.,

εPOD(M) =

Nt∑
j=1

∥∥∥∥∥yj −
M∑
i=1

(
yj , φi

)
φi

∥∥∥∥∥
2

≤
Nt∑
j=1

∥∥∥∥∥yj −
M∑
i=1

(
yj , ψi

)
ψi

∥∥∥∥∥
2

(6.5)

for any other orthonormal basis {ψi}Nx
i=1 and for all M ≤ Nx.
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6.2.3 POD and Singular Value Decomposition

Computation of POD basis functions is closely linked with calculating the singular value decom-

position (SVD) of the snapshot matrix Y ∈ RNx×Nt . Singular-value decomposition guarantees

the existence of real numbers σ1 ≥ σ2 ≥ . . . ≥ σNx ≥ 0 and orthogonal matrices

U ∈ RNx×Nx , with columns {ui}Nx
i=1,

V ∈ RNt×Nt , with columns {vj}Nt
j=1,

such that UTYV = D, where D ∈ RNx×Nt is a diagonal matrix with diagonal entries being

σ1, . . . , σNx , called singular values of Y. Here, vectors {ui}Nx
i=1 and {vj}Nt

j=1 are the eigenvectors

of YYT and YTY, respectively, while σ21, . . . , σ
2
Nx

represent the eigenvalues of YYT (or YTY,

as both have same eigenvalues). As a consequence, we obtain the singular value decomposition

of the snapshot matrix as

Y = UDV T (6.6)

since U and V are orthogonal matrices.

SVD can be used to obtain a complete set of POD basis functions. To obtain POD basis set,

we solve Problem (6.2) for a given value of M . A necessary optimality condition for Problem

(6.2) is given by the following eigenvalue problem

YYTu = σ2u (6.7)

From SVD, it is clear that the first M vectors {ui}Mi=1, M ≤ Nx of orthogonal matrix U

solve (6.7), and thus solve Problem (6.2) as well. Hence {ui}Mi=1 represent the desired set of

POD basis functions (or basis vectors in our case of finite spatial dimension). The amount

of projection of all the snapshots {yj}Nt
j=1 captured by each basis function {ui}Mi=1 is given

by corresponding singular values {σ2i }Mi=1. Since σ1 ≥ σ2 ≥ . . . ≥ σM , the first POD basis

function captures maximum projection of Y on the new reduced basis set, second POD basis
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is second best in capturing projection of Y, and so on. We note that Equation (6.6) can

also be written as Y = ÛB, with Û ∈ RNx×M being the reduced set of eigenvectors, and

B = DV T ∈ RM×Nt . Consequently, each snapshot {yj}Nt
j=1 of Y can be represented in terms

of M linearly independent columns of Û

yj =
M∑
i=1

bi,jui, j = 1, . . . , Nt (6.8)

where bi,j are the elements of B. Hence, it is clear that the columns of U indeed represent

a set of basis functions, and eventually turn out to be the POD basis functions based on the

definition. We also note that Equation (6.6) can also be written as ÛD̂ = YV , with D̂ ∈ RM×Nt

and Û as defined above. It follows that the POD basis vectors are linear combinations of the

snapshots, thus ensuring that such a basis set inherently describes the dynamics of the system

by being closely linked to its actual numerical solution.

6.2.4 Subspace Selection

Choice of the subspace dimensionM controls the overall error in projection εPOD(M) in Prob-

lem (6.3). Nevertheless, the choice of M is an important and critical task, since it determines

the interrelation between accuracy and dimension of the POD based reduced order models.

Since the singular values of the snapshot matrix Y convey the amount of projection captured,

we utilize a criterion based on these singular values to choose M . Using SVD, the error in

projection in Problem (6.3) is given as

εPOD(M) =

Nx∑
i=M+1

σ2i (6.9)

We define error tolerance λ as

λ = 1−
∑M

i=1 σ
2
i∑Nx

i=1 σ
2
i

=

∑Nx
i=M+1 σ

2
i∑Nx

i=1 σ
2
i

=
εPOD(M)∑Nx

i=1 σ
2
i

= εPODnorm(M) (6.10)
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where εPODnorm(M) is the normalized error in projection. A value of M is chosen such that

εPODnorm(M) ≤ λ∗ for a desired threshold error tolerance λ∗. In other words, the normalized

projection error should be less than the tolerance level λ∗ [175, 65, 27]. It is also known as an

M -rank approximation since the rank of the matrix U after truncation, and that of the solution

matrix obtained after solving the POD-based reduced-order model, is always M ≤ Nx.

It is commonly observed that the first few singular values are significantly larger than the

subsequent ones, thus representing most of the captured projection of the system. Therefore,

based on the aforementioned criterion, basis functions corresponding to those smaller singular

values are dropped, which eventually leads to a much smaller subspace spanned by a very few

basis functions. Hence, a significant model reduction is achieved since generally the value of

M is much smaller compared to the value of Nx. For instance, M can be less than 10, whereas

Nx can be on the order of 100s, and the error εPODnorm(M) can still be only 1-3%.

6.3 Reduced-order Modeling

6.3.1 Methodology

After computing POD basis functions, a reduced-order model (ROM) is derived by projecting

the underlying PDEs of the system onto the corresponding POD subspace. We use a Galerkin-

type projection scheme to project our set of PDEs in this work.

Let the set of hyperbolic/parabolic PDEs be given as

∂y

∂t
= f

(
y,
∂y

∂x
,
∂2y

∂x2

)
(6.11)

In terms of the new set of POD basis functions, the state variable y(x, t) is written as

y(x, t) =

M∑
i=1

ai(t)φi(x) (6.12)

where {ai}Mi=1 are the unknown temporal coefficients in the expansion. We solve this system of
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PDEs using method of weighted residuals in which the inner product of the residual of PDEs

with an orthonormal set of basis functions {ωi}Pi=1 is set to zero, i.e.,

∫ [
∂y

∂t
− f

(
y,
∂y

∂x
,
∂2y

∂x2

)]
ωi dx = 0, i = 1, . . . , P (6.13)

In particular, for Galerkin projection, we choose such a basis set {ωi}Pi=1 same as the set of

basis functions in terms of which the state variable is defined, i.e., POD basis functions in this

case, with P =M . Thus, Equation (6.13) becomes

∫ [
∂y

∂t
− f

(
y,
∂y

∂x
,
∂2y

∂x2

)]
φi dx = 0, i = 1, . . . ,M (6.14)

Substituting Equation (6.12) in the above expression, we obtain

∫  M∑
j=1

φj(x)
daj
dt

− f

 M∑
j=1

aj(t)φj(x),

M∑
j=1

aj(t)
dφj
dx

,

M∑
j=1

aj(t)
d2φj

dx2

φidx = 0, i = 1, . . . ,M

(6.15)

Since the POD basis functions are orthonormal, we finally obtain our reduced-order model

dai
dt

=

∫
f

 M∑
j=1

aj(t)φj(x),
M∑
j=1

aj(t)
dφj
dx

,
M∑
j=1

aj(t)
d2φj

dx2

φi dx, i = 1, . . . ,M (6.16)

In case of a finite dimensional problem, integral inner product is replaced by an L2 inner

product. It should be noted that in the final reduced-order model we obtain only M ordinary

differential equations (ODEs) compared to Nx ODEs that we usually obtain after applying spa-

tial discretization techniques such as finite difference, finite element, or finite volume. SinceM

is significantly less compared to Nx, we obtain a significantly low-order model compared to the

one obtained after conventional spatial discretization. More importantly, in a PDE-constrained

optimization problem, replacing the set of ODEs obtained after spatial discretization with the

smaller set of ODEs of the reduced-order model yields a much smaller and computationally

efficient optimization problem which can be solved cheaply.
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6.3.2 Handling Boundary Conditions

One of the key issues in reduced-order modeling is the incorporation of boundary conditions.

If the boundary conditions are homogeneous, no changes are required in the aforementioned

methodologies of obtaining POD basis functions and final reduced-order model. However,

incorporating non-homogeneous Dirichlet and Neumann boundary conditions is non-trivial in

general. Gunzburger et al. [89] have developed a generic framework to incorporate boundary

conditions in the POD-based ROMs.

For non-homogeneous Dirichlet boundary conditions, we utilize the idea of computing POD

basis elements for fluctuations around the mean value of the snapshots. Given Nt snapshots,

first we compute the mean value of the snapshots y = (1/Nt)
∑Nt

j=1 y
j . Next, the snapshot

matrix is modified as Y = {y1 − y, . . . , yNt − y}, and POD basis functions are computed

using this modified input ensemble. This helps in projecting out the boundary condition to

the mean value of the snapshot and allows POD basis functions to follow a homogeneous

boundary condition. For ROM purposes, a state variable is now expressed as

y(x, t) = y(x) +
M∑
i=1

ai(t)φi(x) (6.17)

Let the boundary conditions be y(0, t) = A, y(L, t) = B. Since all the snapshots satisfy

this, y(x) will also satisfy this, i.e., y(0) = A and y(L) = B. Hence, φi(0) = φi(L) = 0,

i = 1, . . . ,M , which helps in ensuring that the boundary conditions are always satisfied by the

solution obtained after integrating ROM. In some cases, especially when a boundary condition

appears as a decision variable in an optimization problem, we desire explicit occurence of the

boundary condition in the expansion (6.17). Let such a boundary condition be yb. In this case,

first we subtract yb from all the snapshots at all spatial points {xi}Nx
i=1. To ensure consistency

for the other boundary condition, mean value of the snapshots is then computed for these

modified snapshots, i.e., yb = (1/Nt)
∑Nt

j=1(y
j − yb). Consequently, the snapshot matrix used

to compute POD basis set becomes Y = {y1−yb−yb, . . . , yNt−yb−yb}. As a result, expansion
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(6.17) gets modified in the following fashion

y(x, t) = yb + yb +

M∑
i=1

ai(t)φi(x) (6.18)

To incorporate Neumann boundary conditions (homogeneous and non-homogeneous) in this

work, we construct a ROM only for the interior spatial domain and boundaries are excluded. In

other words, ROMs do not directly determine the solution at the boundaries. We approximate

the derivative at boundaries with any finite difference scheme. Based on this approximation

together with the boundary condition and the interior solution obtained after integrating ROM,

solution at the boundary nodes is determined.

6.3.3 Example - Burgers Equation

We illustrate the methodology of constructing a reduced-order model with the help of an

example of Burgers equation. Burgers equation represents a wave moving in time with a

constant velocity. The wave doesn’t retain its shape and diffuses out because of the diffusion

present in the system. Thus, it closely represents the dynamic behavior observed in a PSA

system. Mathematically, Burgers equation is similar to the component mass balance equation

of a PSA process, and is written as [115]

∂y

∂t
+ y

∂y

∂x
= µ

∂2y

∂x2
, µ = 0.01

y(0, t) = 0, y(1, t) = 0, y(x, 0) =


0.5 for 0 < x ≤ 0.5

0 for 0.5 < x < 1

(6.19)

While the boundary conditions are homogeneous, this peculiar initial condition represents a

square wave. To construct a POD-based reduced-order model, we express y =
∑M

i=1 ai(t)φi(x),

where {φi}Mi=1 are the POD basis functions, and apply Galerkin projection to obtain

 M∑
j=1

φj
daj
dt

+

 M∑
j=1

ajφj

 M∑
j=1

aj
dφj
dx

− µ

M∑
j=1

aj
d2φj

dx2
, φi

 = 0, i = 1, . . . ,M (6.20)
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Figure 6.1: Comparison of original profile and ROM profiles for Burgers equation for varying
subspace dimension

Here we use an L2 inner product since the snaphots are obtained after spatial discretization

of the PDE which lead to POD basis vectors (not basis functions). After simplification and

applying orthonormality of the basis functions, we obtain our reduced-order model which is

given as

dai
dt

+

 M∑
j=1

ajφj

 M∑
j=1

aj
dφj
dx

 , φi

− µ

M∑
j=1

aj

(
d2φj

dx2
, φi

)
= 0, i = 1, . . . ,M (6.21)

Thus, the reduced-order model comprises only M ODEs.

Equation (6.19) was first discretized in space using a simple finite difference scheme with

50 spatial nodes (Nx = 50). The resulting set of ODEs was then integrated in MATLAB using
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ode15s to obtain snapshots. With 100 time snapshots in the snapshot matrix, POD basis set

was computed using SVD. Finally, ROM was constructed as in Equation (6.21) and analyzed

for different values of subspace dimension M . Figure 6.1 compares the original solution profile

of the Burgers equation with that obtained from ROM for different values of M . It also

reports the normalized error in projection εPODnorm(M) for corresponding M . We observe that

for just 7 POD basis functions, error in projection is as low as 0.7%, and we also obtain a

substantial model reduction (almost (1/7)th of the model obtained after spatial discretization

with 50 nodes). Moreover, the solution of ROM with 7-rank approximation is almost identical

to the original solution. Also, the solutions obtained with 3-rank and 5-rank approximation

are fairly accurate with a little high error in projection. Hence, this illustrates the power of

reduced-order modeling to predict dynamic behavior of the system with significant accuracy

and with the help of a model quite small in order.

6.4 ROM-based Optimization

As mentioned before, reduced-order modeling offers computational advantages for PDE-constrained

optimization problems. Since the number of DAEs in a ROM is much smaller compared to the

number of DAEs obtained after spatial discretization of PDEs, replacing the latter with the

former yields a much smaller and computationally-efficient optimization problem which can be

solved cheaply. Mathematically, if the original optimization problem is given as

min Φ(y(tf ), z(tf ), p) (6.22a)

s.t.
dyi
dt

= f(y(t), z(t), p) i = 1, . . . , Nx (6.22b)

s(y(t), z(t), p) = 0 (6.22c)

g(y(t), z(t), p) ≤ 0 (6.22d)

bL ≤ p ≤ bU (6.22e)

with differential variables y(t), algebraic variables z(t), decision variables p with lower and

upper bounds bL and bU , respectively, and Nx ODEs obtained after spatial discretization, the
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corresponding ROM-based optimization problem can be stated as

min Φ(a(tf ), p) (6.23a)

s.t.
dai
dt

= f(a(t), p) i = 1, . . . ,M (6.23b)

s(a(t), p) = 0 (6.23c)

g(a(t), p) ≤ 0 (6.23d)

bL ≤ p ≤ bU (6.23e)

Here ai(t) are the unknown temporal coefficients from Equation (6.12). Equation (6.23b)

replaces Equation (6.22b), thus yielding a smaller optimization problem.

To solve Problem (6.23), we discretize DAEs in time and convert it into a standard nonlinear

programming problem (NLP) which can be solved using state-of-the-art NLP solvers such as

IPOPT. With the superstructure optimization case studies in chapters 4 and 5, we observed

that such a strategy of converting PDE-constrained optimization problem to a standard NLP

leads to a very large set of algebraic equations and prohibitively expensive optimization problem

due to a large number of spatially discretized nodes required to capture steep adsorption fronts.

Thus, we considered fewer spatial finite volumes to solve the NLP in a reasonable amount of

time, and compromised on the accuracy. However, Problem (6.23) doesn’t present such an

issue since the DAE set is obtained after projecting PDEs onto the POD subspace, and thus is

quite small in size. Moreover, even after considering many temporal finite elements to ensure

satisfactory temporal accuracy, the size of the resulting NLP remains manageable. Although

a large number of spatial finite volumes are required to obtain snapshots using method of

lines to obtain POD subspace, such computation is done just once and remains outside the

optimization problem (6.23).

A major issue with ROM-based optimization and using a ROM for Problem (6.22) is that

although a ROM is substantially accurate for the values of the decision variables at which it

is constructed (we call it “root-point”), it loses its accuracy at a different point in the decision

variable space since the snapshots at the root-point do not capture the spatial behavior and

dynamics of the system at any other point in the decision variable space. Moreover, the error
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in the solution given by the ROM increases as we go further away from the root-point. There-

fore, it is invalid to use a particular ROM for the optimization problem (6.22), i.e., Problem

(6.23) cannot be defined for the entire decision variable space. However, we assume a reason-

able accuracy for the ROM in a confidence region (or “trust-region”) around root-point, and

write Problem (6.23) only for that trust-region to benefit from the computational advantage

offered by ROMs. Hence, we define tighter bounds on decision variables in Problem (6.23)

to ensure algorithm remains close to the root-point. Computationally-efficient optimization

is then performed using ROM and the optimal solution obtained becomes the new root-point

where ROM can be updated with new snapshots. Problem (6.23) is then solved again with a

new trust-region around this new root-point. A systematic adaptive scheme based on such a

repetitive strategy will be developed in the next chapter. In the subsequent sections, we il-

lustrate ROM-based optimization within a neighborhood of the root-point with the help of an

example of the hydrogen PSA process. Since this forms a key step in the adaptive optimization

algorithm, we explore it in detail.

6.5 Case Study - Hydrogen PSA

6.5.1 PSA Process and Model Equations

We consider a 2-bed 4-step hydrogen PSA process which extracts hydrogen from a feed mixture

comprising 30% hydrogen and 70% methane. In particular, the process is a Skarstrom cycle

shown in Figure 2.3, and described in detail in section 2.4.1. The target process for this case

study is bench-scale as described in Ko et al. [110, 111]. Design specifications and simulation

conditions are listed in Table 6.1. We make following assumptions to develop a mathematical

model for this process

1. All of the gases follow the ideal gas law.

2. There are no radial variations in temperature, pressure and concentrations of the gases

in the solid and the gas phase.
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Table 6.1: Physical properties and basic simulation parameters

parameter value

Bed Length (L) 1 m
Bed porosity (εb) 0.404
Bed radius (Rb) 0.25 m
Particle radius (Rp) 5.41× 10−3 m
Particle porosity (εp) 0.546
Diffusivity (Dx) 1.3× 10−5 m2/sec
Particle density (ρp) 716.3 kg/m3

Bed density (ρb) 426.7 kg/m3

Thermal diffusivity (KL) 1.2× 10−6 J/m/sec/K
Heat capacity of solid (Cps) 1046.7 J/kg/K
Heat transfer coefficient (h) 60 J/m2/sec/K
Lumped mass transfer coefficient (k) (0.136,0.259)(CH4,H2) 1/s
Heat of adsorption (∆H) (24124,8420)(CH4,H2) J/mole
Gas viscosity (µ) 3.73× 10−8 kg/m/sec
R 8.314 J/mol/K
Ambient temperature (Tw) 300 K
Feed temperature (Tfeed) 310 K
Feed composition (0.7,0.3)(CH4,H2)
Feed pressure (Pfeed) 600 kPa
Purge pressure (Ppurge) 150 kPa
Pressurization time (tp) 5 s
Adsorption time (ta) 50 s

3. The gas and the solid phases are in thermal equilibrium and bulk density of the solid

phase remains constant.

4. Pressure drop along the bed is calculated by the Ergun equation.

5. The adsorption behaviors are described by the single-site Langmuir isotherm.

6. The adsorption rate is approximated by the linear driving force (LDF) expression.

7. A linear profile is assumed for superficial gas velocity for all the steps. Cruz et al. [58]

suggested that this kind of an assumption is valid for bench-scale PSA processes and an

overall mass balance is not required.

Based on the above assumptions, the mathematical model for the PSA process is listed in

Table 6.2. Here we use a lumped mass transfer coefficient for the LDF model. The temperature
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Table 6.2: Model equations of hydrogen PSA

Component mass balance

−DL

{
∂2y1
∂x2

− 2

(
1

T

)(
∂y1
∂x

)(
∂T

∂x

)
+ 2

(
1

P

)(
∂y1
∂x

)(
∂P

∂x

)}
+

∂y1
∂t

+ u
∂y1
∂x

+
RT

P

1− εb
εb

ρs

(
∂q1
∂t

− y1

2∑
i=1

∂qi
∂t

)
= 0 (6.24)

y2 = 1− y1 1 = CH4 2 = H2 (6.25)

Ergun equation

−∂P
∂x

=
150µ

4R2
p

(1− εb)
2

ε3b
u+

1.75ρg
2Rp

(
1− εb
εb

)
u2 (6.26)

LDF equation

∂qi
∂t

= ki(q
∗
i − qi) i = 1, 2 (6.27)

Energy balance

(εbρgCpg + ρbCps)
∂T

∂t
+ ρgCpgεbu

∂T

∂x
−KL

∂2T

∂x2

−ρb
2∑
i=1

(
∆Hads

i

∂qi
∂t

)
+

4hw
D

(T − Tw) = 0 (6.28)

ρg =
P

RT

2∑
i=1

yiM
i
w

Cpg =
2∑
i=1

yiC
i
pg

Cipg == aic + bicT + cicT
2 + dicT

3 i = 1, 2

Langmuir isotherm

q∗i =
aiyiP

1 +
∑2

i=1 biyiP
ai = α1ie

α2iT bi = β1ie
β2iT i = 1, 2 (6.29)

Linear velocity profile

u = uL(x/L) + u0(L− x)/L (6.30)

Cyclic steady state

z(t0) = z(tcycle) z : yi, qi, T ∀i (6.31)
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dependent adsorption isotherm parameters for hydrogen and methane on activated carbon

(α1, α2 and β1, β2) are listed in Table 6.3 [108]. As suggested by Equations (6.24) and (6.25),

PDE for the component mass balance is solved only for methane and mole fraction of hydrogen

is evaluated by ensuring that the mole fractions sum up to one. We enforce this summation

because the overall mass balance, which implicitly ensures such a summation, is not taken into

account for superficial velocity calculation. We denote this model in Table 6.2 as the rigorous

model for which we develop a reduced-order model.

Tables 6.4 and 6.5 show the equations for molar flux variables, to calculate purities and

recoveries, and the boundary conditions for each operating step, respectively. Based on the

molar flux variables, purities and recoveries of hydrogen and methane are given by

purityH2
=

∫
OH2(t) dt∫

OH2(t) + OCH4 dt

(6.32)

purityCH4
=

∫
HpCH4

(t) dt∫
HpH2

(t) + HpCH4
dt

(6.33)

recoveryH2
=

∫
OH2(t) dt−

∫
PgH2

(t) dt∫
FH2(t) dt

(6.34)

recoveryCH4
=

∫
HpCH4

(t) dt∫
FCH4(t) dt

(6.35)

6.5.2 Reduced-order Model

We use the method of lines approach to convert PDAEs in Table 6.2 into a set of DAEs after

spatial discretization, which is then simulated to generate snapshots for POD basis functions.

For spatial discretization, we use an upwind-based finite volume scheme with Van Leer flux

limiter for mole fraction and temperature in order to introduce additional numerical dispersion

around steep adsorption fronts (cf. section 2.5.1). We utilize the Multibed approach and

simulate both beds simultaneously for half the cycle (cf. section 2.4.3).
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Table 6.3: Isotherm parameters for H2 and CH4 on activated carbon [108]

α1 α2 β1 β2

Methane 0.0086 -0.2155 0.0004066 -0.010604
Hydrogen -0.0000379 -0.01815 2.2998 -0.05993

Table 6.4: Molar flux variables for each operating step

Feed flux = Fj(t) =
(feed)j

available area Heavy product flux = Hpj(t) =
(heavy product)j
available area

Purge flux = Pgj(t) =
(purge)j

available area Outlet flux = Oj(t) =
(outlet)j

available area j = CH4, H2

pressurization adsorption depressurization desorption

Fj(t) =
uPyj
RT

∣∣∣
x=0

Fj(t) =
uPyj
RT

∣∣∣
x=0

Fj(t) = 0 Fj(t) = 0

Oj(t) = 0 Oj(t) =
uPyj
RT

∣∣∣
x=L

Oj(t) = 0 Oj(t) = 0

Hpj(t) = 0 Hpj(t) = 0 Hpj(t) = −uPyj
RT

∣∣∣
x=0

Hpj(t) = −uPyj
RT

∣∣∣
x=0

Pgj(t) = 0 Pgj(t) = 0 Pgj(t) = 0 Pgj(t) = −uPyj
RT

∣∣∣
x=L

Table 6.5: Boundary conditions for each operating step

pressurization adsorption depressurization desorption

yj |x=0 = yf,j yj |x=0 = yf,j
∂yj
∂x

∣∣∣
x=0

= 0
∂yj
∂x

∣∣∣
x=0

= 0

∂yj
∂x

∣∣∣
x=L

= 0
∂yj
∂x

∣∣∣
x=L

= 0
∂yj
∂x

∣∣∣
x=L

= 0 yj |x=L = yj |x=L of other bed

P |x=0 = Phigh P |x=0 = Phigh P |x=0 = Plow P |x=0 = Plow

T |x=0 = Tfeed T |x=0 = Tfeed
∂T
∂x

∣∣∣
x=0

= 0 ∂T
∂x

∣∣∣
x=0

= 0

∂T
∂x

∣∣∣
x=L

= 0 ∂T
∂x

∣∣∣
x=L

= 0 ∂T
∂x

∣∣∣
x=L

= 0 ∂T
∂x

∣∣∣
x=L

= 0

u|x=0 = ufeed u|x=0 = ufeed u|x=0 = −ureg u|x=0 = −ureg
u|x=L = 0 u|x=L = 0.125ufeed u|x=L = 0 u|x=L = −0.6ureg
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The snapshots are generated only after the 2-bed system attains cyclic steady state. To

achieve CSS, we use a successive substitution method in which first the PSA cycle is simulated

with random initial conditions, and then a series of simulations are performed with initial

conditions of each new cycle taken from the final condition of the previous cycle. This is

executed successively until the bed conditions do not change from cycle to cycle. Since a

bench-scale PSA model is considered in this case, we achieve cyclic steady state after 100-120

cycles.

After obtaining snapshots, separate POD basis functions are generated for pressurization,

adsorption, depressurization and desorption steps. Moreover, we derive separate POD basis

functions for gas phase mole fractions, solid phase loadings, temperature, and pressure. Similar

to Equation (6.17), these state variables are then expressed in terms of the correspoding POD

basis as below

yRi (x, t) = y0i(x) +

M∑
j=1

ayij(t)φyij(x) qRi (x, t) = q0i(x) +

M∑
j=1

aqij(t)φqij(x)

TR(x, t) = T0(x) +
M∑
j=1

aTj(t)φTj(x) PR(x, t) = P0(x) +
M∑
j=1

aPj(t)φPj(x)

Here y0i(x), q0i(x), T0(x), and P0(x) are snapshot averages for mole fraction, solid loading,

temperature, and pressure, respectively. Gas density, specific heat and equilibrium solid con-

centrations are calculated explicitly in terms of yRi , T
R, and PR. Table 6.6 shows DAEs of the

reduced-order model obtained after Galerkin projection of the model in Table 6.2 on to these

POD basis functions.

Since the snapshots are obtained after the rigorous model achieves cyclic steady state,

snapshots for both beds for the corresponding steps are identical. For instance, snapshots

collected during pressurization step for bed 1 are identical to the snapshots of the pressurization

step for bed 2. Therefore, we construct reduced-order model for only one bed and the other

bed is ignored. Coupling for the adsorption/desorption steps of the two beds is ensured by the

adsorption and desorption steps of the same bed. Hence, a greater model reduction is achieved
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Table 6.6: ROM for the hydrogen PSA process

Component mass balance

−DL

(d2y0i
dx2

+
M∑
j=1

ayij
d2φyij
dx2

, φyik

)
+

(
d

dx

(
2

TR

)(
dy0i
dx

+
M∑
j=1

ayij
dφyij
dx

)
, φyik

)
+Rρs

(
1− εb
εb

) M∑
j=1

(
TRφqij
PR

, φyik

)
daqij
dt

−
2∑
r=1

M∑
j=1

(
TRyRi φqrj

PR
, φyik

)
daqrj
dt


+
dayik
dt

+

(
u

(
dy0i
dx

+

M∑
j=1

ayij
dφyij
dx

)
, φyik

)
= 0 ∀k ∈ [1,M ] (6.36)

Ergun equation

150µ

4R2
p

(1− εb)
2

ε3b
(u, φPk) +

1.75ρg
2Rp

(
1− εb
εb

)
(u2, φPk)

+

(
dP0

dx
+

M∑
j=1

aPj
dφPj
dx

, φPk

)
= 0 ∀k ∈ [1,M ] (6.37)

LDF equation

daqik
dt

= ki

( M∑
j=1

(
qR∗
i , φqik

)
− aqik −

(
q0i, φqik

))
∀k ∈ [1,M ] (6.38)

Energy balance

εb

M∑
j=1

ρRg C
R
pg

(
φTk, φTj

)daTj
dt

+

(
εbuρ

R
g C

R
pg

(
dT0
dx

+

M∑
j=1

aTj
dφTj
dx

)
, φTk

)

+ρbCps
daTk
dt

− ρb

2∑
r=1

∆Hads
r

M∑
j=1

(
φqrj , φTk

)daqrj
dt


−KL

(
d2T0
dx2

+
M∑
j=1

aTj
d2φTj
dx2

, φTk

)
+

4hw
D

(
TR − Tw, φTk

)
= 0 ∀k ∈ [1,M ] (6.39)

Langmuir isotherm

qR∗
i =

aRi y
R
i P

R

1 +
∑2

i=1 b
R
i y

R
i P

R

aRi = α1ie
α2iT

R

bRi = β1ie
β2iT

R (6.40)

Cyclic steady state

az,k(0)
∣∣∣
pres

=

( M∑
j=1

az,j(tcycle)
∣∣∣
des
φz,j

∣∣∣
des
, φz,k

∣∣∣
pres

)
∀k ∈ [1,M ], z : yi, qi, T (6.41)
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Figure 6.2: First six POD basis functions of methane mole fraction for adsorption

since ROM comprises DAEs of only one bed, while the rigorous model is simulated for both

beds simultaneously using the Multibed approach.

6.5.3 Comparison of Rigorous Model and ROM at CSS

With 35 spatial finite volumes, we convert PDAEs in Table 6.2 to DAEs and integrate using

ode15s in MATLAB. Cyclic steady state is achieved up to the desired tolerance after simulating

the model repeatedly for 120 cycles, and snapshots are collected to generate empirical POD

basis. Figure 6.2 shows POD basis functions of the gas-phase methane mole fraction for the

adsorption step. Since these functions are empirical, their shapes are different for all four

operating steps. Figure 6.3 shows first 10 singular values for the gas-phase methane mole

fraction and temperature for all operating steps. Slopes of the curves show that the singular

values decay sharply and the first 5-6 values can accurately capture the dynamic behavior with

εPODnorm as low as 0.1%. Thus, we infer that we can represent all the state variables for all the
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Figure 6.3: Singular values of gas-phase mole fraction of methane and temperature

operating steps with only 5-6 spatial POD basis functions, instead of 35 spatial volumes. With

35 spatial volumes, the rigorous model comprises a total of 2800 DAEs (including both beds

and all four operating steps), while with 5 basis functions the ROM obtained after Galerkin

projection comprises a mere 200 DAEs which is 1/14th of the rigorous system. Hence, we

observe a significant model reduction.

We discretize DAEs of the reduced-order model for all the operating steps in time with

30 finite elements, and the resulting algebraic equations are solved simultaneously in AMPL

using IPOPT. Instead of solving the discretized ROM repeatedly for CSS, we consider initial

conditions as decision variables and reduced CSS conditions (shown in Table 6.6) are solved

simultaneously with the model equations in AMPL. Figure 6.4 compares profiles of gas-phase

methane mole fraction obtained for the rigorous model and ROM with 5 POD basis functions.

We observe that 5-rank approximation captures the dynamics of the problem very well and

profiles are nearly identical. Temperature profiles in Figure 6.5 also depict such similarity. We

note that all the profiles plotted are at CSS. We also observe that the mole fraction profiles
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(a) Rigorous model simulation in MATLAB

(b) ROM simulation in AMPL

Figure 6.4: Comparison of methane mole fraction for all the steps after CSS
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(a) Rigorous model simulation in MATLAB

(b) ROM simulation in AMPL

Figure 6.5: Comparison of temperature profiles for all the steps after CSS
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Figure 6.6: Comparison of methane mole fraction profile for adsorption step obtained after
integrating in MATLAB and solving simultaneously in AMPL

Table 6.7: Comparison of rigorous model and ROM based on the performance variables

Performance variables Rigorous model ROM

H2 purity 0.9987 0.9987
H2 recovery 0.1095 0.1094
CH4 purity 0.9421 0.9425
CH4 recovery 0.2091 0.2094

are quite steep in the spatial dimension, especially for the adsorption and depressurization

steps, and ROM effectively captures such steep behavior, besides adequately capturing system’s

behavior in the temporal dimension.

To check for the accuracy of the temporal discretization in AMPL, we integrate the DAE

system of the ROM in MATLAB as well as solve it in AMPL without the CSS conditions.

Figure 6.6 compares the gas-phase methane mole fraction profile for the adsorption step for

both approaches. Clearly, the profiles compare very well and show that the additional errors

introduced by a pre-determined temporal discretization in AMPL are negligible for this system

of equations.

Table 6.7 compares the purity and recovery of hydrogen and methane obtained from the

rigorous model as well as the reduced-order model at CSS. This can be seen as another basis
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to compare the accuracy of ROM. Values obtained from ROM developed with the 5-rank

approximation are accurate up to 3 decimal places and can be considered identical to the true

values for all practical purposes.

6.5.4 ROM-based Optimization within a Trust-region

In this section, we demonstrate how a ROM can be used to perform computationally efficient

optimization within a trust-region around the root-point where ROM is constructed. In par-

ticular, we utilize the reduced-order model in Table 6.6 to maximize hydrogen recovery subject

to a purity constraint and tight bounds on the decision variables which form the trust-region.

As discussed before, such tight bounds are essential as ROM loses its accuracy as we go further

away from the root-point.

Table 6.8 shows decision variables considered for the optimization problem and their values

at which the ROM is constructed. We consider two separate cases for optimization. In the

first case, we do not consider feed and regeneration velocities as decision variables, while they

are included as decision variables in the second case. Optimization results for both cases are

discussed further. We also perform optimization without a trust-region and demonstrate why

such a bounded region is essential when ROM is used for optimization.

6.5.4.1 Case I: Optimization without velocities

With feed and regeneration velocities held fixed at their root-point values, we solve the following

ROM-based optimization problem.

max H2 recovery (from Equation (6.34))

s.t. ROM Equations (6.36)-(6.41)
H2 purity ≥ 0.998 (from Equation (6.32))
480 kPa ≤ PH ≤ 520 kPa
130 kPa ≤ PL ≤ 170 kPa
3 ≤ tp ≤ 7
47 ≤ ta ≤ 53

(6.42)

Here bounds on decision variables define the trust-region. We discretize ROM in the temporal

dimension and the resulting large-scale NLP is solved in AMPL using IPOPT. Optimal values
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Table 6.8: Decision variables and the root-point at which ROM is built

Variable Value

High operating bed pressure (PH) 500 kPa
Low operating bed pressure (PL) 150 kPa
Pressurization step time (tp) 5 sec
Adsorption step time (ta) 50 sec
Feed velocity (ufeed) 0.1 m/sec
Regeneration velocity (ureg) -0.05 m/sec

Table 6.9: Optimization results for Case I

Problem size and computational time
No. of variables 42760
No. of constraints 42756
Total no. of iterations 15
Total CPU sec. 195.44

Optimal parameters
High operating bed pressure (PH) 520 kPa
Low operating bed pressure (PL) 130 kPa
Pressurization step time (tp) 3 sec
Adsorption step time (ta) 53 sec

Comparison of performance variables

ROM (AMPL) Rigorous model (MATLAB)

H2 purity 0.9988 0.9991
H2 recovery 0.1628 0.1629
CH4 purity 0.9541 0.9491
CH4 recovery 0.1771 0.1769

of decision variables together with the CPU time are listed in Table 6.9. Within the bounded

region, we observe an increase in the recovery of hydrogen up to 16.3%. The optimum point

is achieved in only 195 CPU seconds as ROM based on 5-rank approximation (200 DAEs) is

used for optimization. Moreover, optimization is performed cheaply since few iterations are

needed to achieve the optimum.

To validate accuracy of optimization results, we simulate the rigorous model using the

method of lines approach in MATLAB at the optimal values of decision variables. Purities and

recoveries obtained from the rigorous model simulation is also listed in Table 6.9. We observe

that these values are reasonably close to the ones obtained after the ROM-based optimization
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in AMPL. Thus, we infer that the ROM is behaving reasonably accurately at the optimum

too. Since increase in the hydrogen recovery is same, ROM is not depicting much error at the

optimum. Moreover, optimum is feasible since the hydrogen purity constraint is also satisfied

by the rigorous model.

To futher consolidate our inference, we plot gas-phase mole fraction profiles of methane in

Figure 6.7 for all steps. Mole fraction profiles are generated from the rigorous model simulation

at the optimum and compared with profiles obtained from the ROM after optimization in

AMPL. The profiles match reasonably accurately and show that the behavior of the ROM is

close to the rigorous model at the optimum.

It is worth noting that all decision variables are at their bounds after optimization. There-

fore, to verify that (locally) optimal values for the ROM are also optimal for the rigorous

model, we evaluate KKT conditions of the rigorous model at this point, x∗. A general rigorous

model based optimization problem with its KKT conditions is given by:

max f(x) ∇f(x∗) +∇c(x)λ+ µl − µu = 0

s.t. c(x) = 0 c(x∗) = 0, µl, µu ≥ 0

a ≤ x ≤ b µl(x
∗ − a) = 0

µu(x
∗ − b) = 0

By shifting the decision variables to the beginning of vector x and defining a null space basis

matrix that satisfies ZT [I 0]T = I and ZT∇c(x∗) = 0, allows KKT conditions to be written

as:

ZT∇f(x∗)− µu = 0 : for decision variables at upper bound (µl = 0)

ZT∇f(x∗) + µl = 0 : for decision variables at lower bound (µu = 0)

Since µu, µl ≥ 0, KKT conditions simplify to (ZT∇f(x∗))i ≤ 0 if a decision variable i is at its

lower bound, and (ZT∇f(x∗))i ≥ 0 if a decision variable i is at its upper bound. We indeed
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(a) Profiles at the optimum after ROM optimization

(b) Profiles at the optimum after rigorous model simulation

Figure 6.7: Comparison of mole fraction of methane after optimizing Case I
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Table 6.10: Perturbation results

Perturbed variable PH PL tp ta

Optimal value 520 130 3 53
Perturbed value 530 125 2.5 55
H2 recovery(after perturbation)* 0.1675 0.1723 0.1643 0.1632

∗Optimal hydrogen recovery = 0.1628

Table 6.11: Comparison of hydrogen performance for relaxed optimization

Performance variable ROM Rigorous Model

H2 recovery 0.3482 0.2763
H2 purity 0.9981 0.8032

verify these properties by perturbing decision variables from their optimal values. We provide

a positive perturbation to variables at upper bound and negative to the ones at lower bound,

and record the change in the objective function. The results are shown in Table 6.10. We

observe an increase in the hydrogen recovery for all perturbations which proves optimality.

Although successful results are obtained by imposing tight bounds on decision variables in

the ROM-based optimization problem, we desire to verify if such a strategy is indeed necessary.

Thus, we solve Problem (6.42) with the following relaxed bounds on decision variables:

300 kPa ≤ PH ≤ 1300 kPa 0.5 ≤ tp ≤ 10
100 kPa ≤ PL ≤ 250 kPa 30 ≤ ta ≤ 80

(6.43)

At the optimum, we obtain a hydrogen recovery of 34.8%. However, solution profiles ob-

tained from the ROM are oscillatory and physically unrealistic. Figure 6.8 illustrates methane

gas-phase mole fraction profiles obtained after ROM optimization with relaxed bounds. For

adsorption, the oscillations are quite big and they tend to increase as step time increases.

In case of depressurization, there is a jump in the profile before steep decrease along spatial

dimension. Large oscillations in the profiles thus show large error in the reduced-order model

at the optimum. Moreover, Table 6.11 shows that when the rigorous model is simulated to

CSS at the optimal values, hydrogen purity dips to 80%, compared to 99.8% given by ROM

optimization. This vindicates the use of a trust-region and the claim that tighter restrictions
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Figure 6.8: Gas-phase methane mole fraction profiles for ROM for relaxed bounds in Case I

are required on decision variables for ROM-based optimization.

6.5.4.2 Case II: Optimization with velocities

In this case, besides operating pressures and step times, we also consider feed and regeneration

velocities as decision variables and solve the following ROM-based optimization problem which

maximizes hydrogen recovery within a trust-region.

max H2 recovery (from Equation (6.34))

s.t. ROM Equations (6.36)-(6.41)
H2 purity ≥ 0.998 (from Equation (6.32))
490 kPa ≤ PH ≤ 510 kPa
140 kPa ≤ PL ≤ 160 kPa
4 ≤ tp ≤ 6
49 ≤ ta ≤ 51
0.09 ≤ ufeed ≤ 0.11
−0.0505 ≤ ureg ≤ −0.0495

(6.44)

As a convention, flow is considered negative for the depressurization and desorption steps, and
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Table 6.12: Optimization results for Case II

Problem size and computational time
No. of variables 43040
No. of constraints 43034
Total no. of iterations 13
Total CPU sec. 184.493

Optimal parameters
High operating bed pressure (PH) 510 kPa
Low operating bed pressure (PL) 140 kPa
Pressurization step time (tp) 4 sec
Adsorption step time (ta) 51 sec
Feed velocity (ufeed) 0.11 m/s
Regeneration velocity (ureg) -0.0495 m/s

Comparison of performance variables

ROM (AMPL) Rigorous model (MATLAB)

H2 purity 0.9986 0.9974
H2 recovery 0.1511 0.1509
CH4 purity 0.9507 0.9495
CH4 recovery 0.1827 0.1826

thus a minus sign is used for ureg. We solve the optimization problem in AMPL using IPOPT

after discretizing ROM in the temporal dimension. Optimization results along with the CPU

time is shown in Table 6.12.

Within the bounded region, an optimum hydrogen recovery of 15.11% is obtained. As in

the previous case, optimization is computationally efficient and the problem gets solved in only

184 CPU seconds. The rigorous model is also simulated at the optimal values of the decision

variables to validate optimization results from AMPL. Purities and recoveries obtained from

the rigorous model simulation are also listed in Table 6.12. We observe that these values

are quite close to the ones obtained after ROM-based optimization, indicating that the ROM

is predicting the dynamic behavior reasonably accurately at the optimum as well. As in the

previous case, we also compare gas-phase methane mole fraction profiles for the rigorous model

simulation and ROM optimization in Figure 6.9. Barring small oscillations in the adsorption

step, profiles match reasonably accurately, thus showing that ROM’s behavior is fairly close

to the dynamic behavior predicted by rigorous model at the optimum.
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(a) Profiles at the optimum after ROM optimization

(b) Profiles at the optimum after rigorous model simulation

Figure 6.9: Comparison of mole fraction of methane after optimizing Case II
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Figure 6.10: Methane mole fraction profiles for ROM for relaxed bounds in Case II

Unlike previous case, we observe that in this case the hydrogen purity constraint is violated

slightly by the rigorous model at the optimum. Rigorous model gives a hydrogen purity of

99.74% which is slighly less than the desired lower bound 99.8%. Hence, we infer that attaining

feasibility in a ROM-based optimization problem cannot guarantee feasibility for the original

optimization problem, even with a small trust-region. A more systematic algorithm to ensure

feasibility in both problems will be developed in the next chapter.

We also solve Problem (6.44) with slightly relaxed bounds as shown below:

480 kPa ≤ PH ≤ 520 kPa 3 ≤ tp ≤ 7 0.08 ≤ ufeed ≤ 0.12
130 kPa ≤ PL ≤ 170 kPa 47 ≤ ta ≤ 53 − 0.053 ≤ ureg ≤ −0.047

(6.45)

Within this new trust-region, hydrogen recovery could be increased to 21.6%. However, ob-

taining this extra increment in recovery is marred by oscillatory solution profiles in the ROM.

Figure 6.10 shows the profiles of the gas-phase mole fraction of methane obtained after ROM

optimization in AMPL. It can be observed that profiles are oscillatory for the adsorption and
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depressurization steps, which is unphysical indicating inadequate representation of the dynam-

ics by the ROM at the optimum. Hence, these results also suggest that tight restrictions on

decision variables and an adaptive trust-region based strategy with appropriate ROM updation

is required for the ROM-based optimization.

6.6 Conclusions

Beginning with a review of the previous work on model reduction, we describe how proper or-

thogonal decomposition can be used to develop low-order approximations to PDE-based mod-

els. In particular, with the method of snapshots, singular-value decomposition, and Galerkin’s

framework, POD can be successfully used to construct reduced-order models which can be

orders of magnitude smaller than the original model without losing accuracy. Methodology to

construct ROMs is illustrated for a Skarstrom PSA process to separate hydrogen and methane.

We not only show that the reduced-order modeling technique can be successfully used for large-

scale models as well, but on the basis of the comparison made between the rigorous model and

the ROM, we also conclude that such ROMs can provide significant model reduction and can

mimic the dynamic behavior quite accurately at the same time.

We also discuss that ROMs can be used to optimize in a confidence-region in the vicinity

of the root-point assuming it is reasonably accurate in that region. Such ROM-based opti-

mization in a trust-region is successfully demonstrated for two separate case studies of the

hydrogen PSA process. ROMs accurately predict the descent direction in the trust-region and

an improvement in the objective is obtained for both cases. Moreover, based on the CPU times

observed, we conclude that ROMs enable fast and cheap optimization. Current results indicate

that the proposed ROM-based methodology is a promising surrogate modeling technique for

cost-effective optimization purposes. We vindicate that a trust-region is essential for ROM-

based optimization, and conclude that an adaptive strategy with appropriate ROM updation

is required. We develop such a strategy in the next chapter.
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Trust-region Framework for

ROM-based Optimization

Synopsis

Trust-region methods provide an excellent adaptive framework for ROM-based optimization

since they not only restrict the step around the root-point, but also synchronize ROM upda-

tion with the information obtained during the course of optimization, thus providing a robust

and globally convergent framework. In this chapter, we first develop an exact penalty-based

trust-region algorithm, and develop correction schemes for the objective and the constraints

to ensure global convergence with ROM-based approximate models. Algorithm with correc-

tions is demonstrated for a two-bed four-step PSA case study for post-combustion capture.

Next, highlighting drawbacks of the penalty approach and benefits of a filter, we develop a

hybrid filter trust-region algorithm for constrained ROM-based optimization. Finally, the filter

algorithm is illustrated with the PSA case study. In particular, we observe that both algo-

rithms converge to a local optimum of the original optimization problem within reasonable

trust-region iterations and optimization CPU time.
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7.1 Introduction

From the previous chapter it is clear that a single POD-based ROM is generally reliable in a

restricted zone around the point it is constructed (root-point), and it needs to be updated as the

optimization proceeds from the root-point to other points in the decision space. To converge

to the optimum we can a) solve the ROM-based optimization problem within tight bounds, b)

take a step and construct a new ROM by generating new snapshots at this new point, and c)

repeat the process until the optimum is achieved. Construction and updation of ROM should

be coupled with the progress in the optimization process. Here, the computational advantage

comes from the fact that the ROM is used for optimization instead of the detailed rigorous

model. In order to guarantee convergence of the above process, we additionally embed it in a

trust-region framework.

Trust-region methods [54, 61] are suitable and quite appropriate for ROM-based optimiza-

tion since they not only ensure that the step computed by the optimizer using ROM stays

reasonably close to the root-point (as demonstrated in section 6.5.4.1), but also allow ROM

updation decisions based on the information obtained during the optimization procedure, and

provide a robust and globally convergent framework with ROMs. With such an adaptive

framework we can regulate the amount of optimization done with a ROM before we return to

the detailed model to update it. By comparing the improvement predicted by the ROM to the

improvement realized for the true system being optimized, we not only deduce how well ROM

is predicting the behavior of the system, but also decide if it should be updated or re-used

during the course of the optimization.

The idea of using a trust-region framework to manage approximate models in optimization

was first introduced by Alexandrov et al. [8]. However, they developed their generic framework

only for unconstrained optimization problems. They use a basic trust-region algorithm [54]

which involves solving the ROM-based problem in a trust-region, taking a step if the reduction

in the original objective function is reasonable compared to the one predicted by ROM-based

problem, and repeating this until convergence. In order to ensure convergence to the correct
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optimum, they assume first-order consistency conditions to be true. One of their major contri-

butions is the introduction of scaled (or corrected) objective functions and constraints in the

trust-region subproblem to enforce these consistency conditions. Later, Fahl [65] developed the

TRPOD algorithm based on the Alexandrov’s approach with few modifications. In TRPOD,

they relax the consistency conditions and use an inexact gradient based formulation suggested

by Carter [41]. Moreover, they solve the trust-region subproblem approximately and utilize

Toint’s algorithm [186] for step computation. However, Alexandrov’s correction for objective

functions and constraints is essentially a part of the TRPOD. Bergmann et al. [25] also ap-

plied the TRPOD algorithm for optimal control of the circular cylinder wake flow considered

in the laminar regime. Kragel [112] developed a streamline diffusion POD methodology to

construct ROMs which are tuned to a high-order Navier-Stokes solver, and applied a recursive

multilevel trust-region algorithm [87, 88] for an optimal flow control problem. For optimal

design problems, Weickum et al. [198] developed extended ROMs for the whole design space

and developed a simple trust region strategy for globalization.

The focus of all the aforementioned studies is only unconstrained optimization, and the

strategies developed do not involve any discussion about the techniques to manage equality

and inequality constraints. We demonstrated in section 6.5.4.2 that attaining feasibility in

the ROM-based optimization problem cannot guarantee feasibility for the original optimiza-

tion problem, and thus a systematic formulation to ensure feasibilty is desired. Eldred et al.

[63] briefly discuss few ways to handle infeasibility in a trust-region based methodology for

optimization problems involving ROMs, but do not provide any systematic rigorous frame-

work. Alexandrov et al. extended their previous work on unconstrained optimization with

approximate models, and included equality and inequality constraints as well in the original

optimization problem [4, 5, 6, 7, 9, 10]. In particular, they develop three distinct algorithms

for constrained optimization problems involving ROMs; Augmented Lagrangian AMMO based

on an augmented Lagrangian formulation, MAESTRO-AMMO which involves an `2 penalty

function as a merit function, and SQP-AMMO which utilizes an exact `1 penalty function as
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a merit function and a trust-region SQP formulation. However, they use squared slack vari-

ables for inequalities in the optimization problem which can be easily shown to fail the linear

independence constraint qualification (LICQ), thus making the corresponding KKT system

inconsistent.

In this chapter, we develop a trust-region framework for solving constrained optimization

problems using reduced-order models. In particular, we explore penalty and filter based ap-

proaches to manage infeasibility and utilize a few concepts from Fahl’s TRPOD algorithm,

Alexandrov’s scaling (correction) scheme for the objective function and the constraints, and

MAESTRO-AMMO algorithm. The algorithms developed are demonstrated for a case study

of a two-bed four step isothermal PSA process for post-combustion CO2 capture.

7.2 Optimization Problem

7.2.1 Trust-region Subproblem

In this work, the original optimization problem is represented by a nonlinear program of the

following form

min
x

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

xL ≤ x ≤ xU

(7.1)

where x ∈ Rn are the decision variables bounded between lower and upper bounds xL and xU ,

respectively, and the objective function f(x) : Rn → R, equality constraints cE(x) : Rn → RNE ,

and inequality constraints cI(x) : Rn → RNI are assumed to be sufficiently smooth and at least

twice differentiable functions. We note that Problem (7.1) is written in the reduced-space of the

original DAE-constrained optimization problem. DAEs are integrated outside Problem (7.1),

and the solution profiles are then used to compute the objective function and the constraints.

At kth iteration during the course of optimization, the ROM constructed for a particular xk

is used to build the model function for the trust-region subproblem. We define a ROM-based
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trust-region subproblem for kth iteration as

min
s

fRk (xk + s)

s.t. cRE,k(xk + s) = 0

cRI,k(xk + s) ≤ 0

xL ≤ xk + s ≤ xU

‖s‖∞ ≤ ∆k

(7.2)

where fRk (xk + s) is the objective function and cRE,k(xk + s), and cRI,k(xk + s) are the equality

and inequality constraints, respectively, computed from the reduced set of state variables of

the reduced-order model. For this subproblem also, DAEs of the ROM are solved outside

Problem (7.2) and the solution of the unknown temporal coefficients in the POD expansion is

then used to obtain fRk (xk + s), cRE,k(xk + s), and cRI,k(xk + s). The last inequality in Problem

(7.2) is the trust-region constraint which limits the step size within the current trust-region

radius ∆k. In this work, we prefer to use an infinity norm for the trust-region constraint, i.e.,

we use a box-type (`∞) trust-region to restrict the step size of the decision variables.

It should be noted that the dimension of x, f(x), cE(x), and cI(x) remains same for both

original optimization problem as well as ROM-based trust-region subproblem. In other words,

the number of decision variables and constraints remain same for both problems. Computa-

tional advantage is achieved in terms of the smaller number of DAEs of the reduced-order model

which leads to cheap calculation of the gradients of the objective function and the constraints

in the trust-region subproblem (7.2).

7.2.2 Correction (scaling) for Objective and Constraints

To develop a robust and globally convergent trust-region algorithm involving approximate

models, the following assumptions should hold [54]

(AF1) Functions f(x), cE(x), and cI(x) are twice-continuously differentiable on Rn.

(AF2) The function f(x) is bounded below for all x ∈ Rn.
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(AF3) The second derivatives of f(x), cE(x), and cI(x) are uniformly bounded for all x ∈ Rn.

(A1) For every iteration k, fRk is twice differentiable on Bk, where

Bk = {x ∈ Rn | ‖x− xk‖∞ ≤ ∆k}, ∆k > 0

(A2) The values of the objective and the constraints for the original optimization problem

and the trust-region subproblem coincide at the current iterate, i.e., for all k,

f(xk) = fRk (xk) cE(xk) = cRE,k(xk) cI(xk) = cRI,k(xk) (7.3)

(A3) The gradient of the objective and the Jacobian of the constraints for both the problems

coincide, i.e., for all k,

∇xf(xk) = ∇xf
R
k (xk) ∇xci(xk) = ∇xc

R
i,k(xk) i ∈ {E , I} (7.4)

(A4) The second derivatives of fRk (xk), c
R
E,k(xk), and cRI,k(xk) remain bounded within the

trust-region Bk for all k.

In this work, it is assumed that (AF1)–(AF3) are true, and assumptions (A1) and (A4)

hold by construction of the ROM. However, it cannot be guaranteed if assumptions (A2) and

(A3) (also called first-order consistency conditions) will be true in general. Depending on the

accuracy of the reduced-order model, values of the objective and the constraints for the original

problem and the ROM-based trust-region subproblem may reasonably match; however, their

gradients will differ since the POD basis set is obtained from the snapshots containing state

information but no gradient information. One way to ensure reasonable gradient matching is to

develop a separate ROM for the sensitivity equations of the original system, and solve it with

the ROM for the state variables. Fahl et al. [66] applied such an approach with the adjoint

sensitivity equations of the system and generated a separate ROM for the adjoint variables,

different from the ROM for the state variables. However, they reported that such an approach

can lead to inconsistent gradients in Problem (7.2), and thus to an algorithm which is not

globally convergent.

To circumvent the dependency on the accuracy of ROM, and to ensure globally-convergent

behavior of the trust-region algorithm, Alexandrov et al. [8, 10], Eldred at al. [64], and Giunta
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et al. [83] propose enforcing assumptions (A2) and (A3) by using scaled/corrected objective

and constraints in the trust-region subproblem which can be derived by using local corrections

corresponding to the current iterate k. However, these corrections require computation of

the gradient of the original objective function and the Jacobian of original constraints. In

particular, they propose two types of local corrections, additive and multiplicative, which can

be defined in the following manner

Additive: Φ̃R
k (x) = ΦR

k (x) + (Φ(xk)− ΦR
k (xk)) + (∇Φ(xk)−∇ΦR

k (xk))
T (x− xk) (7.5)

Multiplicative:

Φ̃R
k (x) = ΦR

k (x)

(
Φ(xk)

ΦR
k (xk)

+

(
ΦR
k (xk)∇Φ(xk)− Φ(xk)∇ΦR

k (xk)

ΦR
k (xk)

2

)T
(x− xk)

)
(7.6)

where Φ(x) : f(x), ci(x) ΦR
k (x) : f

R
k (x), cRi,k(x) i ∈ {E , I}

Multiplicative correction can become ill-conditioned and may require additional modification

when ΦR
k (xk) gets close to zero, especially for the equality constraints and active inequality

constraints. Hence, we prefer to use the additive correction for our work. For both corrections,

it is obvious that at the current iterate xk

f̃Rk (xk) = f(xk), c̃Ri,k(xk) = ci(xk), and

∇xf̃
R
k (xk) = ∇xf(xk), ∇xc̃

R
i,k(xk) = ∇xci(xk), i ∈ {E , I}

Therefore, we re-define the trust-region subproblem (7.2) in terms of the corrected objective

and constraints as below

min
s

f̃Rk (xk + s)

s.t. c̃RE,k(xk + s) = 0

c̃RI,k(xk + s) ≤ 0

xL ≤ xk + s ≤ xU

‖s‖∞ ≤ ∆k

(7.7)
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It is worth noting that in these correction schemes, the gradient of the original objective

function and the Jacobian of the constraints is computed only once at the center of the trust-

region for a single trust-region iteration. Optimization within a trust-region is performed using

the cheap gradient of the objective and Jacobian of the constraints of the reduced-order model,

thus offering computational advantage. However, ∇f(xk), ∇cE,k(xk), and ∇cI,k(xk) will have

to be evaluated for each trust-region iteration if corrected functions f̃Rk (x), c̃RE,k(x), and c̃
R
I,k(x)

are used. In this work, we define two kinds of additive correction schemes

Zero-order Correction (ZOC)

Φ̃R
k (x) = ΦR

k (x) + (Φ(xk)− ΦR
k (xk)) (7.8)

First-order Correction (FOC)

Φ̃R
k (x) = ΦR

k (x) + (Φ(xk)− ΦR
k (xk)) + (∇Φ(xk)−∇ΦR

k (xk))
T (x− xk) (7.9)

where Φ(x) : f(x), ci(x) ΦR
k (x) : f

R
k (x), cRi,k(x) i ∈ {E , I}

We can obtain Zero-order Correction cheaply as it doesn’t require gradient evaluation for the

original objective and the constraints. However, with ZOC, only assumption (A2) is satisfied

while assumption (A3) is not guaranteed. On the other hand, First-order Correction ensures

both assumption (A2) and (A3) are satisfied, although it is expensive to construct.

7.3 Penalty-based Trust-region Algorithm

7.3.1 Penalty Formulation

Note that if Problem (7.7) is constructed at an infeasible point, the trust-region box may be too

small to satisfy the constraints in (7.7). Thus, handling feasibility needs special treatment in a

trust-region framework. Few trust-region algorithms are designed to deal with general equality

and inequality constraints. To attain feasiblity, first we explore a penalty-based formulation,
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and utilize the following `1 exact penalty function [71, 140]

ψ̃R
k (xk + s) = f̃Rk (xk + s) + µ

∑
i∈E

∣∣c̃Ri,k(xk + s)
∣∣+ µ

∑
i∈I

max
(
0, c̃Ri,k(xk + s)

)
(7.10)

to reformulate the trust-region subproblem (7.7) into the following bound-constrained problem

min
s

ψ̃R
k (xk + s)

s.t. xL ≤ xk + s ≤ xU

‖s‖∞ ≤ ∆k

(7.11)

Here µ is the penalty parameter, which must be chosen sufficiently large. Note that the bound

constraints xL ≤ xk + s ≤ xU are either ignored if the box trust-region lies completely within

the polytope defined by them, or help to redefine the box trust-region if it intersects with the

polytope.

A penalty based formulation enables us to minimize the objective function while controlling

constraint violations by penalizing them. The penalty function is exact in the sense that for

a sufficiently high µ, the local solution of (7.7) is equivalent to the local minimizer of (7.11).

To evaluate the actual reduction obtained in the original objective function in (7.1), we define

the corresponding exact penalty function as

ψ(xk + s) = f(xk + s) + µ
∑
i∈E

|ci(xk + s)|+ µ
∑
i∈I

max (0, ci(xk + s)) (7.12)

Since the penalty functions are non-differentiable, we adopt the following smoothing approxi-

mation [20]. A value of 0.01 is used for ε in the following equations.

max(0, f(x)) = 0.5
(
f(x) +

√
f(x)2 + ε2

)
(7.13a)

|f(x)| = max(0, f(x)) + max(0,−f(x)) =
√
f(x)2 + ε2 (7.13b)

One of the main issues with penalty functions is to find a reasonable value for the penalty
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parameter µ. Since the Lagrange multipliers, and thus the lower bound on µ are not known a

priori, choice of a value for µ is not intuitive. Too high a value for µ can cause the algorithm

to suffer from poor performance and ill-conditioning. Usually µ is adjusted by some update

criterion as the algorithm proceeds, and an acceptable step is decided thereafter. Such an

approach can provide considerable flexibility in choosing larger steps. However, in this work,

we do not propose any update mechanism for µ and work with a constant value which is

decided before the algorithm begins.

7.3.2 Trust-region Algorithm

Algorithm I: Exact penalty trust-region algorithm

Choose 0 < η1 ≤ η2 < 1 ≤ η3, 0 < γ1 ≤ γ2 < 1 < γ3, penalty µ > 0, an initial trust-region

radius ∆0, minimum radius ∆min, and an initial iterate x0. Compute ψ(x0) and set k = 0.

1. Compute POD basis functions and construct a reduced-order model using the snapshots

obtained for current iterate xk.

2. Compute a step sk from (7.11). Problem (7.11) can also be solved “approximately” such

that a sufficient decrease condition (7.14) or (7.15) is satisfied.

3. Compute ψ(xk + sk) and define the ratio

ρk =
aredk
predk

=
ψ(xk)− ψ(xk + sk)

ψ̃R
k (xk)− ψ̃R

k (xk + sk)

If ρk < η1, set xk+1 = xk and ∆k+1 = γ1∆k. If ∆k+1 ≤ ∆min, STOP, otherwise increment

k by 1 and go to Step 2.

4. Set xk+1 = xk + sk,

∆k+1 =


γ2∆k if ρk ∈ [η1, η2),

∆k if ρk ∈ [η2, η3),

γ3∆k if ρk ≥ η3

Increment k by 1 and go to Step 1.
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The algorithm repeatedly solves the ROM-based trust region subproblem (7.11) with the Zero-

order Correction (ZOC) or the First-order Correction (FOC) for the objective and the con-

straints until the trust-region radius shrinks to a value less than ∆min, and no further improve-

ment is obtained. In order to estimate the quality of the next iterate, we compare the actual

reduction in the true objective aredk, to the predicted reduction predk. This requires compu-

tation of a new solution for the DAEs of the original problem in order to evaluate ψ(xk + sk).

If the trial step sk yields a satisfactory decrease, and if ρk ≥ η1, it is accepted and we update

the ROM for next iteration with the help of these new snapshots just calculated. Otherwise,

the size of the trust-region is reduced and Step 2 is repeated with a smaller trust-region. In

Step 2, “approximately” means that a solution sk can be obtained in any manner suitable to

the application as long as it satisfies the following sufficient decrease condition, also known as

the fraction of Cauchy decrease condition [54]

ψ̃R
k (xk)− ψ̃R

k (xk + sk) ≥ κp‖∇ψ(xk)‖min

[
∆k,

‖∇ψ(xk)‖
βk

]
(7.14)

where 0 < κp < 1, while 1 < βk < ∞ is any bounded sequence of numbers (note that ∇ψ(xk)

can be computed because of the smoothing approximation (7.13)). However, at the beginning

of the algorithm, when not close to the optimum, equation (7.14) can be replaced by the

following gradient free sufficient decrease condition [186]

ψ̃R
k (xk)− ψ̃R

k (xk + sk) ≥ κpmin[ν1, ν2∆k] (7.15)

for some 0 < κp < 1, 0 < ν2 ≤ 1, ν1 > 0. Although a step sk can be computed approximately,

in this work we find an exact local optimum for Problem (7.11) using IPOPT for each iteration.

One of the key features of this algorithm is that once we achieve feasiblity during the course

of the algorithm, we stop using the penalty formulation, constraint relaxation is removed and

they are transferred back to the trust-region subproblem. In other words, Problem (7.11) is

converted back to Problem (7.7). This is especially important when FOC is used for objective
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and constraints as the penalty parameter can put a lot of weight on constraint violation and

its gradient, thus allowing tiny reduction in the objective with each trust-region iteration.

Moreover, with feasible equalities and active inequalities, smoothing parameter ε (see Equation

(7.13)) in the penalty function can substantially skew the results and can make the algorithm

terminate prematurely.

In this work we use the following values for the constants in the algorithm

η1 = 0.05, η2 = 0.5, η3 = 1, γ1 = 0.25, γ2 = 0.5, γ3 = 1.5

Note that the value for η1 is very close to zero. This implies that we take a step even if the

reduction in ψ(x) is quite small. This is essential for POD ROM-based optimization because

computation of ψ(xk + sk) in ρk involves evaluation of new snapshots from the original DAEs.

Hence, it is always beneficial to take a step, even if ρk is small, and use these new snapshots to

update our ROM which we expect to perform better in the next iteration. Also, the choice of

η2 = 0.5 and η3 = 1 shows that most of the time during the algorithm we wish to keep the trust-

region radius constant instead of increasing it frequently. With POD ROM-based optimization

we prefer not to be greedy and limit the growth of the trust-region for longer duration because

of the oscillatory behavior of the ROM for large trust-regions, as observed in the previous

chapter. With oscillations that result from large extrapolation, ROM can take the algorithm

in a direction which may not be a descent direction, which can cause ρk to become negative

and lead to drastic reductions in ∆k for subsequent iterations. The oscillatory behavior can

be monitored by checking whether the state variables are within the defined bounds or not.

Such bounds may be used as safeguards to avoid oscillatory behavior.

7.3.3 Convergence and Optimality

Since Algorithm I becomes a basic trust-region algorithm because of the smoothing approxi-

mation (7.13), it enjoys the following convergence property.

Theorem 7.3.1. (See Theorem 6.4.6 in [54]) Suppose that (AF1)–(AF3), (A1)–(A4), and
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(7.14) hold. Then one has that

lim
k→∞

‖∇ψ(xk)‖ = 0 (7.16)

In other words, all limit points for Algorithm I converge to x∗, a first-order optimal point

for Problem (7.1), when all the assumptions (AF1)–(AF3), and (A1)–(A4) hold, and a

sufficient decrease (7.14) can be ensured. As mentioned before, (AF1)–(AF3), (A1) and

(A4) are assumed to be true in this work. With Zero-order Correction, we can satisfy (A2),

while First-order Correction can ensure both (A2) and (A3) are satisfied. With assumptions

(A2) and (A3) being true, it can be shown that as the trust-region gets small enough, the

linear part of ψ̃R
k (xk + s) dominates and we can always compute a step sk which lies in the

steepest descent direction of ψ̃R
k (xk + s) (Cauchy step) and satisfies the fraction of Cauchy

decrease condition (7.14). Moreover, with FOC, the Cauchy step obtained for Problem (7.11)

coincides with the exact Cauchy step of Problem (7.11) with ψ̃R
k (xk+s) replaced with ψ(xk+s).

Hence, Algorithm I is globally convergent.

Assumptions (A2), and (A3) should necessarily be satisfied at the optimum to ensure

that the Algorithm I converges to a solution that corresponds to the optimum of the original

optimization problem (7.1) [29, 77]. Since we satisfy (A2) and (A3) with FOC for all the

trust-region iterations, it is ensured that the algorithm will converge to the true optimum.

We follow the approach presented in section 6.5.4.1 for our case studies, in order to verify if

Algorithm I converges to the true optimum.

7.4 PSA Case Study - Post Combustion CO2 Capture

7.4.1 PSA Process and Model Equations

We consider a 2-bed 4-step isothermal PSA process with an 85%-15% N2-CO2 feed mixture

which is a typical composition of a post-combustion flue gas stream. In particular, the process

is a Skarstrom cycle shown in Figure 2.3, and described in detail in section 2.4.1. Zeolite 13X

is chosen as the adsorbent to separate CO2. We make following assumptions to develop a
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Table 7.1: Model equations for isothermal PSA

Component mass balance

εb
∂yi
∂t

+
∂(vyi)

∂x
+
RT

P
(1− εb)ρs

∂qi
∂t

= 0 i = 1 (7.17)

Overall mass balance

∂v

∂x
+
RT

P
(1− εb)ρs

2∑
i=1

∂qi
∂t

= 0 (7.18)

LDF equation

∂qi
∂t

= ki(q
∗
i − qi) i = 1, 2 (7.19)

Dual-site Langmuir Isotherm

q∗i =
qs1ib1iyiP

1 +
∑
j

b1jyjP
+

qs2ib2iyiP

1 +
∑
j

b2jyjP
i = 1, 2 (7.20)

Cyclic steady state

z(t0) = z(tcycle) z : yi, qi ∀i (7.21)

mathematical model for this process

1. All of the gases follow the ideal gas law.

2. There are no radial variations for concentrations in the solid and the gas phase.

3. The process is isothermal with a fixed temperature for the entire cycle.

4. Pressure drop along the bed is negligible.

5. The adsorption behaviors are described by the dual-site Langmuir isotherm.

6. The adsorption rate is approximated by the linear driving force (LDF) expression.

Based on the above assumptions, the mathematical model for the PSA process is listed in

Table 7.1. Here we assume no axial dispersion and use a lumped mass transfer coefficient for

the LDF model. The adsorbent properties for 13X and other model parameters are listed in

Table 7.2 [111]. Since we also have an overall mass balance in the model to solve for velocity
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Table 7.2: Zeolite 13X properties and model parameters [111]

Parameter Value

Bed Length (L) 1 m
Bulk porosity (εb) 0.34
Adsorbent density (ρs) 1870 kg m−3

Mass transfer coefficient (k) CO2=0.1631 sec−1

N2=0.2044 sec−1

Process temperature (T ) 310 K
Isotherm parameters

CO2 N2

qs1 2.708769 1.819949
qs2 2.436388 1.819949
b1 1.23×10−5 6.17×10−7

b2 4.78×10−4 6.17×10−7

Table 7.3: Boundary conditions for each operating step

pressurization adsorption depressurization desorption

yj |x=0 = yf,j yj |x=0 = yf,j — yj |x=L = yj |x=L of other bed

P = Ph P = Ph P = Pl P = Pl

u|x=L = 0 u|x=0 = ua u|x=L = 0 u|x=L = 0.4u|x=L of other bed

along the bed length, we solve component mass balance for only one component. Moreover, we

don’t have to ensure that the mole fractions sum up to one as it implicitly happens because of

the overall mass balance. We denote this model in Table 7.1 as the rigorous model for which

we develop a reduced-order model.

Boundary conditions for each step are shown in Table 7.3. We note that for the depressur-

ization step a boundary condition for mole fraction is not needed since u|x=L = 0 automatically

sets the inlet flux to be zero for the component mass balance. However, boundary conditions

are needed for both velocity and mole fraction for the pressurization step due to the nature of

the upwind-based spatial discretization scheme. Also, we note that the purge fraction of the

outlet from x = L which goes from one bed to the other during the adsorption step is chosen

to be 0.4, which appears in the boundary condition of velocity for the desorption step.
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Tables 6.4 in the previous chapter shows the equations for molar flux variables of the 2-bed

4-step process which is used to calculate purities and recoveries of nitrogen and CO2 in the

following manner

purityN2
=

∫
ON2(t) dt∫

ON2(t) + OCO2 dt

(7.22)

purityCO2
=

∫
HpCO2

(t) dt∫
HpN2

(t) + HpCO2
dt

(7.23)

recoveryN2
=

∫
ON2(t) dt−

∫
PgN2

(t) dt∫
FN2(t) dt

(7.24)

recoveryCO2
=

∫
HpCO2

(t) dt∫
FCO2(t) dt

(7.25)

7.4.2 Reduced-order Model

We use the method of lines approach to convert PDAEs in Table 7.1 to a set of DAEs after

spatial discretization, which is then simulated to generate snapshots for POD basis functions.

For spatial discretization, we use an upwind-based finite volume scheme with the Van Leer flux

limiter for mole fraction to introduce additional numerical dispersion around steep adsorption

fronts (cf. section 2.5.1). Moreover, we utilize Unibed approach and simulate only one bed for

the entire cycle with the help of storage buffers to handle boundary matching for the two beds

during adsorption and desorption steps (cf. section 2.4.3).

It is important to note that the snapshots are generated only after the 2-bed system attains

cyclic steady state. To achieve CSS, we use a successive substitution method in which a series

of simulations are performed with initial conditions of each new cycle taken from the final

condition of the previous cycle until the bed conditions do not change from cycle to cycle. In

this case, we achieve cyclic steady state after 50-60 cycles.

After obtaining snapshots, separate POD basis functions are generated for pressurization,
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Table 7.4: ROM for the isothermal PSA process

Component mass balance

εb
dayik
dt

+

uR(dy0i
dx

+

M∑
j=1

ayij
dφyij
dx

)
, φyik

+

yRi (du0
dx

+

M∑
j=1

auj
dφuj
dx

)
, φyik

+

RT

P
(1− εb)ρs

M∑
j=1

(φyik, φqij)
daqij
dt

= 0 ∀k ∈ [1,M ], i = 1 (7.26)

Overall mass balance(du0
dx

+

M∑
j=1

auj
dφuj
dx

)
, φuk

+
RT

P
(1− εb)ρs

2∑
i=1

M∑
j=1

(φuk, φqij)
daqij
dt

= 0 (7.27)

∀k ∈ [1,M ]
LDF equation

daqik
dt

= ki

( M∑
j=1

(
qR∗
i , φqik

)
− aqik −

(
q0i, φqik

))
∀k ∈ [1,M ] (7.28)

Langmuir isotherm

qR∗
i =

qs1ib1iy
R
i P

1 +
∑2

j=1 b1jy
R
j P

+
qs2ib2iy

R
i P

1 +
∑2

j=1 b2jy
R
j P

i = 1, 2 (7.29)

Cyclic steady state

az,k(0)
∣∣∣
pres

=

( M∑
j=1

az,j(tcycle)
∣∣∣
des
φz,j

∣∣∣
des
, φz,k

∣∣∣
pres

)
∀k ∈ [1,M ], z : yi, qi (7.30)

adsorption, depressurization and desorption steps. Moreover, we derive separate POD basis

functions for gas phase mole fractions, solid phase loadings, and velocity. State variables are

then expressed in terms of the corresponding POD basis as below

yRi (x, t) = y0i(x) +
M∑
j=1

ayij(t)φyij(x) for i = 1

qRi (x, t) = q0i(x) +

M∑
j=1

aqij(t)φqij(x) uR(x, t) = u0(x) +

M∑
j=1

auj(t)φuj(x)

Here y0i(x), q0i(x), and u0(x) are snapshot averages for mole fraction, solid loading, and

velocity respectively. It is noteworthy to mention that for the adsorption step, we use the
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following POD basis representation for velocity to make the adsorption feed velocity ua visible

during optimization, as we consider it a decision variable:

uR(x, t) = ua +

M∑
j=1

auj(t)φuj(x) for adsorption step.

Table 7.4 shows DAEs of the reduced-order model obtained after Galerkin projection of the

model in Table 7.1 on to these POD basis functions.

7.4.3 Optimization using Algorithm I

In this section we apply the exact penalty trust-region algorithm on a ROM-based optimization

problem which maximizes CO2 recovery subject to a constraint on CO2 purity. For optimiza-

tion, we consider five decision variables, high pressure Ph up to which the bed is pressurized

and at which the adsorption step takes place, low pressure Pl for the depressurization and des-

orption steps, step time for pressurization and depressurization tp, and that for adsorption and

desorption ta, and finally, feed velocity during the adsorption step ua. The DAE-constrained

optimization problem is described as below

max CO2 recovery (from Equation (7.25))

s.t. CO2 purity ≥ 0.5 (from Equation (7.23))
101.32 kPa ≤ Ph ≤ 300 kPa
40 kPa ≤ Pl ≤ 101.32 kPa
35 sec ≤ tp ≤ 150 sec
50 sec ≤ ta ≤ 400 sec
10 cm/sec ≤ ua ≤ 30 cm/sec

(7.31)

Here, a lower bound of 50% is reasonable for CO2 purity since we are using Skarstrom cycle to

extract CO2, which lacks any kind of a step that enriches CO2 concentration in the bed. Thus,

we cannot achieve high CO2 purity with this 2-bed 4-step cycle. However, our focus here is to

illustrate the exact penalty trust-region algorithm for optimization using ROMs with the help

of this case study. We also note that in order to improve CO2 purity and recovery, we allow

vacuum depressurization and desorption steps as the bounds for Pl lie in the vacuum range.

Problem (7.31) is solved by using the ROM-based trust-region subproblem repeatedly. We

discretize the DAEs of the ROM in the temporal dimension and convert it into a standard
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Table 7.5: Initial guess for optimization problem (7.31)

Decision variable Guess value

Adsorption pressure (Ph) 150 kPa
Desorption pressure (Pl) 50 kPa
Pressurization step time (tp) 50 sec
Adsorption step time (ta) 150 sec
Adsorption feed flow (ua) 20 cm/sec

NLP which is solved in AMPL using IPOPT. We note that to construct a ROM, snapshots

are obtained only after CSS is achieved by the rigorous model. Therefore, it is ensured that

CSS is satisfied by ROM as well for every trust-region iteration. In other words, CSS is solved

internally and is not a part of the infeasibility measure in Problem (7.31).

In the subsequent sections, we first compare the accuracy of the reduced-order model at the

starting guess x0 for the optimization problem. Next, we solve the optimization problem (7.31)

with ZOC for the objective and the purity constraint and monitor if Algorithm I converges to

an optimum even when assumption (A3) is not true. Finally, we solve problem (7.31) with

FOC. The quality of the dynamic behavior predicted by ROM is compared at the optimum as

well.

7.4.3.1 Comparison of Rigorous Model and ROM at the Starting Guess

In this section, we validate the accuracy of the ROM and verify how accurately ROM is

predicting the dynamic behavior of the original isothermal PSA process at the initial guess x0.

Table 7.5 lists the starting guess for our optimization problem (7.31).

With 50 spatial finite volumes, we convert the PDAEs in Table 7.1 into DAEs and integrate

using ode15s in MATLAB. Cyclic steady state is achieved up to the desired tolerance after

simulating the model repeatedly for 50 cycles, and snapshots are collected to generate empirical

POD basis. Figure 7.1 shows first six POD basis functions of gas-phase CO2 mole fraction for

the adsorption step. The shapes of these functions are quite different since they are empirical

in nature. Figure 7.2 shows first 10 singular values for gas-phase CO2 mole fraction and
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Figure 7.1: First six POD basis functions of CO2 mole fraction for adsorption

superficial gas velocity for all the operating steps. From the slopes of the curves, it is clear

that the singular values decay fairly sharply. For this case study, we choose a threshold error

tolerance λ∗ of 0.05 (cf. (6.10) and section 6.2.4). For εPODnorm(M) ≤ λ∗ to hold true, we obtain

M = 2, 4, 1, and 3 for pressurization, adsorption, depressurization, and desorption steps,

respectively. In other words, with such few basis functions error in projection can be at most

5%. We purposely choose a slightly higher value of 0.05 for the threshold tolerance since it is

observed that with a low value of λ∗ (say 0.01 or 0.001), ROM incorporates those POD basis

functions which do not contribute much towards predicting the dynamics, thus causing the

DAE system of the ROM to become ill-conditioned. Moreover, with these values of M , ROM

comprises a mere 70 DAEs, while the rigorous model contains a total of 1400 DAEs. Hence, we

obtain a significant model reduction as ROM is 1/20th of the rigorous model with this choice
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(a) Singular values for gas−phase mole fraction of CO
2
 (on log scale)

(b) Singular values for superficial velocity (on log scale)

Figure 7.2: Singular values of mole fraction of CO2 and superficial gas velocity

of λ∗.

We discretize the DAEs of the reduced-order model in time with 20 finite elements and 3

collocation points for all four operating steps, and the resulting algebraic equations are solved

with IPOPT. The initial conditions for the process are taken as decision variables and reduced

CSS conditions (shown in Table 7.4) are solved simultaneously with the model equations in

AMPL. Figure 7.3 compares the profiles of gas-phase CO2 mole fraction obtained after inte-

grating the rigorous model till CSS is achieved, and after solving the algebraic equations of

ROM with reduced CSS conditions. We observe a significant match between the profiles, thus

indicating that ROM is predicting the dynamics quite precisely.

As another basis to verify ROM’s accuracy, we compare purities and recoveries of nitrogen

and CO2 for both rigorous model and ROM at CSS for this starting guess. Table 7.6 lists

such a comparison. It can be observed that the values obtained from ROM are fairly close to

the ones obtained after integrating the rigorous model even with relatively large λ∗ = 0.05.
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(a) Rigorous model simulation in MATLAB

(b) ROM simulation in AMPL

Figure 7.3: Comparison of CO2 mole fraction for all the steps at the starting guess
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Table 7.6: Comparison of rigorous model and ROM based on the performance variables

Performance variables Rigorous model ROM

N2 purity 92.57% 92.51%
N2 recovery 80.21% 80.71%
CO2 purity 37.76% 38.29%
CO2 recovery 66.27% 67.44%

Since the comparison is reasonable, we solve (7.31) with the POD-based ROM in Table 7.4

constructed and updated with every trust-region iteration with λ∗ = 0.05.

7.4.3.2 Optimization with Zero-order Correction

We first solve (7.31) with the Zero-order Correction (7.8) applied for the objective function

and the purity constraint. As mentioned before, ZOC can be computed cheaply as it doesn’t

involve evaluation of the original objective and the constraint gradients. However, it doesn’t

satisfy assumption (A3), although it ensures (A2) holds. Therefore, we cannot ensure that

ZOC satisfies the fraction of Cauchy decrease (7.14). Our focus in this section is to observe

if the POD-based ROM, besides accurately predicting the dynamics, can also predict the de-

scent direction accurately without involving the actual gradients from the original optimization

problem. In other words, since POD-based ROMs are reasonably accurate at any xk, we are

inquisitive about whether they can also implicitly satisfy (A3) by their very construction, or

whether a first-order correction (7.9) with accurate gradients is vital for ROM-based optimiza-

tion for convergence to an optimum.

As mentioned before, we use a box trust-region in this work. For problem (7.31), with a

current trust-region radius ∆k, the shape of the box is defined as below

|Ph − Ph,k| ≤ ∆k, |Pl − Pl,k| ≤ ∆k/4, (in kPa)

|tp − tp,k| ≤ ∆k/2, |ta − ta,k| ≤ ∆k/2, (in sec)

|ua − ua,k| ≤ ∆k/4 (in cm/sec)

(7.32)

With penalty parameter µ = 1000, we apply the exact penalty trust-region algorithm. Table

B.1 in Appendix B lists all the trust-region iterations together with the values of the decision

variables after the iteration ends (i.e., xk+sk), CO2 purity pCO2 , and recovery rCO2 at xk+sk,
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Table 7.7: Optimization results with ZOC

Problem size and computational time
No. of variables 52247
Total trust-region iterations 13
Optimization CPU time 35.7 min

Optimal parameters
Adsorption pressure (Ph) 203.28 kPa
Desorption pressure (Pl) 40 kPa
Pressurization step time (tp) 55.43 sec
Adsorption step time (ta) 161.08 sec
Adsorption feed flow (ua) 20.8 cm/s

Comparison of performance variables

ROM (AMPL) Rigorous model (MATLAB)

N2 purity 95.81% 95.99%
N2 recovery 85.85% 85.26%
CO2 purity 51.41% 50.01%
CO2 recovery 85.11% 81.74%

ROM-based objective function at the center of the trust-region ψ̃R
k (0) and at the end of the

iteration ψ̃R
k (sk) (see Equation (7.10)), the true objective function at the end of the iteration

ψ(sk) (see Equation (7.12)), ratio ρk defined in Algorithm I, and the trust-region radius ∆k.

We observe that because of the penalty, the focus of the first few iterations of the algorithm is

to gain feasibility, although additionally CO2 recovery also improves. Feasibilty is attained in

7th iteration (k=6), after which the penalty formulation is dropped and the purity constraint

is moved from the objective function to the constraint section of the trust-region subproblem.

Eventually, the algorithm terminates after 13th iteration (k=12) when ∆12 is shrunk further

from 0.059 to 0.015, as it becomes less than the ∆min of 0.02.

Optimal values of the decision variables together with the optimization CPU time are listed

in Table 7.7. CPU time for optimization only accounts for the time taken for all the trust-

region iterations, and doesn’t include the time required to calculate snapshots and construct

ROM. With 52,247 algebraic variables, algorithm terminated with 13 trust-region iterations

and within a reasonable CPU time of 35.7 min. We notice that after algorithm termination,

only Pl is at its lower bound, while other decision variables are well within their limits. We
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Table 7.8: Perturbation results with ZOC

Optimal value Perturbed value CO2 purity∗ CO2 recovery∗

Ph (kPa) 203.28 206.28 50.28% 82.01%
Ph (kPa) 203.28 200.28 49.72% 81.47%
Pl (kPa)

† 40 39 50.44% 82.71%
tp (sec) 55.43 57.43 49.97% 81.68%
tp (sec) 55.43 53.43 50.04% 81.81%
ta (sec) 161.08 164.08 50.14% 81.39%
ta (sec) 161.08 158.08 49.87% 82.09%
ua (cm/s) 20.8 21.8 50.32% 80.77%
ua (cm/s) 20.8 19.8 49.65% 82.77%

∗Optimal CO2 recovery: 81.74%, CO2 purity: 50.01%, †at bound

also report the purities and recoveries of nitrogen and CO2 as obtained from AMPL after final

optimization iteration, and from the rigorous model MATLAB simulation at the optimum. We

recall that the ROM is constructed with a threshold tolerance λ∗ = 0.05. With this λ∗, ROM

compares fairly well with the rigorous model.

In order to verify if the algorithm terminated at an optimal point, we follow the analysis

presented in section 6.5.4.1 and perturb decision variables from their optimal values. In partic-

ular, we provide a positive perturbation to variables at their upper bounds and negative to the

ones at their lower bounds, and record the change in CO2 purity and recovery. For decision

variables not at their bounds, we provide both positive and negative perturbations. Since the

CO2 purity constraint is active at the termination, the termination point can be proven opti-

mal if, with such perturbations, we either improve CO2 recovery and simultaneously decrease

its purity, or vice-versa is true for all the decision variables. Moreover, if we improve both

CO2 purity and recovery for the parameters at their bounds, termination point is optimal.

However, if CO2 purity and recovery both improve for a decision variable not at a bound, or if

they both decrease for a variable at either of its bounds, the termination point is not optimal.

Perturbation results for this case are shown in Table 7.8. It can be observed that the CO2

purity and recovery both improve when Ph is perturbed from 203.28 kPa to 206.28 kPa, and

tp is perturbed from 55.43 sec to 53.43 sec. This shows that the point at which algorithm
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terminated is not optimal, which implies that ROM is not predicting the correct descent

direction at the termination point. The reason for this is that the assumption (A3) is not

true at the termination point, i.e., the objective function gradient and the constraint Jacobian

obtained from ROM do not match the actual ones. Hence, this clearly shows that although

we can construct susbstantially accurate ROMs based on the snapshot information of the

state variables, such ROMs in general cannot always ensure that the gradient information is

also reasonably accurate. Moreover, we infer that to ensure convergence to an optimal point,

assumption (A3) is essential and accurate gradients should be incorporated in the ROM-

based optimization problem. This can be accomplished with a First-order Correction (FOC),

as illustrated in the next section.

7.4.3.3 Optimization with First-order Correction

We solve (7.31) with the First-order Correction (7.9) applied for the objective function and the

purity constraint. For FOC, we need to evaluate gradients of the objective and the constraints

of the original optimization problem with the rigorous model before each trust-region iteration

starts. However, this is computed just once and optimization within a trust-region is carried

out using ROM. For this case, we evaluate gradients using perturbation.

Table B.2 in Appendix B lists all the trust-region iterations with the penalty parameter

µ=1000. As in the previous case, we observe that because of the penalty parameter, the al-

gorithm focuses on satisfying the CO2 purity constraint for the first few iterations. In fact,

within 5 iterations (k=4) feasibility is attained after which we drop the penalty parameter and

move the purity constraint into the trust-region subproblem. Because of the exact gradient

information, algorithm goes beyond the optimal CO2 recovery of 81.74% obtained in the previ-

ous case, up to a recovery of 97.19%. However, the key observation is that the algorithm takes

tiny steps to improve CO2 recovery after achieving feasibility, and thus eventually takes 92

iterations to get to the optimum, which is considerably large. After 92nd iteration (k=91), ∆91

gets reduced from 0.021 to 0.005, thus going below ∆min = 0.02, and the algorithm terminates.
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Table 7.9: Optimization results with FOC

Problem size and computational time
No. of variables 52247
Total trust-region iterations 92
Optimization CPU time 1.88 hrs.

Optimal parameters
Adsorption pressure (Ph) 300 kPa
Desorption pressure (Pl) 40 kPa
Pressurization step time (tp) 35 sec
Adsorption step time (ta) 160.97 sec
Adsorption feed flow (ua) 14.87 cm/s

Comparison of performance variables

ROM (AMPL) Rigorous model (MATLAB)

N2 purity 99.99% 99.99%
N2 recovery 82.36% 83.01%
CO2 purity 50.54% 50.01%
CO2 recovery 99.04% 97.19%

Final optimization statistics are listed in Table 7.9. Because of 92 trust-region iterations,

the algorithm takes 1.88 hrs. of optmization CPU time to converge. Unlike previous case,

three decision variables (Ph, Pl, and tp) are at their bounds at the optimum, while the bounds

of ta, and ua are not active. Purities and recoveries of the components obtained after final

trust-region iteration in AMPL, are quite close to the ones obtained from MATLAB simulation

of the rigorous model at the optimum.

We also perform perturbation-based analysis, as done in the previous case, in order to

ensure if the algorithm converged at an optimal point. Giving a positive perturbation to Ph at

its upper bound and negative perturbation to tp at its lower bound improves both CO2 purity

and recovery, while a negative perturbation for Pl at its lower bound improves recovery but

we lose feasibility. Moreover, perturbing ta and ua in both directions leads to a dichotomous

behavior of either improvement in CO2 recovery with loss in its purity, or vice-versa. Therefore,

we conclude that the termination point is optimal.

To complete the analysis and to ensure ROM is predicting physically correct dynamic

behavior of the system, we also compare gas-phase CO2 mole fraction profiles at the optimum,
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(a) Rigorous model simulation in MATLAB

(b) ROM optimization in AMPL

Figure 7.4: Comparison of CO2 mole fraction for penalty TR algorithm with FOC
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Table 7.10: Perturbation results with FOC

Optimal value Perturbed value CO2 purity∗ CO2 recovery∗

Ph (kPa)† 300 303 50.16% 97.26%
Pl (kPa)

† 40 39 49.83% 97.72%
tp (sec)† 35 33 50.04% 97.31%
ta (sec) 160.97 163.97 50.6% 96.69%
ta (sec) 160.97 157.97 48.44% 97.56%
ua (cm/s) 14.87 15.87 52.21% 95.12%
ua (cm/s) 14.87 13.87 47.94% 98.26%

∗Optimal CO2 recovery: 97.19%, CO2 purity: 50.01%, †at bound

obtained from ROM-based optimization in AMPL, and rigorous model simulation in MATLAB.

Such a comparison in Figure 7.4 reveals convincing behavior of the reduced-order model as the

profiles are nearly identical.

7.5 Hybrid Filter Trust-region Algorithm

7.5.1 Motivation

In this section we develop a hybrid filter-based trust-region algorithm for optimization involving

ROMs. The algorithm is hybrid in the sense that it utilizes both ZOC and FOC at different

times during its course.

The motivation to develop this algorithm comes from two key observations in the aforemen-

tioned PSA case study. First, we notice that although ROM-based trust-region subproblems

with ZOC cannot ensure convergence to an optimal point, they are at least capable of generat-

ing descent directions and even attain feasibilty even without the actual gradient information.

Moreover, constructing FOC for every trust-region iteration is expensive as it involves compu-

tation of gradients from the original problem. However, FOC is necessary to converge to an

optimal point. Therefore, we propose a hybrid strategy in which the trust-region algorithm be-

gins with subproblems constructed with ZOC. This is continued until no further improvement

is observed, after which the algorithm switches to subproblems with FOC until convergence.

Second, we observe in the optimization case study with FOC that the penalty-based trust-
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region algorithm takes tiny steps and marches considerably slowly once feasibility is attained.

The penalty parameter doesn’t allow infeasible moves as aredk, and thus ρk in this case becomes

negative which entails sharp reduction in the trust-region radius and therefore, short steps.

Hence, instead of developing a hybrid algorithm with the exact penalty algorithm, we develop

a filter-based approach. Such an approach is desirable since it can allow taking a step which

reduces objective while increasing infeasibility, and therefore can march faster towards the

optimum. Moreover, the motivation for developing a filter-based algorithm comes from the

difficulty of determining a suitable penalty parameter µ or its updation strategy in the exact

penalty function.

Filter methods have been extensively studied and applied for nonlinear programming prob-

lems. Fletcher et al. [143] provide a brief survey of the literature on filter methods. Filter

approach was first proposed by Fletcher in 1996; later described in [74]. The first global

convergence proof for these methods was given for an SLP method [75], which was later gen-

eralized to SQP methods [76]. Fletcher et al. [72] analyze a trust-region SQP filter method

that decomposes the SQP step into a normal step to attain feasibility, and a tangential step

which reduced objective function. Nie et al. [135], on the other hand, combine the normal

and tangential problem with a penalty parameter and solve them simultaneously in Fletcher’s

trust-region SQP filter method. Other studies with filter method include a bundle method for

non-smooth optimization [73], and a pattern-search algorithm for derivative-free optimization

[16]. Benson et al. [24] and Ulbrich et al. [187] have studied filter methods in the context

of interior-point methods for solving NLPs. Wächter and Biegler [193, 194] have successfully

incorporated filter mechanism in the NLP solver IPOPT [195]. They develop a line-search filter

method that avoids convergence to arbitrary stagnation points, as illustrated by the example

in [192].

In this work, we use Fletcher’s trust-region filter method [72] with additional modifica-

tions for POD-based ROMs. The proposed modifications still enjoy the globally convergent

properties of Fletcher’s algorithm (see section 7.5.9).
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7.5.2 Filter

There are two objectives in a general nonlinear programming problem, minimization of the

objective function f(x), and minimization of the constraint violation θ(x), where

θ(x) = ‖cE(x)‖+ ‖max(0, cI(x))‖

A penalty function combines both these goals in one single measure and minimizes ψ(x) =

f(x) + µθ(x). In contrast, a filter method considers both of these as separate goals, and

interprets the NLP as a bi-objective optimization problem. There is a special emphasis on the

second goal since a point has to be feasible in order to be an optimal solution, and thus θ(x∗)

should be zero at the optimum x∗. Filter methods borrow the concept of domination from

multiobjective optimization and state that a point xk dominates xl whenever

θ(xk) ≤ θ(xl) and f(xk) ≤ f(xl)

As a result, xl is of no use as xk is better in terms of both feasibility and optimality. A

filter method involves storing iterates xk that are not dominated by any other iterates. More

precisely, a filter is a list F of pairs (θi, fi) such that

either θi ≤ θj or fi ≤ fj ∀j, i 6= j

During optimization, we aim to accept a new iterate xi only if it is not dominated by any

other iterate in the filter. Figure 7.5 illustrates the concept by showing (θk, fk) at xk as black

dots in the (θ, f)-space. The lines emanating from each (θ, f)-pair (forming filter envelope)

indicate that any iterate whose associated (θ, f)-pair occurs in the shaded region in Figure 7.5

is dominated by at least one of these black dots. Iterates which do not lie in the shaded region

are acceptable. The contours of the `1 exact penalty function will be straight lines with slope

−µ in this plot, indicating that the filter is generally less restrictive than penalty methods.

We do not accept new iterate xk+sk if its (θ, f)-pair is quite close to the filter envelope, and

thus set a small “margin” around this envelope. Formally, we say that a point x is acceptable

for the filter if and only if

θ(x) ≤ (1− γθ)θj or f(x) ≤ fj − γfθj ∀(θj , fj) ∈ F (7.33)
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f(x)

(x)

xk

Figure 7.5: A filter with four (θ, f)-pairs

for some γf , γθ ∈ (0, 1). In Figure 7.5, this margin corresponds to the thin dotted line. In

practical implementation, γf , γθ are typically chosen to be small. As the algorithm proceeds, we

keep adding (θk, fk)-pairs to the filter for the acceptable iterates xk. However, it is important

to note that (θ, f)-pairs are not added to a filter for all the acceptable iterates. We observe

that θ(x) in (7.33) dominates to a certain point, especially when infeasibility is large. However,

as θ(x) → 0, the method must focus on descent of f(x). For this case, no filter point is added

(see further details in section 7.5.4). Since xk may not be in the filter, we move from xk to

xk+ sk only if xk+ sk is “acceptable for the filter and xk”, i.e., if the following condition holds

θ(xk + sk) ≤ (1− γθ)θj or f(xk + sk) ≤ fj − γfθj ∀(θj , fj) ∈ F ∪ (θk, fk) (7.34)

Maintaining a list of (θ, f)-pairs in a filter avoids what is known as cycling. Cycling results

between two points that alternately improve one of the measures, θ or f , but worsen the other

one at the same time. The filter avoids cycling because for a movement from xk to xk+1 that

improves θ but not f , the filter is augmented with xk, and thus xk becomes unreachable during

optimization. Hence, cycling cannot occur with filter methods [74, 193].
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7.5.3 Trust-region Step Computation

Following the strategy proposed by Fletcher et al. [72], we decompose the trust-region sub-

problem (7.7) into a normal subproblem and a tangential subproblem. In [72], the normal

subproblem computes a step vk which reduces infeasibility of (7.7), while the tangential sub-

problem evaluates a step pk which improves the objective and lies in the null space of equality

and inequality constraints, thus maintaining feasibility achieved by the normal problem. The

overall step sk = vk+pk. In our case, we compute a normal step vk to determine a level δ up to

which the infeasibility can be reduced in the given trust-region. Tangential subproblem, then,

computes the overall step sk which reduces the objective while maintaining this infeasibility

level δ. Formally, to minimize the following maximum constraint violation

θ̃R(x) = δ = max

[
0,max

i∈E
|c̃Ri (x)|,max

i∈I
c̃Ri (x)

]
(7.35)

we write the following normal subproblem

min
v,δ

δ

s.t. −δ ≤ c̃RE,k(xk + v) ≤ δ

c̃RI,k(xk + v) ≤ δ

δ ≥ 0
xL ≤ xk + v ≤ xU
‖v‖∞ ≤ ∆c

(7.36)

In order to ensure a non-zero tangential step, we choose ∆c = 0.6∆k. Once the optimum

infeasibility level δ is obtained, it is fixed to δ̄ and we solve the following tangential subproblem

min
s

f̃Rk (xk + s)

s.t. −δ̄ ≤ c̃RE,k(xk + s) ≤ δ̄

c̃RI,k(xk + s) ≤ δ̄

xL ≤ xk + s ≤ xU
‖s‖∞ ≤ ∆k

(7.37)

These subproblems are similar to the ones proposed by Alexandrov et al. [10] in their

MAESTRO-AMMO algorithm. However, unlike our case, MAESTRO-AMMO takes the nor-

mal step vk and solves the tangential subproblem at xk + vk to obtain a tangential step pk

which reduced objective in the null space of the constraints. Hence, their overall step is a
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composite step defined as sk = vk + pk.

Unlike MAESTRO-AMMO, we do not take the normal step vk and compute the overall

step sk in the tangential subproblem in order to eschew computational expense involved in

constructing corrections (ZOC or FOC) for the objective and the constraints at xk+ vk. If the

normal step is taken, corrections will have to constructed once for the normal subproblem at

xk and again for the tangential subproblem at xk+vk. This involves evaluating the values and

derivatives of the objective and the constraints of the original problem twice. To circumvent

this, we construct ZOC or FOC only once at xk and solve both subproblems with xk as the

center of the trust-region.

We note that although Fletcher et al. [72] allow obtaining approximate solutions for nor-

mal and tangential problem, we solve both problems using IPOPT and compute exact local

solutions in this work.

7.5.4 Switching Condition

Relying solely on the condition (7.34) can produce a situation when the sequence of iterates

{xk} always provide sufficient reduction of the constraint violation alone, and not the objective

function. This could result in convergence to a feasible but non-optimal point. In order to

prevent this, we check the following switching condition during optimization

f̃Rk (xk)− f̃Rk (xk + sk) ≥ κθθ
ψ
k (7.38)

where f̃Rk (x) is the ROM-based objective function of the tangential subproblem, and θk
def
=

θ(xk) is the current actual constraint violation, different from θ̃Rk in (7.35), and is defined as

θ(x) = max

[
0,max

i∈E
|ci(x)|,max

i∈I
ci(x)

]
(7.39)

Note that θk is used for the filter margin (7.34) instead of θ̃Rk defined in (7.35). Current iterate

xk is added to the filter if condition (7.38) fails. The role of this switching condition can be

interpreted as follows. If it fails, then the current constraint violation θk is significant and we

aim to improve on this in the future by inserting xk into the filter. On the other hand, if it

Chapter 7. Trust-region Framework for ROM-based Optimization 167



7.5 Hybrid Filter Trust-region Algorithm

holds, then the reduction in the objective function predicted by ROM is more significant than

the current θk, and the algorithm should promote descent in the objective. In this case, it is

important that a sufficient decrease is also realized in the objective function of the original

optimization problem. In other words,

ρk =
aredk
predk

=
f(xk)− f(xk + sk)

f̃Rk (xk)− f̃Rk (xk + sk)
≥ η1 (7.40)

should hold together with condition (7.38). In the parlance of filter methods, a step generated

in such a case is called an “f-type step”. With an f-type step, xk is not added to the filter.

If an iterate xk is feasible (θk = 0), equation (7.38) becomes f̃Rk (xk) − f̃Rk (xk + sk) ≥ 0.

Consequently, the filter mechanism is irrelevant if all iterates are feasible, and the algorithm

reduces to a classical unconstrained trust-region method. Moreover, condition (7.38) ensures

that no feasible iterate is ever included in the filter. This is vital to avoid convergence to

a feasible but suboptimal point, and crucial in allowing finite termination of the feasibility

restoration phase dicussed further in section 7.5.7.

7.5.5 Algorithm Section I: Filter with ZOC

As mentioned before, our interest here is to develop a hybrid filter algorithm which utilizes

benefits of both ZOC and FOC. Since ZOC is cheap to construct and can predict descent

in objective or infeasibility even without accurate gradients, the algorithm begins in Section

I with normal subproblem (7.36) and tangential subproblem (7.37) defined with ZOC, and

proceeds until no further improvement in the objective or the infeasibility measure is obtained.

After this, the algorithm moves to Section II where subproblems are constructed with FOC

(discussed in the next section).

In Section I, instead of haphazardly solving normal and tangential subproblems, we verify

if the ROM-based objective function and constraints constructed with ZOC can indeed provide

a descent in either objective or infeasibility or both. Normal and tangential subproblems are

solved only if we can guarantee descent. Since we have no information about accurate gradients
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in this section, we rely on the gradients of the objective and the constraints obtained from the

reduced-order model to promote such descent. Formally, we evaluate Cauchy steps (steepest

descent direction) for both objective function and infeasibility as below

sCf =
αf∇f̃Rk
‖∇f̃Rk ‖

τf =


0 if sCf = 0

f̃Rk (xk)− f̃Rk (xk + sCf )

αf‖∇f̃Rk ‖
otherwise

(7.41)

sCθ =
αθ∇θ̃Rk
‖∇θ̃Rk ‖

τθ =


0 if sCθ = 0

θ̃Rk (xk)− θ̃Rk (xk + sCθ )

αθ‖∇θ̃Rk ‖
otherwise

(7.42)

for some αf , αθ ∈ (0, 1). Here f̃Rk is constructed with ZOC in equation (7.8), and θ̃Rk is given

by equation (7.35) with c̃RE (x), and c̃
R
I (x) given by equation (7.8). We note that since f̃Rk and

θ̃Rk are based on the ROM for kth iteration, their gradients, and thus sCf and sCθ can be cheaply

evaluated for each trust-region iteration. Hence, with a little computational expense, we can

determine if the reduced-order model can predict descent for f̃Rk or θ̃Rk or both. If τf > 0 or

τθ > 0, it can guarantee descent for the reduced objective function f̃Rk or reduced infeasibility

θ̃Rk , respectively. Therefore, the normal subproblem with ZOC is solved only if τθ > 0, and

similarly, the tangential subproblem with ZOC is solved only when τf > 0. If both cannot be

ensured, algorithm moves to Section II where FOC with exact gradients is used.

In Section I, we also incorporate POD subspace augmentation which involves adding more

POD basis functions to improve accuracy of the existing ROM for the kth iteration, and thus

enhancing its ability to accurately predict the descent direction for f̃Rk or θ̃Rk or both. To

construct a reduced-order model, we choose the number of basis functions M by deciding on

an error tolerance level λ∗. During the course of the algorithm, if we encounter a situation

when both τf ≤ 0 and τθ ≤ 0, tolerance level λ∗ is reduced to increase the POD subspace

dimension M and more basis functions are added to the ROM. This is repeated until either

one of the τf or τθ or both become positive, or we hit the maximum allowable limit for POD

subspace dimension Mmax. Once we reach Mmax, algorithm switches to Section II.
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Since Section II involves expensive gradient computation, we desire to achieve larger re-

duction in the objective and infeasibility in Section I itself and delay switching to Section II.

POD subspace augmentation not only allows such a delay, but also improves the performance

of normal and tangential subproblems with ZOC by producing more accurate ROM. Note that

if Mmax is same as the number of spatial discretization nodes Nx, ROM is essentially as accu-

rate as the original DAE system and Section I itself can be used to attain convergence to an

optimum. However, we avoid choosing Mmax as high as Nx as we lose all the computational

advantage offered by ROMs. Usually an Mmax is chosen which is reasonably high compared

to current M but considerably low compared to Nx. In this sense, it is beneficial to resort to

Section II with FOC and accurate gradients instead of utilizing more expensive ROMs.

Finally, we note that unless Mmax = Nx, we cannot guarantee convergence to an optimal

point within Section I itself. Therefore, our filter algorithm never terminates in Section I and

at least one iteration of Section II is always executed.

7.5.6 Algorithm Section II: Filter with FOC

In Section II of our hybrid filter algorithm, normal subproblem (7.36) and tangential subprob-

lem (7.37) are constructed with First-order Corrections for the objective and the constraints.

This involves computing exact gradients for each trust-region iteration. Because FOC and

the exact gradients can ensure proper descent direction, we do not calculate Cauchy steps for

the objective and infeasibility as done in Section I. Moreover, we do not utilize POD basis

augmentation strategy for this section as the ROMs, even with few basis functions M , can

generate accurate steps with accurate original gradients. As a result, we can work with smaller

ROMs which leads to computationally cheaper trust-region iterations compared to Section I.

We note that once the algorithm proceeds from Section I to Section II, it never resorts back

to Section I in the future course of optimization.

Section II is essentially the SQP-filter algorithm proposed by Fletcher et al. [72]. The

difference lies in the fact that Fletcher et al. use a quadratic model approximation for their
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trust-region (tangential) subproblems, while we use a POD-based ROM as a surrogate model.

However, we ensure all the assumptions made by Fletcher et al. are satisfied, which renders

our algorithm similar to the SQP-filter algorithm from convergence theory point of view (see

further details in section 7.5.9).

7.5.7 Feasibility Restoration Phase

The algorithm switches to a feasibility restoration phase when it is not able to obtain an

“admissible” step size. The step is not admissible:

• when the next iterate xk + sk obtained after solving the normal and the tangential

subproblem is not acceptable for the filter and xk, or

• when xk + sk is acceptable for the filter and xk, and satisfies the switching condition

(7.38) as well, but fails to provide sufficient reduction in the original objective function

f(x), and generates ρk < η1.

Restoration phase is invoked when either the current trust-region radius ∆k goes below ∆min,

when the current infeasibility level θ̃Rk goes beyond a maximum limit θmax, or when in Section

I, τf ≤ 0 together with τθ > 0, i.e., when ROM-based subproblems with ZOC can only decrease

infeasibility but not the objective function.

The purpose of the restoration phase is to decrease the current constraint violation and

generate a new iterate xk+sk which is acceptable for the current filter and xk. In our algorithm,

restoration phase involves solving the normal subproblem using the basic trust-region algorithm

[54] until such an iterate is obtained. Consequently, restoration phase can follow its own trust-

region update rules separate from the ones used in the filter trust-region algorithm. In the

terminology of filter methods, such an infeasibility reducing step is known as “θ-type step” or

“h-type step”. We define distinct restoration phases for Section I and Section II. Restoration

phase in Section I solves the normal subproblem with ZOC, while that in Section II solves it

with FOC. Moreover, restoration phase in Section I also involves POD subspace augmentation
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and evaluation of the Cauchy step τθ to determine if a descent direction exists for infeasibility

with current ROM incorporating Mk basis functions for the current iterate k.

We note that the iterates generated during the restoration phase are never added to the

filter as it can also lead to the addition of a feasible point to the filter which is detrimental for

the algorithm. But we also note that whenever restoration phase is invoked at an iterate xk, it is

augmented to the filter to avoid a visit to this point again in the future. Since a feasible iterate

is never included in the filter, feasibility restoration phase always either generates a successful

iterate, or converges to a local minimizer with some measure of infeasibility, indicating that

the original optimization problem might be infeasible.

7.5.8 Trust-region Algorithm

Algorithm II: Hybrid filter trust-region algorithm

Choose 0 < η1 ≤ η2 < 1 ≤ η3, 0 < γ1 ≤ γ2 < 1 < γ3, γf , γθ ∈ (0, 1), κθ ∈ (0, 1), β ∈ (0, 1),

ψ > 1/(1 + β), αf , αθ ∈ (0, 1), an initial trust-region radius ∆0, minimum radius ∆min, and

an initial iterate x0. Set k = 0.

Section I: Filter with ZOC

1. ROM construction: Compute POD basis functions using the snapshots obtained at xk.

Choose λ∗, obtain corresponding Mk and construct a reduced-order model.

2. Cauchy step computation

(a) Compute sCf , s
C
θ , τf , and τθ.

(b) If τf > 0, go to Step 3.

(c) If τθ > 0, add xk to the filter and go to the restoration phase in Step 4.

(d) If Mk < Mmax, decrease λ∗ to update Mk and ROM, and repeat Step 2, else, go to

Step R.

3. Step computation
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(a) Solve normal subproblem (7.36) and tangential subproblem (7.37) with ZOC.

(b) If θk ≥ θmax, or if ∆k ≤ ∆min, add xk to the filter and go to the restoration phase

in Step 4.

(c) If xk + sk is not acceptable for the filter and xk, i.e., (7.34) fails, set xk+1 = xk and

∆k+1 = γ1∆k. Increment k by 1 and repeat Step 3.

(d) Compute ρk from (7.40).

(e) If predk < 0 and aredk > 0, go to 3(g).

(f) If (7.38) holds and ρk < η1, set xk+1 = xk and ∆k+1 = γ1∆k. Increment k by 1 and

repeat Step 3.

(g) If (7.38) fails, add xk to the filter.

(h) Set xk+1 = xk + sk. If (7.38) fails, ∆k+1 = ∆k, else

∆k+1 =


γ2∆k if ρk ∈ [η1, η2),

∆k if ρk ∈ [η2, η3),

γ3∆k if ρk ≥ η3

Increment k by 1 and go to Step 1.

4. Restoration with ZOC

(a) With Mk, solve normal subproblem (7.36) with ZOC using a basic trust-region

algorithm until a point acceptable for the filter and xk is found. If found, increment

k by 1 and go to Step 1, else continue.

(b) If Mk ≥Mmax, go to Step R.

(c) Decrease λ∗ to update Mk and ROM. Compute τθ.

i. If τθ > 0, repeat Step 4.

ii. If Mk ≥Mmax, go to Step R, else repeat 4(c).

Section II: Filter with FOC
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R. Reinitialize ∆k, λ
∗ and corresponding Mk. Construct ROM with updated Mk and go to

Step 6.

5. ROM construction: Compute POD basis functions using the snapshots obtained at xk.

Choose λ∗, obtain corresponding Mk and construct a reduced-order model.

6. Step computation

(a) Solve normal subproblem (7.36) and tangential subproblem (7.37) with FOC.

(b) If θk = 0, vk = 0, and pk = 0, or θk = 0 and ∆k ≤ ∆min, STOP.

(c) If θk ≥ θmax, or if ∆k ≤ ∆min, add xk to the filter and go to the restoration phase

in Step 7.

(d) If xk + sk is not acceptable for the filter and xk, i.e., (7.34) fails, set xk+1 = xk and

∆k+1 = γ1∆k. Increment k by 1 and repeat Step 6.

(e) Compute ρk from (7.40).

(f) If (7.38) holds and ρk < η1, set xk+1 = xk and ∆k+1 = γ1∆k. Increment k by 1 and

repeat Step 6.

(g) If (7.38) fails, add xk to the filter.

(h) Set xk+1 = xk + sk. If (7.38) fails, ∆k+1 = ∆k, else update ∆k+1 as in 3(h).

Increment k by 1 and go to Step 5.

7. Restoration with FOC: Solve normal subproblem (7.36) with FOC using a basic trust-

region algorithm until a point acceptable for the filter and xk is found. If found, increment

k by 1 and go to Step 5, else STOP at an infeasible point.

Clearly, algorithm begins in Section I and always terminates in Section II. The choice of the

constants in the algorithm depends on the optimization problem and the scaling mechanism

used for the decision variables. In this work, we choose the following values:

η1 = 0.05, η2 = 0.5, η3 = 1, γ1 = 0.25, γ2 = 0.5, γ3 = 1.5,

γf = γθ = 0.01, κθ = 0.01, ψ = 0.09, αf = αθ = 0.02
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As in the case of exact penalty trust-region algorithm, we choose a small value for η1 to allow

taking a step even if the reduction in f(x) is quite small. Since computation of f(xk + sk) in

ρk involves evaluation of new snapshots from the original DAEs, which can be used to update

ROM at xk+sk, it is always beneficial to move to xk+sk and expect the new ROM to predict a

better descent step. Also, as in the penalty trust-region case, we choose η2 = 0.5 and η3 = 1 to

maintain the trust-region for longer duration because of the oscillatory behavior of the ROM

for large trust-regions.

One peculiar feature of the algorithm is step 3(e) in Section I. Even though predk < 0, this

step allows us to move from xk to xk + sk because of the aredk being positive. Such a sce-

nario is possible especially with ROM-based trust-region subproblems without exact gradient

information. In particular, we encounter this situation when the normal and the tangential sub-

problems focus more on reducing infeasibility, leading to an increase in the objective function

f̃Rk which causes predk to become negative. However, such an iterate can actually decrease

both infeasibility and objective for the original optimization problem, leading to a positive

aredk. Inaccurate gradients in the ROM-based tangential subproblem with ZOC entails predk

to become negative. Consequently, ρk becomes negative (< η1). If we move from 3(e) to 3(f),

a step will be denied which is undesirable as aredk > 0. Hence, we jump from 3(e) to 3(g).

Note that a counterpart of 3(e) is missing in Section II since such a scenario cannot occur as

a consequence of the availability of exact gradient information in this section.

Another important feature of the algorithm is that in both sections, trust-region radius

is updated only when (7.38) holds. If (7.38) fails, the main effect of the current iteration is

not to reduce objective (which makes ρk essentially irrelevant), but rather to reduce constraint

violation (which is taken care of by inserting xk to the filter in steps 3(g) and 6(g)). In this case,

we impose no further restriction on ∆k+1 and keep it same as ∆k because reducing ∆k+1 might

cause steps towards infeasibility that are too small, or an unnecessary call for the restoration

phase. If, on the other hand, (7.38) holds, iteration’s emphasis is on reducing the objective

and ∆k+1 is updated in the conventional way.
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Finally, the performance of the algorithm depends significantly on the quality of the

reduced-order model constructed. Highly accurate ROMs with sufficiently accurate gradients

can quickly approach close to the optimum within Section I itself. On the other hand, ROMs

which poorly predict the actual dynamic behavior and portray inaccurate gradients can end up

landing in Section II quite early during optimization, making the whole process computation-

ally demanding. Moreover, size of the trust-region and as a result, total number of iterations

also rely significantly on ROM accuracy. POD-based ROMs can be made more accurate by

adding more basis functions. However, it can also lead to ill-conditioned ROMs due to addition

of those basis functions which do not affect the dynamics much. Hence, ROM-construction is

the most important part of this algorithm.

7.5.9 Convergence and Optimality

Section II of the Algorithm II is essentially the SQP-filter algorithm proposed by Fletcher et

al. [72]. Therefore, if we make the following assumptions

(AD) The sequence of iterates {xk} produced by Algorithm II lies within a closed, bounded

domain Ω.

(AR) If {xki} is any subsequence of iterates for which limi→∞ θki = 0, then a normal step vki

exists for i sufficiently large, and ‖vki‖ ≤ κvθki for some κv > 0.

the following convergence property holds.

Theorem 7.5.1. (See Theorem 15.5.13 in [54]) Suppose that (AF1)–(AF3), (A1)–(A4),

(AD), and (AR) hold and the fraction of Cauchy decrease (FCD) condition

f̃Rk (xk + vk)− f̃Rk (xk + sk) ≥ κfχkmin

[
χk
βk
,∆k

]
(7.43)

is satisfied for some κf > 0, and a bounded sequence of βk > 1. Then either the restoration

procedure terminates unsuccessfully by converging to an infeasible first-order critical point of

the normal subproblem (7.36), or there is a subsequence {kj} for which
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lim
j→∞

xkj = x∗ (7.44)

and x∗ is a first-order critical point for problem (7.1).

As discussed before in the case of Algorithm I, assumptions (AF1)–(AF3), (A1), and (A4)

are assumed to be true in this work. Moreover, with the First-order Correction (FOC), we

ensure that assumptions (A2) and (A3) are satisfied. Also, since xL ≤ x ≤ xU , (AD) is

also guaranteed. Assumption (AR) requires existence of a normal step especially when the

current constraint violation θki
def
= θ(xki), defined by (7.39), is sufficiently small. For Algorithm

II, (AR) is satisfied by the construction of the normal subproblem (7.36) and by assuming

that the gradients of the constraints are linearly independent. Since it is solved using a basic

trust-region algorithm with exact gradients due to FOC, existence of a nonnegative step vk

together with a fraction of Cauchy decrease can always be ensured unless θki = 0.

For FCD condition, χk is a first-order criticality measure. Based on the tangential problem

(7.37), we define χk
def
= χ(xk) in the following manner

χk = |min
d

∇f̃Rk (xk)
Td|

s.t. −δ̄ ≤ c̃Ri,k(xk) +∇c̃Ri,k(xk)Td ≤ δ̄ i ∈ {E}

c̃Ri,k(xk) +∇c̃Ri,k(xk)Td ≤ δ̄ i ∈ {I}

‖d‖ ≤ 1

(7.45)

where δ̄ is the optimum infeasibility level obtained from the following normal subproblem.

min
q,δ

δ

s.t. −δ ≤ c̃Ri,k(xk) +∇c̃Ri,k(xk)T q ≤ δ i ∈ {E}

c̃Ri,k(xk) +∇c̃Ri,k(xk)T q ≤ δ i ∈ {I}

‖q‖ ≤ 1− ϑ, δ ≥ 0

(7.46)

Here ϑ > 0 ensures (7.45) remains feasible. We note that χk can be defined in terms of f̃Rk (xk),

c̃RE,k(xk), and c̃
R
I,k(xk), and their gradients since they match the original objective function and

constraints, and their gradients at xk because of the FOC. In order to use χk in (7.45) for the

FCD condition, we need to show that it is a first-order criticality measure. Since the constraint

set of (7.45) is linear, and thus convex, the following theorem ensures that χk is a first-order
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criticality measure.

Theorem 7.5.2. (See Theorem 12.1.6 in [54]) Suppose that (AF1), (A2), and (A3) hold

and xk belongs to a nonempty, closed and convex feasible region. Then χ(xk) defined by (7.45)

is a first-order criticality measure, in the sense that it is a nonnegative, continuous function of

xk, and limk→∞ χk = 0 if and only if xk → x∗.

In other words, we can always compute a Cauchy descent direction if χ(xk) > 0, and χ(xk)

vanishes only when xk is a first-order critical point. Therefore, as the trust-region gets smaller,

the linear part of the objective and the constraints dominate and thus, a Cauchy step can

always be taken to ensure FCD condition (7.43) is satisfied. Also, because of FOC in the

Section II of Algorithm II, the Cauchy step of the tangential problem (7.37) coincides with

that of problem (7.37) with the original objective and constraints. Hence, Section II satifies

Theorem 7.5.1, and thus converges to the first-order critical point if the restoration procedure

terminates successfully. Moreover, Algorithm II never terminates in Section I and always

reaches Section II. Hence, Algorithm II is globally convergent and always converges to the

exact local optimum of the original optimization problem. In order to verify optimality of the

termination point of Algorithm II, we conduct a perturbation analysis as done with the exact

penalty trust-region algorithm.

7.6 PSA Case Study Revisited

We demonstrate Algorithm II for the 2-bed 4-step PSA case study for post combustion CO2

capture, and utilize it to solve the optimization problem (7.31) with same five decision variables.

The algorithm begins at the same initial guess as shown in Table 7.5. At this initial guess, ROM

is constructed with a threshold error tolerance λ∗ of 0.05, similar to the exact penalty function

case study, which yields M = 2, 4, 1, and 3 for pressurization, adsorption, depressurization,

and desorption steps, respectively. For Section II, gradients are evaluated using perturbation.

Table B.3 in Appendix B lists the trust-region iterations for the tangential subproblem,
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Table 7.11: Optimization results with hybrid filter trust-region algorithm

Problem size and computational time
No. of variables 52247
Total trust-region iterations 51
Optimization CPU time 1.36 hrs.

Optimal parameters
Adsorption pressure (Ph) 300 kPa
Desorption pressure (Pl) 40 kPa
Pressurization step time (tp) 35 sec
Adsorption step time (ta) 187.91 sec
Adsorption feed flow (ua) 12.77 cm/s

Comparison of performance variables

ROM (AMPL) Rigorous model (MATLAB)

N2 purity 99.99% 99.99%
N2 recovery 83.16% 82.97%
CO2 purity 50.29% 50.01%
CO2 recovery 98.43% 97.26%

while Table B.4 lists those for the normal subproblem. Table B.3 shows decision variables at

xk+ pk = xk+ sk, while Table B.4 shows decisions at xk+ vk corresponding to the iteration k.

However, CO2 purity and recovery is listed at xk + sk for both tables, since it is observed that

for all k, CO2 purity at xk + sk remains same as that at xk + vk. The algorithm begins with

the restoration phase of Section I since the inaccurate gradients of ROM yield negative τf .

Restoration phase is invoked for every iteration until k = 3, after which feasibility is attained

and CO2 purity goes beyond 50%. After k = 3, since τθ = 0, and ROM yield a τf < 0,

POD basis augmentation is used. When λ∗ is reduced up to 0.1%, we obtain τf > 0 and

thus, proceed for step computation in Section I for 5th iterate (k = 4). Algorithm continues

in Section I after this and improves objective until 35th iterate (k = 34). At k = 34, ROM

is not able to predict a descent in the objective function even after increasing POD subspace

dimension. Hence, algorithm switches to Section II. Eventually, the algorithm terminates after

51st iteration when ∆50 shrinks from 0.031 to 0.008 and goes below ∆min of 0.02. One of

the key observations in Table B.3 is the value of tp, which increases steadily in Section I

but starts decreasing and hits its lower bound after k = 34, when the algorithm switches to

Chapter 7. Trust-region Framework for ROM-based Optimization 179



7.6 PSA Case Study Revisited

Section II. This implies that
∂f̃Rk
∂tp

has an opposite sign in Section I during optimization which

gets corrected in Section II. Moreover, since Ph hit its upper bound and Section I terminates

during same iteration (k = 34), we conclude that CO2 recovery improves in Section I even

with incorrect
∂f̃Rk
∂tp

due to the increment obtained in Ph. Another key observation is the 31st

iteration (k = 30) when we take a step despite ρk being negative. This is a consequence of the

step 3(e) in the algorithm. In this iteration, although predk < 0, we observe aredk > 0.

As highlighted before, once feasibility is attained in the exact penalty trust-region algo-

rithm, we are not allowed a move which increases infeasibility. This eventually causes Algorithm

I to pursue tiny steps towards optimum. In contrast, Algorithm II allows such a step which can

increase infeasiblity when it tries to improve objective function value. For instance, in Table

B.4, we notice iterations k=28, or 30, or iterations after k = 33, when algorithm sacrifices

feasibility in order to achieve greater improvement in CO2 recovery. Hence, Algorithm II takes

fewer iterations to optimum than Algorithm I.

Table 7.11 lists the optimal values of the decision variables together with the optimization

CPU time. With 52,247 algebraic variables, Algorithm II terminated within a reasonable CPU

time of 1.36 hrs. As observed in the case of exact penalty trust-region algorithm with FOC,

Ph, Pl, and tp are at their bounds at the optimum. However, the local optimum obtained in

this case is slighly different from the one obtained in section 7.4.3.3 in the sense that the values

of ta and ua are marginally different. As a consequence, optimal CO2 recovery obtained in this

case is marginally better than the one obtained in section 7.4.3.3. We also report the purities

and recoveries of nitrogen and CO2 obtained from AMPL after final optimization iteration,

and from the rigorous model MATLAB simulation at the optimum. The values are fairly close

with no appreciable difference.

Table 7.12 lists the results for the pertubation analysis performed in order to validate if the

algorithm terminated at an optimal point. A positive perturbation for Ph at its upper bound

and a negative perturbation for tp at its lower bound improves both CO2 purity and recovery,

while a negative perturbation for Pl at its lower bound improves recovery but deteriorates CO2
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Table 7.12: Perturbation results for Algorithm II

Optimal value Perturbed value CO2 purity∗ CO2 recovery∗

Ph (kPa)† 300 303 50.13% 97.31%
Pl (kPa)

† 40 39 49.82% 97.63%
tp (sec)† 35 33 50.03% 97.34%
ta (sec) 187.91 190.91 50.49% 96.77%
ta (sec) 187.91 184.91 49.51% 97.57%
ua (cm/s) 12.77 13.77 52.53% 94.94%
ua (cm/s) 12.77 11.77 47.61% 98.48%

∗Optimal CO2 recovery: 97.26%, CO2 purity: 50.01%, †at bound

purity. Moreover, perturbing ta and ua in both directions either improves CO2 recovery while

diminishing its purity, or vice-versa. Therefore, we can safely conclude that the algorithm

converged to a local optimum.

Finally, in Figure 7.6, we also present a comparison between the gas-phase CO2 mole frac-

tion profiles at the optimum, obtained from the final valid tangential subproblem iteration, and

from the rigorous model simulation in MATLAB. Profiles are nearly identical which confirms

that ROM is predicting physically correct dynamic behavior of the system during optimization.

7.7 Conclusions

Trust-region based methodology provides an excellent adaptive framework to systematically

utilize reduced-order models for optimization since it not only restricts the validity zone of the

reduced-order model, but also provides a robust and globally convergent algorithm. Therefore,

we develop trust-region based algorithms and explore both exact penalty-based and filter-based

approaches to handle general equality and inequality constraints in the original optimization

problem.

First, exact penalty trust-region algorithm is demonstrated for a 2-bed 4-step isothermal

PSA process. We illustrate that executing the algorithm with only Zero-order Correction

cannot ensure convergence to the local optimum of the original optimization problem, and

thus conclude that FOC with exact gradient information is necessary for convergence. With

Chapter 7. Trust-region Framework for ROM-based Optimization 181



7.7 Conclusions

(a) Rigorous model simulation in MATLAB

(b) ROM optimization in AMPL

Figure 7.6: Comparison of CO2 mole fraction for hybrid filter TR algorithm
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FOC, exact penalty algorithm converges to a local optimum after 92 trust-region iterations and

1.88 hrs of optimization CPU time. Although not so encouraging, these results and success

with this case study enables us to conclude that we can indeed perform optimization using

reduced-order models with the help of a systematic trust-region based adaptive strategy.

We find that the reason for this high iteration count is early attainment of feasibility which

further doesn’t allow infeasible moves and thus, tightens the step size. One reason for this

might be the choice of high penalty for constraint violation (µ = 1000). This reflects one of the

main issues with penalty functions, i.e., to find a reasonable value for µ. An updating scheme

can be developed which penalizes constraint violation based on its magnitude; however, it may

not be straight-forward. Instead, we develop a filter-based trust-region framework since it not

only avoids such difficult decisions of choosing µ, but also allows steps which can achieve greater

reduction in the objective by increasing infeasibility in a controlled manner. When applied to

the PSA case study, filter trust-region algorithm converges to a local optimum within 51 trust-

region iterations consuming 1.36 hrs of CPU time., which is significantly less compared to the

penalty algorithm.

Since trust-region subproblems with ZOC can also generate descent due to accurate ROMs,

we follow a hybrid strategy for filter-based algorithm. Moreover, we also incorporate POD basis

augmentation in Section I to improve ROM’s accuracy. For the PSA case study, we observe

that 35 iterations out of the total 51 are indeed carried out in Section I of the algorithm, which

is quite encouraging as it delays expensive gradient evaluations for FOC. Thus, we infer that a

hybrid strategy and POD subspace augmentation are potentially useful tools for optimization

with ROMs.

Finally, success of the idea of using ROMs for computationally efficient optimization ulti-

mately depends on the quality of the ROM and its ability to accurately predict the descent

direction. Although we obtain promising results in this chapter, iteration count for both

penalty and filter approaches can further be reduced by improving the quality of ROMs. In

future, alternative methodologies can be explored to construct better and more efficient ROMs.
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Chapter 8

Conclusions

Synopsis

With growing demands for efficient PSA cycles, and increasing needs for computationally

cheap modeling techniques, especially for flowsheet simulation and optimization, it has become

essential to develop novel systematic optimization-based strategies for design and operation of

PSA systems. In this dissertation, we not only introduce a novel idea of synthesizing PSA

cycles using a superstructure, but also successfully demonstrate it for practical applications.

Moreover, we address the challenging nature of PSA optimization problems by developing

a new optimization framework using reduced-order modeling, which when applied to PSA

optimization problems yields promising results. All these developments and our contributions

are summarized in the next section, followed by directions for future work.
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8.1 Thesis Summary and Contributions

This dissertation primarily focuses on introducing and developing two new ideas to address

research challenges presented by PSA processes in terms of cycle synthesis and computational

complexity of the PDAEs governing its dynamics, and presents a successful proof of principle

analysis for both ideas. Beginning with an overview of the PSA processes and adsorption

fundamentals in the first two chapters, we describe that a practical PSA/VPSA process can

be fairly complex with a multicolumn design executing a wide variety of non-steady-state op-

erating steps in a non-trivial sequence, and motivate the need for a systematic methodology

to synthesize PSA cycles. Therefore, we first explore the idea of development of a unique PSA

superstructure to design optimal PSA processes. Secondly, we show that PSA processes are

governed by highly nonlinear PDAEs with solution profiles characterized by steep adsorption

fronts. As a result, PSA optimization problems present a significant computational challenge

to current optimization techniques. Consequently, we explore the idea of using POD to gener-

ate computationally-efficient ROMs and actualize novel trust-region algorithms to solve PSA

optimization problems using these ROMs. We provide a summary of the work done and discuss

our contributions separately in the subsequent sections.

PSA Superstructure

In Chapter 3, we present a new and original PSA superstructure to simultaneously determine

new cycle configurations and design parameters. Interconnections between the two beds of

the superstructure are governed by time-dependent control variables, which are manipulated

to accomplish a wide variety of different PSA operating steps. An optimal cycle is eventually

obtained by solving an optimal control problem for the superstructure. To solve it, we adopt a

complete discretization approach, and alleviate its singular nature by using coarse discretization

for controls.

The superstructure approach is illustrated for a post-combustion CO2 capture case study.

Superstructure is optimized to maximize CO2 recovery. With the optimal 2-bed 6-step VSA
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cycle, we are able to recover about 80% of CO2 at a substantially high purity of 95%, and at a

significantly high feed flux of 80 kgmol m−2 hr−1. Next, we develop an optimal configuration

which yields high-purity separation with minimal power requirements. Optimal profiles trans-

late in a 2-bed 8-step VSA configuration which, at 90% purity and 85% recovery, extracts CO2

with a substantially low power consumption of 465 kWh/tonne CO2 captured. We also apply

the superstructure methodology for pre-combustion CO2 capture in Chapter 5. When CO2

recovery is maximized, superstructure optimization results in a 2-bed 8-step VSA cycle which

can produce both H2 and CO2 at a substantially high purity of 98% and 90%, respectively.

Changing the objective to minimizing power consumption yields an entirely different 2-bed

10-step VSA cycle which can produce CO2 at a purity of 90% and a recovery of 92% with a

significantly low power consumption of 46.82 kWh/tonne CO2 captured. Our contributions

for this part of the dissertation are as below:

• First systematic methodology for cycle design

All the studies in the literature so far only suggest simplistic formulations to determine

minimum number of beds required in a PSA process with a given fixed sequence of

operating steps. To the best of our knowledge, this is the first instance when a system-

atic methodology is proposed to design, evaluate and optimize PSA processes, and the

first instance when a PSA superstructure is succesfully developed and demonstrated to

determine an optimal sequence of operating steps for a given number of beds.

• PSA as a potential technology for CO2 capture

By developing cycles that can extract CO2 at a purity of over 95% for post-combustion

capture, and with a power consumption as low as 46.82 kWh/tonne CO2 captured for pre-

combustion capture, we successfully project PSA as a promising and viable technology

for both post-combustion and pre-combustion carbon capture. We not only synthesize

cycles which are practically feasible, but also suggest operating steps which should be in-

corporated in a PSA process for high-purity CO2 capture. More importantly, we discover

novel operating steps such as the total reflux step which have never been seen before in
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the PSA literature.

• Generic framework

The key accomplishment is that the proposed superstructure framework is quite generic

and can be extended to many other PSA applications. We do not make any assumption

on the adsorbent or the feedstock, the kinds of operating steps that can be predicted, or

details of the bed model. Moreover, we do not impose any upper bound on the number of

operating steps eventually included in the optimal PSA cycle. This makes the approach

fairly general. Also, besides developing optimal cycles, the framework can be used to

evaluate different kinds of adsorbents for the same feedstock and process conditions.

ROM-based Optimization

In Chapter 6, with the help of the method of snapshots and Galerkin projection, we utilize

proper orthogonal decomposition (POD) to successfully construct ROMs which are orders of

magnitude smaller than the original problem and also, significantly accurate. Methodology to

construct ROMs is illustrated for a Skarstrom PSA process to separate H2 and CH4. With

a model reduction of 93% in size, the resulting ROM accurately mimics the actual dynamic

behavior. ROM is also used to maximize hydrogen recovery within a trust-region around the

point where it is constructed. ROM-based optimization is not only fast and cheap, but an

accurate prediction of the descent direction together with an improvement in the objective is

also obtained by ROM.

With such encouraging results, we devise a systematic adaptive trust-region based frame-

work for optimization with ROMs. First, an exact penalty-based trust-region algorithm is

developed and illustrated for a two-bed four-step PSA process for post-combustion capture.

We conclude that a First-order Correction with exact gradient information is necessary for

convergence to an optimum. For a CO2 recovery maximization problem, the exact penalty

algorithm with FOC converges to a local optimum after 92 TR iterations and 1.88 hrs of

optimization CPU time. To circumvent the difficulty of choosing a penalty parameter, we
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also devise a filter-based trust-region framework. This hybrid framework utilizes both ZOC

and FOC to save on the computational effort of computing exact gradients. When applied to

the PSA case study, filter TR algorithm converges to a local optimum within 51 trust-region

iterations consuming 1.36 hrs of CPU time, which is significantly smaller than the penalty

algorithm. Our major contributions for this part of the thesis are given below:

• First use of POD-based ROMs for large-scale application

Although POD-based reduced order modeling technique has been used for a variety of

disciplines, its utilization has remained limited to small-scale optimal control or dynamic

optimization problems. This is the first instance when the use of POD-based ROM

is successfully demonstrated for a large-scale challenging application, which contains

multiple sets of PDAEs, state variables, and boundary conditions. Moreover, this is the

first instance when POD-based ROMs are used for adsorption systems.

• Unique model reduction technique for PSA

Although studies in the literature have attempted model simplification for PSA processes,

this is the first successful study which reports the use of a POD-based technique to de-

velop low-order approximations for PSA models. Also, we present a unique construction

technique for ROMs for PSA which is different from other dynamic processes in the sense

that we develop separate ROMs for each state variable and each operating step.

• Trust-region algorithms for ROM-based constrained optimization

Trust-region algorithms have been developed to handle approximate models for uncon-

strained optimization. In this work, we extend the use of approximate models to con-

strained optimization problems. In particular, our accomplishments are novel trust-

region frameworks based on the exact penalty and filter approaches, and their successful

demonstration on a challenging PSA process. More importantly, these frameworks are

quite generic, do not make any assumption on the optimization problem, and can be

extended for a wide variety of applications.
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8.2 Directions for Future Work

Development of the proposed ideas in this dissertation together with the fruitful analysis of the

case studies have also helped us identify many potential areas for improvement and a number

of outstanding issues that need to be investigated. Some recommendations for future work in

both areas are as follows.

PSA Superstructure

• The superstructure can be updated by incorporating flow valves for the inlet and exit

streams of CoB and CnB. To realize operating steps, valve constants can be manipulated

instead of pressures at the ends of CoB and CnB, which is more practical, and can

lead to more stable and nonoscillatory solutions compared to the current optimal control

framework. Moreover, such valves can ensure a proper flow control during steps like co-

current pressurization and pressure equalization, which cannot be ensured neatly with

bed pressures as control variables.

• Product tanks can also be incorporated in the superstructure with additional mass bal-

ance equations for them. This can help obtain operating steps that involve a pure product

purge, which is not possible with the current superstructure.

• The complete discretization approach used in this work to solve the optimal control

problem requires an additional accuracy verification step. Such a step can be completely

avoided, and accuracy of the results can be enhanced by using a sensitivity-based sequen-

tial approach, similar to [100]. Partially discretized PDAEs together with the sensitivity

equations can be integrated outside the NLP problem using a sophisticated dynamic

simulator. NLP problem can then be solved using these sensitivities.

• In this work, computational limitations allow us to do the analysis with only binary

feed mixtures. In future, the approach can be extended to applications that involve

multi-component feed mixtures. Moreover, multiple layers of adsorbents can also be
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incorporated in CoB and CnB for higher selectivity, efficient separation, and enhanced

purity and recovery for one or more components.

• Although analyzed for CO2 capture in this work, the superstructure framework is fairly

general and can be applied for many other PSA applications in future.

ROM-based Optimization

• Although the trust-region algorithms developed are globally convergent, more detailed

convergence analysis can be be carried out with a focus on improved performance.

• In this work, we do not consider CSS conditions as a part of the original optimization

problem, and achieve CSS for each trust-region iteration in our case studies because we

assume that the number of decision variables, and equality and inequality constraints re-

main same for both original problem and ROM-based trust-region subproblem. However,

CSS conditions for the original problem get reduced in dimension for the ROM-based

trust-region subproblem after applying Galerkin projection onto the POD subspace, thus

violating our assumption. In future, a different trust-region framework, such as the re-

cursive multilevel algorithm proposed by Gratton et al. [87, 88] can be devised to handle

CSS constraints.

• Although we demonstrate the trust-region algorithms for a two-bed four-step PSA pro-

cess, in future, the proposed framework can easily be extended to optimize large-scale

PSA applications involving multiple adsorbent layers, complex flow patterns and more

challenging multi-component feed mixtures.

• The trust-region framework architected in this work is fairly generic and can be utilized

for applications other than PSA as well.

• Finally, success of the trust-region framework depends heavily on the quality of the

reduced-order models and their ability to correctly predict the descent directions for the
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objective and infeasibility measure. Although, POD-based ROMs produce promising re-

sults, quality of the ROMs can be further enhanced with alternative ROM-construction

techniques such as a PCA-based methodology suggested by Lang et al. [121], where

ROMs are constructed using neural networks, or a Kriging approximation based method-

ology proposed by Caballero et al. [38], in which ROMs are essentially metamodels which

replace black-box models of the unit operations in a process flowsheet.
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of a Trust-region SQP-Filter Algorithm for General Nonlinear Programming, SIAM J.
Optim. 13 (2002), no. 3, 635–659.

[73] R. Fletcher and S. Leyffer, A Bundle Filter Method for Nonsmooth Nonlinear Optimiza-
tion, Tech. report, NA/195, Department of Mathematics, University of Dundee, Scotland,
UK, 1999.

[74] , Nonlinear Programming without a Penalty Function, Math. Program. 91 (2002),
no. 2, 239–269.

[75] R. Fletcher, S. Leyffer, and P. L. Toint, On the Global Convergence of an SLP-filter
Algorithm, Tech. report, NA/183, Department of Mathematics, University of Dundee,
Scotland, UK, 1998.

BIBLIOGRAPHY 196



BIBLIOGRAPHY

[76] , On the Global Convergence of a Filter-SQP Algorithm, SIAM J. Optim. 13
(2002), no. 1, 44–59.

[77] J. F. Forbes, T. E. Marlin, and J. F. MacGregor, Model Adequacy Requirements for
Optimizing Plant Operations, Comput. Chem. Eng. 18 (1994), no. 6, 497–510.

[78] R. Fourer, D. M. Gay, and B. W. Kernighan, A Modeling Language for Mathematical
Programming, Manage. Sci. 36 (1990), no. 5, 519–554.

[79] A. Fuderer, Pressure Swing Adsorption Process and System, US Patent 4381189, 1983.

[80] , Pressure Swing Adsorption with Intermediate Product Recovery, US Patent
4512780, 1985.

[81] A. Fuderer and E. Rudelstorfer, Selective Adsorption Process, US Patent 3986849, 1976.

[82] B. Galletti, C. H. Bruneau, L. Zannetti, and A. Iollo, Low-order Modelling of Laminar
Flow Regimes past a Confined Square Cylinder, J. Fluid Mech. 503 (2004), 161–170.

[83] A. A. Giunta and M. S. Eldred, Implementation of a Trust Region Model Man-
agement Strategy in the DAKOTA Optimization Toolkit, Proceedings of the 8th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimiza-
tion, Long Beach, CA, September 6-8, AIAA Paper 2000-4935., 2000.

[84] E. Glueckauf and J. I. Coates, Theory of Chromatography IV: The Influence of Incom-
plete Equilibrium on the Front Boundary of Chromatograms and the Effectiveness of
Separation, J. Chem. Soc. (1947), 1315–1321.

[85] V. G. Gomes and K. W. K. Yee, Pressure Swing Adsorption for Carbon Dioxide Seques-
tration from Exhaust Gases, Sep. Purif. Technol. 28 (2002), no. 2, 161–171.

[86] C. A. Grande, S. Cavenati, and A. E. Rodrigues, Pressure Swing Adsorption for Carbon
Dioxide Sequestration, 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur
Congress on Process Systems Engineering, 2005.

[87] S. Gratton, A. Sartenaer, and P. L. Toint, Recursive Trust-region Methods for Multiscale
Nonlinear Optimization, Tech. report, Department of Mathematics, University of Namur,
Namur, Belgium,, 2004.

[88] , Numerical Experience with a Recursive Trust-region Method for Multilevel Non-
linear Optimization, Tech. report, Department of Mathematics, University of Namur,
Namur, Belgium,, 2006.

[89] M. D. Gunzburger, J. S. Peterson, and J. N. Shadid, Reduced-order Modeling of Time-
dependent PDEs with Multiple Parameters in the Boundary Data, Comput. Methods
Appl. Mech. Engrg. 196 (2007), 1030–1047.

[90] M. Hirose, I. Omori, M. Oba, and T. Kawai, Carbon Dioxide Separation and Recovery
System, Japanese Patent 2005262001, 2005.

[91] C. Hirsch, Numerical Computation of Internal and External Flows, Volume 1, Funda-
mentals of Numerical Discretization, John Wiley-Interscience: New York, NY, 1988.

[92] J. L. Humphrey and G. E. Keller, in Separation Process Technology, ch. 4, McGraw-Hill:
New York, NY, 1997.

BIBLIOGRAPHY 197



BIBLIOGRAPHY

[93] IEA/WEO, World Energy Outlook 2006, Tech. report, International Energy Agency,
Paris, France, 2006.

[94] IPCC, Carbon Dioxide Capture and Storage, Tech. report, Intergovernmental Panel on
Climate Change, Geneva, Switzerland, 2005.

[95] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata,
and Y. Kageyama, Technology for Removing Carbon Dioxide from Power Plant Flue Gas
by the Physical Adsorption Method, Energ. Convers. Manage. 37 (1996), no. 5, 929–933.

[96] K. Ito, K. Otake, and M. Itoi, Carbon Dioxide Desorption Method, Japanese Patent
2004202393, 2004.

[97] D. H. Jacobson, S. B. Gershwin, and M. M. Lele, Computation of Optimal Singular
Controls, IEEE T. Automat. Contr. 15 (1970), 67–73.

[98] J.-G. Jee, M.-B. Kim, and C.-H. Lee, Adsorption Characteristics of Hydrogen Mixtures
in a Layered Bed: Binary, Ternary, and Five-Component Mixtures, Ind. Eng. Chem.
Res. 40 (2001), no. 3, 868–878.

[99] L. Jiang, Optimization of Partial Differential Equation-based Systems - Application to
Pressure Swing Adsorption Processes, Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA, 2004.

[100] L. Jiang, V. G. Fox, and L. T. Biegler, Simulation and Optimal Design of Multiple-Bed
Pressure Swing Adsorption Systems, AIChE J. 50 (2004), no. 11, 2904–2917.

[101] S. Kameswaran, Analysis and Formulation of a Class of Complex Dynamic Optimization
Problems, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 2006.

[102] S. Kameswaran and L. T. Biegler, Simultaneous Dynamic Optimization Strategies: Re-
cent Advances and Challenges, Comput. Chem. Eng. 30 (2006), no. 10-12, 1560–1575.

[103] , Convergence Rates for Direct Transcription of Optimal Control Problems using
Collocation at Radau points, Comput. Optim. Appl. 41 (2008), no. 1, 81–126.

[104] A. Kapoor and R. T. Yang, Optimization of a Pressure Swing Adsorption Cycle, Ind.
Eng. Chem. Res. 27 (1988), no. 1, 204–206.

[105] J. Karger and D. M. Ruthven, Diffusion in Zeolites and Other Porous Solids, John
Wiley-Interscience: New York, NY, 1992.

[106] G. E. Keller, Gas Adsorption Processes: State of the Art, In Industrial Gas Separations;
T. E. Whyte, Ed., American Chemical Society: Washington, DC, ACS Symposium Series
223, Vol. 145, 1983.

[107] E. S. Kikkinides, R. T. Yang, and S. H. Cho, Concentration and Recovery of Carbon
Dioxide from Flue Gas by Pressure Swing Adsorption, Ind. Eng. Chem. Res. 32 (1993),
no. 11, 2714–2720.

[108] S. P. Knaebel, D. Ko, and L. T. Biegler, Simulation and Optimization of a Pressure
Swing Adsorption System: Recovering Hydrogen from Methane, Adsorption 11 (2005),
615.

BIBLIOGRAPHY 198



BIBLIOGRAPHY

[109] D. Ko and I. L. Moon, Multiobjective Optimization of Cyclic Adsorption Processes, Ind.
Eng. Chem. Res. 41 (2002), no. 1, 93–104.

[110] D. Ko, R. Siriwardane, and L. T. Biegler, Optimization of Pressure Swing Adsorption
Process using Zeolite 13X for CO2 Sequestration, Ind. Eng. Chem. Res. 42 (2003), no. 2,
339–348.

[111] , Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure
Swing Adsorption Processes for CO2 Capture, Ind. Eng. Chem. Res. 44 (2005), no. 21,
8084–8094.

[112] B. Kragel, Streamline Diffusion POD Models in Optimization, Ph.D. thesis, Trier Uni-
versity, 2005.

[113] R. Kumar, Removal of Water and Carbon Dioxide from Atmospheric Air, US Patent
4711645, 1987.

[114] R. Kumar, V. G. Fox, D. Hartzog, R. E. Larson, Chen Y. C., P.A. Houghton, and
T. Naheiri, A Versatile Process Simulator for Adsorptive Separations, Chem. Eng. Sci.
49 (1994), 3115–3125.

[115] K. Kunisch and S. Volkwein, Control of the Burgers Equation by a Reduced-Order Ap-
proach Using Proper Orthogonal Decomposition, J. Opt. Theory Appl. 102 (1999), no. 2,
345–371.

[116] , Galerkin Proper Orthogonal Decomposition Methods for Parabolic Problems,
Numer. Math. 90 (2001), 117–148.

[117] , Galerkin Proper Orthogonal Decomposition Methods for a General Equation in
Fluid Dynamics, SIAM J. Numer. Anal. 40 (2002), no. 2, 492–515.

[118] H. M. Kvamsdal and T. Hertzberg, Optimization of Pressure Swing Adsorption System-
sThe Effect of Mass Transfer during the Blowdown Step, Chem. Eng. Sci. 50 (1995),
no. 7, 1203–1212.

[119] , Pressure Swing Adsorption - Optimization of a Trace Separation System, Com-
put. Chem. Eng. 19 (1995), no. 11, 339–344.

[120] , Optimization of PSA SystemsStudies on Cyclic Steady State Convergence, Com-
put. Chem. Eng. 21 (1997), no. 8, 819–832.

[121] Y.-d. Lang, A. Malacina, L. T. Biegler, S. Munteanu, J. I. Madsen, and S. E. Zitney,
Reduced Order Model based on Principal Component Analysis for Process Simulation and
Optimization, Energ. Fuel. 23 (2009), no. 3, 1695–1706.

[122] P. A. LeGresley and J. J. Alonso, Airfoil Design Optimization using Reduced Order
Models based on Proper Orthogonal Decomposition, Fluids 2000 Conference and Exhibit,
June 19-22, Denver, CO. AIAA Paper 2000-2545, 2000.

[123] R. J. LeVeque, CLAWPACK Software, http://www.amath.washington.edu/˜claw.

[124] , Numerical Methods for Conservation Laws, Birkhäuser, 1992.
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Appendix A

Nomenclature

BRi flux of ith component in the bottom reflux stream (gmol m−2 sec−1)

Ci gas-phase concentration of ith component (gmol m−3)

Cipg heat capacity of ith component (J gmol−1 K−1)

Cps heat capacity of the adsorbent (J kg−1 K−1)

D Adsorbent bed diameter (m)

DK Knudsen diffusivity of ith component (m2/s)

DL Axial dispersion (m2/s)

Dm,i Bulk diffusivity of ith component (m2/s)

Dp,i Macropore diffusivity of ith component (m2/s)

dp particle diameter (m)

Fi input flux of ith component to the co-current bed (gmol m−2 sec−1)

h total gas-phase enthalpy (J m−3)

hw fluid-to-wall heat transfer coefficient (J m−2 sec−1 K−1)

∆Hads
i isosteric heat of adsorption (J gmol−1)

HPi flux of ith component in the heavy product stream (gmol m−2 sec−1)

KL effective axial thermal conductivity (J m−1 sec−1 K−1)

ki lumped mass transfer coefficient for ith component (sec−1)

kHi Henry’s constant (gmol kg−1 kPa−1)

L bed length (m)

LPi flux of ith component in the light product stream (gmol m−2 sec−1)
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M i
w molecular weight of ith component (kg gmol−1)

Mw average molecular weight of the gas mixture (kg gmol−1)

Nc number of components in the mixture

P total bed pressure (kPa)

Pi partial pressure of ith component (kPa)

Pads pressure at the light end of the co-current bed (kPa)

Pdes pressure at the heavy end of the counter-current bed (kPa)

PH adsorption pressure for Skarstrom cycle (same as Ph, Phigh) (kPa)

PL desorption pressure for Skarstrom cycle (same as Pl, Plow) (kPa)

Qfeed,i flux of ith component in the feed stream (gmol m−2 sec−1)

qi solid-phase concentration of ith component (gmol kg−1)

q∗i equilibrium solid-phase concentration of ith component (gmol kg−1)

R universal gas constant (J gmol−1 K−1)

Rp adsorbent particle radius (m)

T gas-phase temperature in the bed (K)

Tw wall/ambient temperature (K)

TRi flux of ith component in the top reflux stream (gmol m−2 sec−1)

ta adsorption step time (same as desorption time) (sec)

tp pressurization step time (same as depressurization time) (sec)

UA effective heat transfer coefficient (J m−3 sec−1 K−1)

u0 bed inlet superficial velocity at x = 0 (m sec−1)

uL bed exit superficial velocity at x = L (m sec−1)

ua feed velocity for the adsorption step (m sec−1)

ufeed feed velocity (m sec−1)

ureg exhaust velocity (m sec−1)

v gas superficial velocity (m sec−1)

Wtotal total work done by the compressors and the vacuum generator (J m−2 sec−1)

yi mole fraction of ith component

yf,i feed mole fraction of ith component
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Greek Letters

α fraction of the heavy product going as a bottom reflux

β fraction of the light product going as a top reflux

εb bulk void fraction

εp adsorbent particle void fraction

γ heat capacity ratio (=1.4)

µ gas viscosity (kg m−1 sec−1)

ηc efficiency of the feed compressor

ηfg efficiency of the flue gas compressor

ηh efficiency of the heavy product compressor

ηv efficiency of the vacuum generator

φ fraction of the feed going to the co-current bed

ρb bulk density (kg m−3)

ρg average gas density (kg m−3)

ρs adsorbent density (kg m−3)

τ Tortuosity factor

Subscripts

des desorption step

pres pressurization step
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Appendix B

Optimization Iterations

B.1 Exact Penalty Algorithm with ZOC

Table B.1: Iteration sequence for Algorithm I with ZOC for Problem (7.31)

k ∆k Ph Pl tp ta ua pco2 rco2 ψ̃R
k (0) ψ̃R

k (sk) ψ(sk) ρk step?

(kPa) (kPa) (sec) (sec) (m/s) (%) (%)

150 50 50 150 0.2 37.76 66.27 12173.7

0 8 158 48 54 154 0.22 40.29 67.55 12170 9990 9642.45 1.16 yes

1 12 148.67 45.02 57.05 159.76 0.198 40.34 69.93 9641 5311.5 9590.07 0.01 no

2 3 161 47.25 55.5 155.5 0.228 41.25 68.04 9641 8923.7 8681.96 1.34 yes

3 4.5 165.5 46.13 57.75 157.75 0.239 42.68 68.7 8684 7517.8 7251.3 1.23 yes

4 6.75 172.25 44.44 61.13 161.13 0.256 44.83 69.73 7252 5248.7 5100.27 1.07 yes

5 10.13 182.38 41.91 66.19 166.19 0.281 48.05 71.25 5100 1598.6 1878.76 0.92 yes

6 10.13 192.5 40 61.13 170.57 0.256 50.3 75.48 1878 486.41 -75.3967 1.4 yes

7 15.19 207.08 40 53.53 162.98 0.218 50.79 80.98 -75.4 -84 -80.9484 0.65 yes

8 15.19 210.02 40 61.13 155.39 0.18 48.76 86.15 -80.95 -93.12 1153.87 -101 no

9 3.797 203.28 40 55.43 161.08 0.208 50.01 81.74 -80.95 -84.29 -79.6689 0.23 yes

10 0.949 202.33 40 55.9 160.61 0.206 49.81 81.94 -78.99 -79.86 108.191 -217 no

11 0.237 203.04 40 55.55 160.96 0.208 49.96 81.79 -78.99 -79.21 -41.1745 -178 no

12 0.059 203.22 40 55.5 161.05 0.208 49.99 81.75 -78.99 -79.05 -69.6789 -185 no
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B.2 Exact Penalty Algorithm with FOC

B.2 Exact Penalty Algorithm with FOC

Table B.2: Iteration sequence for Algorithm I with FOC for Problem (7.31)

k ∆k Ph Pl tp ta ua pco2 rco2 ψ̃R
k (0) ψ̃R

k (sk) ψ(sk) ρk step?

(kPa) (kPa) (sec) (sec) (m/s) (%) (%)

150 50 50 150 0.2 37.76 66.27 12173.7

0 8 158 48 46 154 0.22 40.39 67.69 12170 8823.4 9542.31 0.79 yes

1 8 166 46 42 158 0.24 43.05 69.09 9544 6745.1 6880.91 0.95 yes

2 8 174 44 38 162 0.26 45.695 70.41 6885 3369.2 4234.59 0.75 yes

3 8 182 42 35 166 0.28 48.37 71.78 4234 1726.9 1558.22 1.07 yes

4 12 194 40.1 35 172 0.25 50.77 76.48 1560 -2058 -76.48 0.45 yes

5 6 200 40 35 169 0.235 51.101 78.58 -76.49 -80.35 -78.58 0.54 yes

6 6 206 40 35 166 0.22 51.21 80.86 -78.58 -80.54 -80.86 1.16 yes

7 9 215 40 35 161.5 0.1975 51.06 84.47 -80.85 -88.76 -84.465 0.46 yes

8 4.5 219.5 40 35 159.25 0.1863 50.79 86.3 -84.45 -86.13 -86.3 1.1 yes

9 6.75 226.25 40 35 155.88 0.1694 49.03 91.51 -86.27 -89.53 878.49 -295 no

10 1.688 221.19 40 35 158.41 0.182 50.64 86.99 -86.29 -87.04 -86.99 0.93 yes

11 1.688 222.88 40 35 157.56 0.1778 50.36 87.71 -86.98 -87.72 -87.71 0.97 yes

12 1.688 224.56 40 35 156.72 0.1741 49.76 89.72 -87.71 -88.64 150.28 -255 no

13 0.422 223.3 40 35 157.35 0.1768 50.19 88.38 -87.71 -87.95 -88.38 2.75 yes

14 0.64 223.94 40 35 157.03 0.1758 50.02 88.95 -88.38 -89.19 -88.95 0.7 yes

15 0.64 224.58 40 35 157.35 0.1749 50 89.18 -88.95 -89.17 -89.059 0.5 yes

16 0.32 224.9 40 35 157.51 0.1746 50 89.27 -89.18 -89.29 -89.149 0.83 yes

17 0.32 225.22 40 35 157.35 0.1747 50.002 89.31 -89.27 -89.37 -89.309 1.75 yes

18 0.48 225.7 40 35 157.59 0.1742 50.002 89.4 -89.31 -89.41 -89.401 1.01 yes

19 0.72 226.42 40 35 157.23 0.1742 50.007 89.57 -89.4 -89.56 -89.57 1.08 yes

20 1.08 227.5 40 35 157.77 0.1732 50 89.76 -89.57 -89.81 -89.637 0.27 yes

21 0.54 228.04 40 35 157.5 0.1731 50 89.98 -89.76 -90.02 -89.859 0.84 yes

22 0.54 228.58 40 35 157.23 0.1733 50.009 90.01 -89.98 -90.05 -90.007 1.99 yes

23 0.81 229.39 40 35 156.83 0.1734 50.012 90.16 -90.01 -90.19 -90.155 0.79 yes

24 0.81 230.2 40 35 157.23 0.1725 50 90.35 -90.16 -90.41 -90.229 0.3 yes

25 0.405 230.61 40 35 157.03 0.1729 50.05 90.32 -90.35 -90.46 -90.32 0.81 yes

26 0.405 231.01 40 35 157.23 0.1721 50 90.51 -90.32 -90.58 -90.455 0.52 yes

27 0.405 231.42 40 35 157.43 0.1718 50.001 90.48 -90.51 -90.6 -90.479 0.26 yes

continued on next page
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B.2 Exact Penalty Algorithm with FOC

continued from previous page

k ∆k Ph Pl tp ta ua pco2 rco2 ψ̃R
k (0) ψ̃R

k (sk) ψ(sk) ρk step?

(kPa) (kPa) (sec) (sec) (m/s) (%) (%)

28 0.2 231.62 40 35 157.53 0.1716 50 90.54 -90.48 -90.5 -90.489 0.55 yes

29 0.2 231.82 40 35 157.63 0.1714 50.001 90.55 -90.54 -90.57 -90.551 2.48 yes

30 0.3 232.12 40 35 157.78 0.1711 50 90.72 -90.55 -90.6 -90.599 1.06 yes

31 0.45 232.57 40 35 158.01 0.1707 50.004 90.78 -90.72 -90.78 -90.779 3.05 yes

32 0.8 233.37 40 35 158.41 0.1697 50 90.92 -90.78 -91.11 -90.864 0.26 yes

33 0.4 233.77 40 35 158.61 0.1694 50 90.96 -90.92 -91 -90.909 0.51 yes

34 0.4 234.17 40 35 158.81 0.1692 50.01 90.99 -90.96 -91.01 -90.986 1.48 yes

35 0.6 234.77 40 35 159.11 0.1687 50.009 91.08 -90.99 -91.14 -91.083 0.63 yes

36 0.6 235.37 40 35 159.41 0.1682 50.02 91.24 -91.08 -91.23 -91.24 1.07 yes

37 0.9 236.27 40 35 158.96 0.1683 50.012 91.34 -91.24 -91.43 -91.336 0.5 yes

38 0.9 237.17 40 35 158.51 0.1684 50.01 91.56 -91.34 -91.51 -91.56 1.29 yes

39 1.35 238.52 40 35 157.83 0.1685 50 91.72 -91.56 -91.88 -91.667 0.34 yes

40 0.675 239.19 40 35 158.17 0.1678 50 91.92 -91.72 -91.89 -91.865 1.15 yes

41 1 240.19 40 35 157.67 0.1676 50 92.16 -91.92 -92.6 -92.039 0.26 yes

42 0.5 240.69 40 35 157.42 0.1679 50 92.17 -92.17 -92.32 -92.12 0.51 yes

43 0.5 241.19 40 35 157.17 0.1681 50 92.2 -92.17 -92.22 -92.15 0.56 yes

44 0.5 241.69 40 35 156.92 0.1682 50 92.22 -92.21 -92.27 -92.168 0.3 yes

45 0.25 241.94 40 35 157.05 0.1681 50.007 92.27 -92.22 -92.24 -92.266 4.83 yes

46 0.375 242.32 40 35 156.86 0.168 50 92.37 -92.27 -92.42 -92.315 0.32 yes

47 0.2 242.52 40 35 156.76 0.1681 50 92.39 -92.37 -92.38 -92.319 0.53 yes

48 0.2 242.72 40 35 156.66 0.1682 50.003 92.34 -92.39 -92.41 -92.335 0.78 yes

49 0.2 242.92 40 35 156.76 0.168 50 92.36 -92.33 -92.37 -92.304 0.57 yes

50 0.2 243.12 40 35 156.86 0.1679 50.008 92.38 -92.36 -92.39 -92.378 2.84 yes

51 0.4 243.52 40 35 157.06 0.1675 50.004 92.44 -92.38 -92.44 -92.439 1.01 yes

52 0.8 244.32 40 35 157.46 0.1668 50.007 92.69 -92.44 -92.54 -92.692 2.44 yes

53 1.2 245.52 40 35 158.06 0.1658 50.008 92.7 -92.69 -92.71 -92.703 0.58 yes

54 1.2 246.72 40 35 158.66 0.1648 50.009 92.87 -92.7 -92.87 -92.868 0.99 yes

55 1.8 248.52 40 35 159.56 0.1634 50.041 93.05 -92.87 -93.02 -93.053 1.22 yes

56 2.7 251.22 40 35 160.91 0.1609 50 93.52 -93.05 -93.88 -93.399 0.42 yes

57 1.35 252.57 40 35 161.58 0.1599 50 93.79 -93.52 -93.85 -93.731 1 yes

58 2.025 254.59 40 35 160.57 0.1608 50.088 93.85 -93.79 -94.01 -93.848 0.52 yes

59 2 256.59 40 35 159.57 0.1611 50.075 94.07 -93.85 -94.26 -94.067 0.53 yes

60 2 258.59 40 35 160.57 0.1592 50.018 94.27 -94.07 -94.45 -94.269 0.52 yes

61 2 260.59 40 35 161.57 0.1578 50.043 94.39 -94.27 -94.49 -94.386 0.52 yes

continued on next page
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B.2 Exact Penalty Algorithm with FOC

continued from previous page

k ∆k Ph Pl tp ta ua pco2 rco2 ψ̃R
k (0) ψ̃R

k (sk) ψ(sk) ρk step?

(kPa) (kPa) (sec) (sec) (m/s) (%) (%)

62 2 262.59 40 35 162.57 0.156 50 94.64 -94.39 -94.86 -94.52 0.29 yes

63 1 263.59 40 35 163.07 0.1552 50 94.84 -94.64 -94.88 -94.719 0.83 yes

64 1 264.59 40 35 163.57 0.1548 50.045 94.89 -94.84 -94.91 -94.889 2.65 yes

65 1.5 266.09 40 35 164.32 0.1538 50.067 94.98 -94.89 -95.06 -94.976 0.52 yes

66 1.5 267.59 40 35 165.07 0.1521 50 95.26 -94.98 -95.3 -95.139 0.5 yes

67 1.5 269.09 40 35 165.82 0.1516 50.055 95.25 -95.26 -95.31 -95.25 2.46 yes

68 2.25 271.34 40 35 166.95 0.1501 50.073 95.33 -95.25 -95.55 -95.332 0.27 yes

69 1.2 272.54 40 35 167.55 0.1491 50.038 95.55 -95.33 -95.56 -95.55 0.96 yes

70 1.2 273.74 40 35 168.15 0.1483 50.037 95.63 -95.55 -95.72 -95.634 0.5 yes

71 1.2 274.94 40 35 168.75 0.1475 50.043 95.63 -95.63 -95.63 -95.634 0.52 yes

72 1.2 276.14 40 35 169.35 0.1467 50.035 95.82 -95.63 -95.8 -95.821 1.1 yes

73 1.8 277.94 40 35 170.25 0.1454 50.011 95.97 -95.82 -96.11 -95.969 0.5 yes

74 1.8 279.74 40 35 171.15 0.1447 50.098 96 -95.97 -96.04 -96.002 0.51 yes

75 1.8 281.54 40 35 170.25 0.1444 50 96.16 -96 -96.21 -96.11 0.5 yes

76 1.8 283.34 40 35 169.35 0.1448 50 96.24 -96.16 -96.3 -96.19 0.57 yes

77 1.8 285.14 40 35 168.45 0.1452 50 96.38 -96.24 -96.39 -96.325 0.93 yes

78 1.8 286.94 40 35 167.55 0.1455 50 96.51 -96.38 -96.52 -96.453 0.9 yes

79 1.8 288.74 40 35 166.65 0.146 50.002 96.51 -96.51 -96.61 -96.509 0.52 yes

80 1.8 290.54 40 35 165.75 0.1463 50 96.79 -96.51 -96.64 -96.578 0.52 yes

81 1.8 292.34 40 35 164.85 0.1467 50 96.7 -96.79 -96.92 -96.645 0.5 yes

82 1.8 294.14 40 35 163.95 0.1471 50 96.78 -96.7 -96.84 -96.694 0.35 yes

83 0.9 295.04 40 35 163.5 0.1474 50 96.81 -96.77 -96.83 -96.784 1.63 yes

84 1.35 296.39 40 35 162.82 0.1478 50.014 96.93 -96.81 -96.97 -96.93 0.95 yes

85 1.35 297.74 40 35 162.15 0.1481 50.023 96.95 -96.93 -96.97 -96.951 0.51 yes

86 1.35 299.09 40 35 161.47 0.1483 50.004 96.99 -96.95 -97.08 -96.984 0.25 yes

87 0.675 299.77 40 35 161.13 0.1485 50.007 97.01 -96.98 -97.04 -97.009 0.43 yes

88 0.338 300 40 35 160.97 0.1487 50.009 97.2 -97.01 -97.2 -97.197 0.99 yes

89 0.338 300 40 35 160.8 0.1487 50.001 97.03 -97.2 -97.98 -97.027 -0.2 no

90 0.084 300 40 35 160.92 0.1487 50.007 97.03 -97.2 -97.29 -97.028 -1.9 no

91 0.021 300 40 35 160.96 0.1486 50.006 97.16 -97.2 -97.28 -97.16 -0.4 no
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B.3 Hybrid Filter Trust-region Algorithm: Tangential Subproblem

B.3 Hybrid Filter Trust-region Algorithm: Tangential Sub-

problem

Table B.3: Iteration sequence for tangential subproblems of Algorithm II for Problem (7.31)

k ∆k Ph Pl tp ta ua rco2 f̃Rk (0) f̃Rk (sk) f(sk) ρk Eq. (7.38) step?

(kPa) (kPa) (sec) (sec) (m/s) (%)

150 50 50 150 0.2 66.27 -66.268

0r 158 48 54 154 0.22 67.55 NA NA -67.554 NA yes

1r 166 46 58 158 0.24 68.79 NA NA -68.794 NA yes

2r 178 43 64 164 0.27 70.61 NA NA -70.61 NA yes

3r 193.33 40.33 64.3 168.68 0.289 73.12 NA NA -73.121 NA yes

4 4 197.33 40 66.3 170.68 0.279 74.27 -73.12 -75.4 -74.265 0.5 holds yes

5 4 193.33 40 68.3 168.68 0.269 74.69 -74.27 -77.36 -74.694 0.14 holds yes

6 2 191.33 40 69.3 167.68 0.264 74.89 -74.69 -76.25 -74.889 0.13 holds yes

7 1 191.79 40 68.8 167.18 0.2615 75.14 -74.89 -75.39 -75.143 0.51 holds yes

8 1 192.28 40 68.3 166.68 0.259 75.48 -75.14 -75.71 -75.476 0.59 holds yes

9 1 192.69 40 67.8 166.18 0.2565 75.75 -75.48 -75.99 -75.746 0.52 holds yes

10 1 193.09 40 67.3 165.68 0.254 75.99 -75.75 -76.23 -75.989 0.5 holds yes

11 1 193.91 40 66.8 165.18 0.2515 76.27 -75.99 -76.52 -76.271 0.54 holds yes

12 1 193.94 40 66.3 164.68 0.249 76.59 -76.27 -76.9 -76.586 0.5 holds yes

13 1 194.94 40 65.8 164.45 0.2465 76.86 -76.59 -77.07 -76.855 0.56 holds yes

14 1 194.83 40 65.3 163.95 0.244 77.1 -76.86 -77.53 -77.103 0.37 holds yes

15 0.5 195.2 40 65.04 163.69 0.2427 77.27 -77.1 -77.38 -77.267 0.59 holds yes

16 0.5 195.35 40 64.79 163.44 0.2415 77.41 -77.27 -77.49 -77.408 0.64 holds yes

17 0.5 195.66 40 64.54 163.19 0.2402 77.55 -77.41 -77.6 -77.552 0.74 holds yes

18 0.5 196.14 40 64.29 162.94 0.239 77.75 -77.55 -77.73 -77.752 1.1 holds yes

19 1 197.14 40 63.79 163.26 0.2365 78.03 -77.75 -78.02 -78.028 1.03 holds yes

20 2 199.14 40 62.79 163.56 0.2315 78.63 -78.03 -78.96 -78.626 0.64 holds yes

21 2 199.74 40 61.79 162.56 0.2264 79.35 -78.63 -79.63 -79.351 0.72 holds yes

22 2 201.74 40 60.79 162.77 0.2215 79.98 -79.35 -80.35 -79.979 0.63 holds yes

23 2 203.1 40 59.79 161.77 0.2165 80.71 -79.98 -80.99 -80.706 0.72 holds yes

24 2 205.1 40 58.79 161.47 0.2115 81.42 -80.71 -81.42 -81.423 1.01 holds yes

25 4 209.1 40 56.79 159.47 0.2054 82.67 -81.42 -82.66 -82.671 1.01 holds yes

continued on next page
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B.3 Hybrid Filter Trust-region Algorithm: Tangential Subproblem

continued from previous page

k ∆k Ph Pl tp ta ua rco2 f̃Rk (0) f̃Rk (sk) f(sk) ρk Eq. (7.38) step?

(kPa) (kPa) (sec) (sec) (m/s) (%)

26 8 217.1 40 52.79 155.47 0.1971 84.8 -82.67 -84.58 -84.802 1.12 holds yes

27 16 233.1 40 60.79 157.85 0.1571 93.26 -84.8 -96.69 -93.26 0.71 holds yes

28 16 249.1 40 68.79 165.85 0.1639 89.66 -96.23 -89.01 -89.662 0.5 fails yes

29 8 257.1 40 64.79 169.85 0.1516 92.85 -89.66 -92.92 -92.848 0.98 holds yes

30 8 265.1 40 68.79 173.85 0.1484 92.89 -92.85 -92.62 -92.887 -0.2 fails yes

31 8 273.1 40 72.79 177.85 0.1425 93.66 -92.89 -93.24 -93.662 2.22 holds yes

32 16 289.1 40 80.79 185.85 0.1328 94.52 -93.66 -93.93 -94.519 3.16 holds yes

33 32 299.44 40.06 86.08 200.34 0.1208 94.98 -94.52 -97.03 -94.978 0.18 holds yes

34 16 300 40 94.08 208.34 0.1201 93.83 -94.98 -94.31 -93.832 1.72 fails yes

35 16 300 40 86.08 200.34 0.1235 94.47 -93.85 -95.06 -94.466 0.52 holds yes

36 16 300 40 78.08 192.34 0.1273 94.87 -94.44 -96.21 -94.869 0.23 holds yes

37 8 300 40 74.08 188.34 0.1295 95.28 -94.86 -95.62 -95.28 0.54 holds yes

38 8 300 40 70.08 184.34 0.1326 95.18 -95.28 -95.2 -95.182 1.18 fails yes

39 8 300 40 66.08 180.34 0.1346 95.59 -95.19 -95.46 -95.594 1.53 holds yes

40 16 300 40 58.08 188.34 0.129 96.05 -95.59 -95.92 -96.047 1.38 holds yes

41 32 300 40 42.08 172.34 0.139 96.95 -96.07 -96.98 -96.946 0.99 holds yes

42 32 300 40 35 188.34 0.1277 97.24 -96.94 -99.06 -97.237 0.14 holds yes

43 16 300 40 35 180.34 0.1335 97.18 -97.24 -99.61 -97.176 -0 holds no

44 4 300 40 35 186.34 0.1289 97.1 -97.24 -97.86 -97.099 -0.2 holds no

45 1 300 40 35 187.84 0.1278 97.25 -97.24 -97.42 -97.253 0.08 holds yes

46 0.5 300 40 35 188.09 0.1276 97.24 -97.25 -97.28 -97.244 -0.3 holds no

47 0.125 300 40 35 187.9 0.1277 97.25 -97.25 -97.27 -97.254 0.05 holds yes

48 0.063 300 40 35 187.93 0.1276 97.25 -97.25 -97.26 -97.248 -2.6 holds no

49 0.016 300 40 35 187.91 0.1277 97.26 -97.25 -97.25 -97.256 6.28 holds yes

50 0.031 300 40 35 187.93 0.1277 97.25 -97.26 -97.26 -97.248 -6 holds no
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B.4 Hybrid Filter Trust-region Algorithm: Normal Subprob-

lem

Table B.4: Iteration sequence for normal subproblems of Algorithm II for Problem (7.31)

k Ph Pl tp ta ua pco2 θ̃Rk (sk) f̃Rk (sk)

(kPa) (kPa) (sec) (sec) (m/s) (%)

150 50 50 150 0.2 37.764 12.236

0r 158 48 54 154 0.22 40.291 9.709 -67.554

1r 166 46 58 158 0.24 42.838 7.162 -68.794

2r 178 43 64 164 0.27 46.662 3.338 -70.6097

3r 193.33 40.33 64.3 168.68 0.289 50.58 0 -73.121

4 193.33 40.33 64.3 168.68 0.289 51.134 0 -74.265

5 197.33 40 66.3 170.68 0.279 50.435 0 -74.694

6 193.33 40 68.3 168.68 0.269 50.078 0 -74.889

7 191.33 40 69.3 167.68 0.264 50.079 0 -75.143

8 191.79 40 68.8 167.18 0.2615 50.087 0 -75.476

9 192.28 40 68.3 166.68 0.259 50.082 0 -75.746

10 192.69 40 67.8 166.18 0.2565 50.072 0 -75.989

11 193.09 40 67.3 165.68 0.254 50.113 0 -76.271

12 193.91 40 66.8 165.18 0.2515 50.06 0 -76.5858

13 193.94 40 66.3 164.68 0.249 50.12 0 -76.855

14 194.94 40 65.8 164.45 0.2465 50.047 0 -77.1026

15 194.83 40 65.3 163.95 0.244 50.056 0 -77.2668

16 195.2 40 65.04 163.69 0.2427 50.039 0 -77.408

17 195.35 40 64.79 163.44 0.2415 50.035 0 -77.552

18 195.66 40 64.54 163.19 0.2402 50.059 0 -77.752

19 196.14 40 64.29 162.94 0.239 50.128 0 -78.028

20 197.14 40 63.79 163.26 0.2365 50.245 0 -78.626

21 199.14 40 62.79 163.56 0.2315 50.157 0 -79.351

22 199.74 40 61.79 162.56 0.2264 50.245 0 -79.979

23 201.74 40 60.79 162.77 0.2215 50.205 0 -80.706

24 203.1 40 59.79 161.77 0.2165 50.241 0 -81.423

25 205.1 40 58.79 161.47 0.2115 50.335 0 -82.671

continued on next page
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k Ph Pl tp ta ua pco2 θ̃Rk (sk) f̃Rk (sk)

(kPa) (kPa) (sec) (sec) (m/s) (%)

26 209.1 40 56.79 159.47 0.2054 50.537 0 -84.802

27 217.1 40 52.79 155.47 0.1971 47.469 2.531 -93.2604

28 239.2 41.23 60.77 159.88 0.1817 50.654 0 -89.662

29 249.1 40 68.79 165.85 0.1639 49.645 0.355 -92.848

30 258.36 40.71 64.79 170.28 0.1616 50.058 0 -92.8865

31 265.1 40 68.79 173.85 0.1484 49.883 0.117 -93.662

32 275.21 41.5 72.78 178.5 0.161 49.719 0.281 -94.519

33 292.47 41.13 80.86 186.17 0.1546 49.492 0.508 -94.978

34 296.93 40.53 86.11 200.93 0.1382 50.389 0 -93.8316

35 300 40 94.08 208.34 0.1201 50.192 0 -94.466

36 300 40 86.08 200.34 0.1235 50.01 0 -94.8686

37 300 40 78.08 192.34 0.1273 49.955 0.045 -95.2801

38 297.37 40.74 74.06 188.85 0.1395 50.113 0 -95.182

39 300 40 70.08 184.34 0.1326 49.966 0.034 -95.594

40 294.73 41.53 65.99 181.2 0.1542 50.07 0 -96.0471

41 300 40 58.08 188.34 0.129 49.906 0.094 -96.946

42 289.47 43.4 44.4 173.74 0.176 50.07 0 -97.2373

43 300 40 35 188.34 0.1277 50.134 0 -97.176

44 300 40 35 188.34 0.1277 50.048 0 -97.099

45 300 40 35 188.34 0.1277 50.019 0 -97.2528

46 300 40 35 187.84 0.1278 50.001 0 -97.2443

47 300 40 35 187.84 0.1278 50 2.2E-05 -97.2535

48 299.99 40 35.01 187.9 0.1277 49.999 7.2E-04 -97.24844

49 299.99 40 35 187.9 0.1277 50.001 0 -97.25646

50 300 40 35 187.91 0.1277 49.997 2.8E-03 -97.24844
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