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ﬁﬁi Nonlinear Model Predictive Control (NMPC)
Ly (St ) leem letp
» Input horizon ‘
» Output horizon .
min  J(x(k) = Y (w1 (zy)
1=0
2 = S (z1))
S.r.
z, = x(k)
Bounds and Constraints
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ﬁ%m MPC - Background

» Motivation: embed dynamic model in moving horizon framework to drive
process to desired state

* Generic MIMO controller
 Direct handling of input and output constraints
» Relatively slow time-scales in chemical processes

» Different Model types
 Linear Models: Step Response (DMC) and State-space
+ Data-Driven Models: Neural Nets, Volterra Series
» Hybrid Models: linear with binary variables, multi-models

» Nonlinear First Principle Models — direct link to off-line planning
and optimization

* Nonlinear MPC Pros and Cons
+ Operate process over wide range (e.g., startup and shutdown)
+ Vehicle for Dynamic Real-time Optimization
- Need Fast NLP Solver for Time-critical, on-line optimization
- Computational Delay from On-line Optimization degrades _performance

e MPC and NMPC

Optimization and Optimal Control
* Pontryagin (1959), Bryson and Ho (1969), Ray (1981), Sargent
and coworkers (1970s),...

Model Predictive Control

» Evolution from LQ, Initial MPC (Kleinman, 1975; Kwon and
Pearson, 1977).

» DMC (Cutler and Ramaker, 1979), QDMC (Garcia and
Morshedi,1984) using step response models

» Concepts and Analysis: Allgdwer and coworkers (1989 - ),
Bordons and Camacho (2001), Rawlings and Mayne (2009),
Grune and Pannek (2011)

* LQ models = solve quadratic programs on-line

Nonlinear NMPC — need to consider on-line solution of NLP.
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Air Separation Unit in IGCC-based Power Plants
*Need for high purity O2

*Respond quickly to changes in process
demand

sLarge, highly nonlinear dynamic separation
(MESH) models

Methanol distillation (Diehl, Bock et al., 2005)

*40 trays, 210 DAEs, 19746 discretized equations
Argon Recovery Column

50 trays, 260 DAEs, 21306 discretized equations
Double Column ASU Case Study

80 trays, 1520 DAEs, 116,900 discretized equations

5
i« Nonlinear Model Predictive Control — Air Separation Unit
(Huang, B., 2011)
’—‘. Gas Nitrogen
Objective: minimize operating  + " compresser f
cost subject fo demand m
specifications
4 manipulated variables. gk 2
4 output variables. Ui EA) T/_\t
S o,
Horizon: 100 minutes in 20 Y, (P0X) Reboiler
finite elements. Pure nitrogen
Sampling time: 5 minutes. D .
Tcmpcri;turc a 1‘ 1quil 1lrogen |

DAES 1520 Crude Gas Nitrogen | @

U; (GN) 4
After Discretization: \
Variables: 117,140 ( v ) HP Column
Constraints: 116,900

Crude oxygen
6



2 Case Study: Air Separation Unit

*Mesh Equations for Distillation Column

Assumption: L
Vapor holdups are negligible. Index 2 system. " Vi

Ideal vapor phases. F.
i M,
Well mixed entering streams. ' \

Constant pressure drop.
I I/iu

Equilibrium stage model.

1M, )
Mass balance: -t = Loy + Vi — L= Vi+ I}
Component balance: (Mt ;) , - 3
P T“ = Lw—lf;’:p—l.‘j + I"i+1,‘!,"w+1.,i - Lﬁ-ni._; - 1"!L’1'4'.,i + F:':I:f_J

M.LL _ '
Energy balance: 7(1(‘15‘:1' ) _ Liyht |+ Vigahly, = LibE = VihY + Fib!

ar
Phase equilibrium: 1/, ;p; = ;.. J-.;r:,-__”):f}f Reformulated index 1 system

. E contains 320 ODEs, 1200 AEs.
Summation: = Yij
JeCOMP

Hydrodynamics : L; = kyM;

", ASU Nonlinear MPC - Case 1

t = 30-60 min, product rates are ramped down by 30%. t =1000-1030 min,
they are ramped back. NMPC is compared to MPC with linear input-
output empirical model.
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Output Variables Manipulated Variables
The green dot-dashed lines are the set-points, the blue dashed lines are the linear
controller profiles and red solid lines are NMPC profile.

All the tuning parameters are favored to the linear controller.
Horizon Solution Time: 200 CPUs, 6 IPOPT iters.
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el Finite Horizon Formulation for NMPC
J(x(k)):= 1‘{1121‘1 D(zy) + Ew(zl,vl)
s.t. ZM=f(z[,v,),_l=0,...,N—1

z, = x(k)
g(z)=0,/=0,..,.N
v,eU,l[=0,..,N-1
ZyE Xy

zp — initial value

x(k) — measurement of state at #

y, @- (quadratic) stage and terminal costs
v, - predicted manipulated variable

z; - predicted state variable in finite horizon
zy - terminal state, how defined?

How long is N to meet terminal conditions?

9
. Determine horizon length and specify
terminal conditions?
Drone hovering problem: Initial State — :2[52223
41 —— Horizon =
N e =0 et [ — eronon
k+1 0 1 k 1 k
2]
_ [Positiony] . -

3 Where x; = Velocityk]' 2,

5 uy, = [acceleration;] &

B Infeasible

o R Constraints: ~*1(Drone Crashes)

llxgllo < 5 lluglloo < 0.5Vk = 0
4]
Tracking MPC Objective: Bring drone 35 30 s 1o s o0 o5
Ground | to new height (setpoint) without Velocity
crashing to the floor. Effect of N on closed-loop feasibility
Without terminal conditions in the formulation of the MPC (no
terminal constraints or terminal cost, etc.), the closed-loop MPC is
(the drone is descending too quickly and will crash) /7 the
MPC'’s
10
10
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Lyapunov stability of NMPC

* Nominal stability
— Basic idea

« Perfect model, no uncertainty: x* = f{x, u)
* Remain bounded and eventually achieve desired state

» Definition: Lyapunov Property
A function V: R™ — R>¢ is a Lyapunov function for a system
w(k+1) = f(z(k),u(k))
if there exist a set X, three K, functions aq,a2,a3 such that

ay(|z]) < V(z) < as(|z])
V(f(z,u)) = V(z) < —as(|z])

» Can the objective function J, serve as V(x;)?

11

" MPC Stability — Infinite Horizon
(Keerthi and Gilbert (1988)

Doty [ [ D olkam Iotkap

Input horizon

Output horizon

Jo= Yy -y* ||Z‘ +E||u(z)-u(z-1)||; + m (input) = p (output)
1=k 1=k

Jo=dy Nyt =y? IP +lu(k)-u(k-1)IP
o o"

(\%E

Uyt =y* I +llu(k)-u(k-DIF )  constraint 3 z(k+p)=0
1 ¢ ¢ Suffers End Effects

x~

= y(k) =y, u(k) = u(k -1)

additional stabilitv properties

Nominal stability — perfect model

* Based on discrete Lyapunov arguments
with J(x) as Lyapunov function
Js i(‘]k “J) * Infinite time horizon, ideal case
= * Finite time horizon - need endpoint

* Choice of terminal cost/constraints gives

12
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% Current Challenges of Nonlinear MPC Stability:

Appropriate Terminal Conditions

Approaches Advantages Remaining Challenges References
N-T "
suffcently Long | " V) (=Jp = Tokp D(zy) B, .v,} OO Proctee
Horizon ' Vit N
expensivd
. Cérhputationally Z/}1 = A ddtfickently o> Y Grikiith et al. (2018), JPC
Adaptive Horizon efficient 2= )prr'gzon is needed to
0 initialize

Terminal Cost

+ Approximate an & Z,)N"oguﬁe_apor--aN Mayne et al. (2000),
increasing horizog e strajined le{ns Pannocchia, Rawlings
nire Tong horizon | (2003)
zZy€ X/ (overly?) large Faulwasser et al. (2018)
terminal cost

» Simplified * Reachability? Limon et al. (2006), IEEE
Terminal Constraint implementation * Requires offline TAC
computation Griffith et al. (2018), JPC

Develop an infinite horizon model predictive control using time transformation to

Main Objective: Avoid all this!

enhance closed-loop stability and simplify implementation.

13

Afﬁﬂé Infinite Horizon NMPC: Previous Work

S. S. Keerthi and E.G. Gilbert (1988) - Classic NMPC paper with
asymptotic stability properties for infinite horizon problems.

P. Kunkel and O. Hagen (2000) — TPBVP with exp time transformation to
determine optimal trajectories.

L. Wirth and W. Marquardt (2014, 2016) — tanh time transformation with
sampling times determined by wavelet adaptations over entire horizon,
open loop stable cases only

M. Muehlebach and R. D’Andrea (2016, 2017) - applied to LTI MPC with
Galerkin approximations, applied to UAV with 100 Hz performance

W. Greer and C. Sultan (2020) - divides LTI MPC problem into finite
horizon part and infinite horizon part (with LQR control). Applied to very
fast helicopter control.

14
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dx B . .

— = (@), u()
sampling time in MPC horizon.
interval 7 € [0,1]*

T = tanh(yt)

y is the tuning parameter

dx f(x(r),u(‘r))_
dr — y(1-12)

Time transformation - only applied to final

Converts infinite interval ¢t € [0, ) to finite

Transformed continuous-time dynamic system:

—=—— x(t=0)=x(r=0)

fiﬁu“éTime Transformation: Infinite to Finite Horizon
What’s New?

Given continuous-time dynamic system:

Time Transformation Strategy
for Infinite Horizon MPC

10.0 4 A
£ re[0,1]
g te[t, )
F 504 —_—
¢]
a
2 251 .
: —— Transformed Time
Real Time
0.0 4
00 25 50 75 100 125 150 175 20.0
Time (t)
Time Transformation: T = tanh(yt)
1.0
E
3 08
£
Fo06
3 — y=0.05
£ =
5 0.4 12 g;
17 — y=0.
502 ——y=
=
— y=10
0.0 Y
0 20 40 60 80 100

Time (t)

*any transformation with bijective mapping in intervals can be applied

15

ﬁmﬂ Infinite Horizon MPC with Time Transformation

TRING
Infinite horizon NMPC at t; = kAt:

V() (= Ji) = min 55 (2, v)AL + P(zy) At
stz =F(z,v), 1=0,.N=-1
Zs = F(ZN' 17)
Zo = Xk
z1€EX, v, €U L=0,..N

Discretization for index-1 DAEs:
tr+AL (141)
F(z,v) =z + fz(t),v(t))dt

ti+At L

Last element, t € [t,»), t = t; + (N — 1)At:
Flzn,v) = zy + [ f(2(t), v(®)) dt

Apply time transform 7 = tanh(y(t — t)):
L f(z(0), v(1)) ir

F =
(ZNr V) zy + o }/(1 _ TZ)

Terminal Cost ®(zy): designed to
overestimate Riemann sum of last element
(infinite length):

(D(ZN)At =oo
B, P, v@)dt > YR2e(z, v)At

where 8 > f > 1 for some threshold .

3 I ive feasibility for NMPC

Terminal constraints use (zs, us) as boundary
conditions which “pin down unstable modes”

= Allows unstable open-loop dynamics!

Additional assumptions: Weak controllability

0 < 9(x,u) < ar(llxl)
0 < dx) < ax(llxlD
ay (lIxI1), az(llx|l) are Ko, functions of [|x||
16

16
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&@ Recursive Feasibility of Time-
™ Transformed Infinite Horizon MPC

Optimal Solution at ¢,

Infinite Horizon

Manipulated Variable

- T T T
NL1 I1=N4+1+sg I=N-1+s I1=N

| . .
| Shifting solution at ¢, |  Cpllocation Points

o
o
2
. . g . .
e 5 Extend terminal solution
at tiq —
- ﬂ/
5
=
T T T >
1= I=N-1+s9 I=N-1+s I1=N

» Final Element Discretization: Orthogonal collocation on finite elements

» Zero-order hold: not applied for MVs in last (infinite) element

» To ensure recursive feasibility:
o First collocation point of the last element fixed at previous time step solution
o First collocation point must be larger than At, i.e., tanh™(y At) > 7;;

+ Leads to Asymptotic Stability of NMPC

17

% Case Study: Distillation Column
(Diehl, 2001; Lin, 2023)

Condenser
z' Model description

1. High-purity distillation column

M\ _DIQQ_%, 2. Separate methanol and n-propanol

Reflux ratio 3. Controls: Reboiler heat duty Q,., Reflux
ratio R

et 4. States: Mole fraction x, Liquid molar
—_— holdup M

5. Differential-algebraic model with 84
differential and 503 algebraic equations.

Control Task
Stage cost: maintain product mole fractions
Bottom product at 0.98.

Reboiler heat duty

18



- Distillation Column Case Study: Short Finite

Prediction Horizon (N=2)
CV:x D,N=2
. CV: Temperature of the Bottom Trays, N = 2, At = 10 sec
c 0% -
£ < 350
«© 09 v
° 2
S 0 © 345
£ g
3 o0 ——X1t0p ——X_top_sp Q
§ GEJ 340 — T[29] Setpoint
& om F — 9]
s w n wm s m m 0B S0 5 10 15 150 15 20
Time Step
MV: Reflux Ratio, N = 2, At = 10 sec MV: Reboiler Heat Duty, N = 2, At = 10 sec
10 === Reflux Reference g . === Reboiler Reference
g s Reflux 20 Reboller
° 3
26h gzt
X —
2 82
T T T T T T T T T < T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 15 150 175 200
Time Step Time Step
Tracking MPC - unable to achieve new setpoint if prediction horizon is too short
19
19
«.w Distillation Column Case Study: Long Finite
FRING - . .
Prediction Horizon (N=20)
. CV:x_D,N=20 CV: Temperature of the Bottom Trays, N = 20, At = 10 sec
- 0% 2350 |
S oo o |
< os — L % us{ |
35 o |
£ 08 (El |
§ @ 340 —— T[29] Setpoint
3 07 £ | — T29]
T o7 - . . . - -
20 40 60 80 100 0 20 40 60 80 100
Time Step
MV: Reflux Ratio, N = 20, At = 10 sec MV: Reboiler Heat Duty, N = 20, At = 10 sec
_ 100 “ === Reflux Reference § 4 “ -=- Reboiler Reference
L 754 | ~—— Reflux 2 | ~—— Reboiler
s | 3| |
& so0d | w31 ||
X | I |\
2 | ] \
2| 521 |
- LT N A _—
00 T - T T T T T & T \_(I T T T T
0 2 40 60 80 100 0 20 % 60 80 100
Time Step Time Step
Extending horizon improves closed-loop stability - at much higher computational cost
20

20
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Distillation Column Case Study: Short Finite

% Prediction Horizon with Augmented Infinite Horizon

(N =1+ )
VD, N=1+%
CV: Temperature of the Bottom Trays, N = 1 + », At = 10 sec
355
(=S S——
2 )
=1 ¥
£ 2 30
o2 3
o = 2
5 5 345
=} — —tonm g
g — T[29] Setpoint
<} g 340 P
a F 129]
- 0 20 4 60 80 100
Time Step
MV: Reflux Ratio, N = 1 + «, At = 10 sec MV: Reboiler Heat Duty, N =1 + «, At = 10 sec
10.0 =
=== Reflux Reference 25 === Reboiler Reference
§ 75 Reflux ‘;? Reboiler
o a4
E -
z 50 ©
X % 3
2 ]
T 25 9
¢ 52
......... 5 b o e e ———
00 T T T T T T < T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Step Time Step

Infinite horizon MPC achieves closed-loop stability w/ two-element prediction horizon.
First element is finite; second element is the time-transformed infinite horizon.

21

ical

Lyapunov stability of NMPC

* Robust stability

— Basic idea

* Uncertainty in model: x* = f(x, u, w), where w could be
additive disturbance or uncertain parameters;

* Remain stable in the presence of disturbances.

A function V(.) is called an ISS-Lyapunov function for a system
x(k+1) = fix(k), u(k)) + q(x(k), w(k))
if there exist a set X, K, functions aq,9,c3 and a K function o such that

ar(|z]) < V(z) < ax(lz)
V(f(z,u,w)) = V(z) < —asz(|z]) + o(jw])
Vee X, Vwe W

22
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%&m Proof of robust stability for NMPC

» Additional Assumptions:
— lgGew)| <lq(x,0)] + Lg|w|
— lg(x.0)| < po(1x))/ & and |q(x,0)|< Gar, where p € (0,1).

J(x(k+1)) = J (x(k))
= J(SG(0),u(h) = J (x(k) +J (x(k +1)) = J (f (x(k),u(k)))
—(x(k),u(k)) + L, | q(x(k), w(k)) |

~at, (| x(k) )+ L, ga,,(\ x(k) )+ Ly L, |w(k))|

IA

IA

A

(p-Da,(|x(k) ) +0 |w(k)|

23

@Nonlinear programming (NLP) formulation for NMPC

TG = mind(z,)+ 39z,

s.t. z,, =f(z,v)l=0,.,N-1
z, = x(k)

zy — initial value

x(k) — measurement of state at t,

v, ®- (quadratic) stage and terminal costs
v; - predicted controlled variable

z; - predicted manipulated variable

How will NLP formulation satisfy assumptions
of NMPC stability properties?

24
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Nonlinear Programming
(note notation change)

Problem: Min, f(x)
s.t. g(x) <0
h(x) =0
where:
f(x) - scalar objective function
x - nvector of variables
g(x) - inequality constraints, m vector
h(x) - meq equality constraints.

Sufficient Condition for Global Optimum
- f(x) must be convex, and
- feasible region must be convex,
i.e. g(x) are all convex
h(x) are all linear
Except in special cases, there is no guarantee that a local optimum is global
if sufficient conditions are violated.

25

Optimality conditions for local optimum
Necessary First Order Karush Kuhn - Tucker Conditions

V L (x*, u, v) = VI(x*) + Vg(x*) u+ Vh(x*) v=0

(Balance of Forces)

u > 0 (Inequalities act in only one direction)

g (x¥)<0, h(x*)=0 (Feasibility)

u; gi(x*)=0 (Complementarity: either g;(x*) =0 or u;=0)

u, v are "weights" for "forces," known as KKT multipliers, shadow
prices, dual variables

“To guarantee that a local NLP solution satisfies KKT conditions, a constraint
qualification is required. E.g., the Linear Independence Constraint Qualification
(LICQ) requires active constraint gradients, [Vga(x*) Vh(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) Second Order Conditions
- Positive curvature in "constraint" directions.
- p'VAL(x*)p>0 (p'V L (x*)p>0)
where p are the constrained directions: Vh(x*)Tp = 0
for gi(x*)=0, Vgi(x*)Tp = 0, for u; > 0, Vg;(x*)Tp <0, for u; = 0

26
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[ Constraint Qualifications

« Linear Independence Constraint Qualification (LICQ):
[VA(x*), Vg;(x*)] is linearly independent, where
J eJ={jlgi(x*)=0}
= KKT multipliers (u,v) are bounded and unique.

+ Mangasarian-Fromovitz Constraint Qualification
(MECQ): VAa(x*) is linearly independent and exists y
such that

Vh(x*)Ty = 0, Vg(x¥)y < 0,j &J
= KKT multipliers (u,v) are bounded.

Constant Rank Constraint Qualification (CRCQ): all

subsets of [Vi(x), Vgi(x)],j ¢J have constant rank in
neighborhood of x*

27

ﬁm Second Order Conditions
(easy to satisfy for NMPC)

» Strong Second Order Sufficient Conditions (SSOSC): At
KKT point with LICQ,

PP VLS u*v¥)p >0,
where Vi(x*)p =0, Vg(x®)p = 0, j ¢ J.={j|g;(x*)=0, u;* >0}

» Generalized Strong Second Order Sufficient Conditions
(GSSOSC): At KKT point with MFCQ,
PP VLS u*v¥p >0,
for all u*, v* satisfying KKT conditions where Vh(x*)'p = 0,
Ve(x*)p=0,j&J,

- Strict Complementarity (SC): u;*-g;(x*) > 0, for allj.

28
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NLP Sensitivity Properties

* Theorem (Kojima, 1985):
— Iff(>, *), w(*, *), ¥Y() are twice continuously differentiable
and MFCQ and GSSOSC satisfied
— Then exists L; >0 with |J(p)-J(py) < L;|p-pol. where p is an
input parameter ) S
+ MFCQ, GSSOSC - Lipschitz continuity of objective
functions and primal variables wrt p. (Kojima, 1985)
+ MFCQ, GSSOSC, CRCQ = (Dpx*) directional
derivatives calculated with additional LP and QP steps
(Ralph and Dempe, 1995)

« LICQ, SOSC, SC - (dx*/dp), derivatives can be
calculated (Fiacco, 1983)

29

@Reformulating NLP with Soft State Constraints

— Disturbances may lead to infeasibility of the NLP
— Dependent active sets can make system unstable under perturbations

* Formulation
— If s* = 0, stability of the mixed constraint problem is same as original NLP

N-1 N-1
J(x(k))= mind(z,)+pspe+ Ew(zl,vl + E psle
1541 =0

1=0

s.t. z,,=f(z,v),[=0,.,N-1
z, = x(k)
8(z)35,520./=0,...N
v,eU,l=0,.,N-1
e=[11,1,1..1]
If 2(z) is linear, MFCQ and CRCQ are always satisfied at KKT point.

de Oliveira, N. M. C. and Biegler, L. T. [1998], ‘Constraint handling and stability properties of
model-predictive control’, Process Systems Engineering 40, 1138-1155.

30
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ﬁ‘“«‘ A Nonrobust NMPC Example
(Grimm et al., 2004)

10-1

min g(x10)+pgsN+El(x,u +0,8, X

x,u P A \\\\g
(12 2\ 12 e N

st x (kD)= fi(xu) = (fl (k)+;cz (k))2 u(k) +x, (k) / S \\\\\
1+ (xy (k) + x5 (k)yu” (k) = 2, (k)u(k) 7 [ \\
X, (k+1)= f,(x,u) = % (k) | h \\§
2 2T 1 (2 (k) + X2 () (k) = 2x, (R yu(k) X
|xll.sc+sl.,i=0,...,N—1,\xN lse+s, | \\\ // \

uE[-L1x (x)=-1
L G XD 1)
[ 1yx? + ey x])?
B f-D+ 0= XDH-D-|x)) T
J + Cop= [X D2 £ (=D + (f (5= D= | x])?

Grimm, G., Messina, M. J., Tuna, S. and Teel, A. [2004], ‘Examples when nonlinear model
predictive control is nonrobust’, Automatica 40, 523-533.

g(x)=|x|cos”

I(x,u) = x | cos™!

N bust NMPC E |
'

07 t 08 T T T T
—+—hard constraint hard constraint
+—+—soft constraint | soft constraint

06 : i 06 7
'

'
1 04r

05

02
04
of
o~
=< E]

03 -02

04t

02 L

10 15 20 25 30
time step

» The constraint x; < ¢ prevents the trajectory from going beyond x4=c

» Soft constraint allows the trajectory to go beyond x4=c and then
converge

32
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%&“" Infinite Horizon: Distillation Column
(Diehl, 2001; Lin, 2023)

Condenser
g' Model description

1. High-purity distillation column

e '\_DIQQ_%, 2. Separate methanol and n-propanol

Reflux ratio 3. Controls: Reboiler heat duty Q,, Reflux
ratio R

et 4. States: Mole fraction x, Liquid molar
—_— holdup M

5. Differential-algebraic model with 84
differential and 503 algebraic equations.

Control Task
Stage cost: maintain product mole fractions
Bottom product at 0.98.

Reboiler heat duty

33

33

_ Distillation Case w/ Disturbance : Short Prediction
e Horizon + Infinite Horizon (N = 2+ «)

CV:x_top, N =2+

CV: Temperature of the Bottom Trays, N = 2 + , At = 10 sec

Temperature (K)

— T[29] Setpoint
— T[29]

Product mole fraction

T T T T T T T
0 25 50 75 100 125 150 175 200
Time Step

MV: Reflux Ratio, N = 2 + o, At = 10 sec MV: Reboiler Heat Duty, N = 2 + «, At = 10 sec

o

-=- Reflux Reference
8 — Reflux

~== Reboiler Reference
| ~— Reboiler

=

Reflux Ratio (%)

Reboiler Heat Duty (M)
w

T T T

=T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time Step Time Step

« Disturbances: The feed concentration fluctuates 10% around its nominal values. At the 100 time step,
a large unscheduled disturbance drops feed concentration to 30% its nominal values for 10 time steps.

« Infinite horizon MPC keeps the CVs in bounded regions around the setpoints and is able to bring the
system back from the unplanned large disturbance.

34
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What about Fast NMPC?

» Fast NMPC is not just NMPC with a fast solver (Engell, 2007)

» Computational delay — between receipt of process measurement
and injection of control, determined by cost of dynamic optimization

» Leads to loss of performance and stability (see Rawlings and
Mayne, 2009; Findeisen and Allgéwer, 2004; Santos et al., 2001)

Can computational delay be overcome?
- Fast Newton-based NMPC
- Cheap NLP Sensitivity

35

Mﬁt‘nﬁﬂé NMPC — Can we avoid on-line optimization?

+ Divide Dynamic Optimization Problem (Diehl, Bock et al., 2002):
— preparation, feedback response and transition stages
— solve complete NLP in background ( ‘between’ sampling times)
as part of preparation and transition stages
— solve perturbed problem on-line
— > two orders of magnitude reduction in on-line computation
+ Based on NLP sensitivity of z, for dynamic systems
— Extended to Collocation approach — Zavala et al. (2008, 2009)
— Similar approach for MH State and Parameter Estimation — Zavala et
al. (2008)
» Stability Properties (Zavala et al., 2009)
— Nominal stability — no disturbances nor model mismatch
» Lyapunov-based analysis for NMPC
— Robust stability — some degree of mismatch
+ Input to State Stability (ISS) from Magni et al. (2005)
— Extension to economic objective functions
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&h NLP Sensitivity

Parametric Program

min f(a:,p) f(m7p)l\
s.t. ¢(z,p)=0 P(p)
z>0

Solution Triplet

s*(p)T — [I*T )\*T V*T]

Optimality Conditions P (p)

Vaf(z,p) + Vac(z,p)A—v = 0
c(z,p) = 0
XVe = 0

NLP Sensitivity > Rely upon Existence and Differentiability of s* (p)

5]
-> Main Idea: Obtaina—; and find s*(p;) by Taylor Series Expansion P

J2) (pl).,..:
—~k * 88T . O 5*(p1)
§*(p1) = s"(po) + pw (p1 — po)
P Ipg 5"(po)
37
% NLP Sensitivity with IPOPT
R . (Pirnay, Lopez Negrete, B., 2011)
Obtaining %
Po
Optimality Conditions of P(p)
Vil = Vaf(z,p) + Vee(z,p)A—v = 0
o(a,p) = 0} Q(s,p) =0
XVe = 0
Apply Implicit Function Theoremto  Q(s,p) = O around (pg, s*(pg))
9Q(s™(po).po) 9s| 4 9Q(s*(po):po) —
Os Op Do op
A
el o N
W(s*(po)) A(z*(po))  —I % VapL(s*(po))
A(z*(po))” 0 0 3 || Veelz*(po)) | =0
V*(po) 0 X*(po) g—; 0

KKT Matrix IPOPT

W(zg, A\p) Alzg) —I
A(ay)T 0 0
Vi 0 X

-> Already Factored at Solution

-> Sensitivity Calculation from Single Backsolve

> Approximate Solution Retains Active Set
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__Advanced Step Nonlinear MPC (zavala, B., 2009)

TRING Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

S —

x(k) g—M

Xk+1 |k

uys

u(k)

ur,

Wt e teen
k+N-1

min  J(x(k), u(k)) =& (x, )+ Ew(xllk’vllk)

I=k+1

st Xy = | (x(k),u(k))
Xk =f(x[|k’v1|k), l =k+1,. . k+N-1
e E€X, v €U, xwm €X,

Solve NLP(k) in background (between ¢, and #;.;)
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__Advanced Step Nonlinear MPC (zavala, B., 2009)

LC:
TRING Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

— e E—

Xk+1 |k

x(k) @ x(k+1)

u(k+1)
u(k)

ot te Teen

o

w, A, —1 AX :
AL o (¢] AAl= |x 0 —x(k+ 1D

(0}

Solve NLP(k) in background (between ¢, and #.;)
Sensitivity to update problem on-line to get (u(k+1))
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__Advanced Step Nonlinear MPC (zavala, B., 2009)

TRING Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

o

xl|k+l S X’

SI. Xppopa = f(lx(k + 1), uk + 1))|

k+N

I=k+2

Xpoa =Fxvie)s 1 = k+2,.k+N

Vien EU, - Xponaun € Xf

Solve NLP(k) in background (between ¢, and #;. ;)
Sensitivity to update problem on-line to get (u(k+1))
Solve NLP(k+1) in background (between #,.; and #;.>)

1

1

Xic+2 | k+1 :

1

x(k) @—g x(k+1) i
u(k+1) UN-2UN_1 :uU

u(k) 1
—_

e ter te tian

min  J(x(k+1), u(k+1)) = > (x5, + Ew(xukn Vitesr)

41

AAGM Nonlinear Model Predictive Control — Air Separation Unit

"™ (Huang, B., 2011)

Objective: minimize operating
cost subject fo demand
specifications

4 manipulated variables.
4 output variables.

Horizon: 100 minutes in 20
finite elements.
Sampling time: 5 minutes.

DAEs: 1520
Variables: 117,140
Constraints: 116,900

Online: 1 CPUs

Gas Nitrogen
Heat excl

& compressor

Air Feed

Crude Gas Nitrogen

LP Column

the 30™ tray

20 /\
30 T at

Y, (POX)

Pure nitrogen

Y, (PNI)

Temperature

Reboiler
Condenser

3 Y5 (TI130)

Liquid Nitrogen

Us (LN

8!

U, (GN)

Background: 200 CPUs, 6 IPOPT iters.

0

(UZ(MA) ) HP Column

!

Crude oxygen
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t = 30-60 min, product rates are ramped down by 30%. t =1000-1030 min,
they are ramped back. asNMPC is compared to MPC with linear input-

PNI fmalfmin] POX [molmin]

ASU Nonlinear MPC - Case 1

output empirical model.

I i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

600

£ [min]

Output Variables

I L L h L I 1 I I
o 200 400 600 800 1000 1200 1400 1600 1800 2000

t [min]

Manipulated Variables

The green dot-dashed lines are the set-points, the blue dashed lines are the linear

controller profiles and red solid lines are NMPC profile.

All the tuning parameters are favored to the linear controller.
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ﬁica‘l
ERING

NMPC of Air Separation Unit — Case 2

(Huang, B., 2009)

At t = 30-60 min, product rates are ramped down by 40%.
At t =1000-1030 min, they are ramped back. 5% disturbance is added to M.

X, : : : : »
hee : ; R
Wy v myimeaans®’ |
i i i i i i i i

T T T
-
B i e

000N 0 e
S

@ ©
=]
>

NI [mol/min) P OX [mol/min]
&
o o
=] (=]

e

T

e |
Noob

~
ida g . H . B !
non 4
i P it T i 1 1 1

I L

P
e »

]
8

TI30 [K]
<@

i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2
t [min]

Blue dashed lines are ideal NMPC profile
Red lines are AS-NMPC profile.

000

In_contrast, linearized controller is unstable

N=20,K=3

320 ODEs, 1200 AEs.
Variables: 117,140
Constraints: 116,900

400 NLPs solved
Background: 200 CPUs, 6 iters.
Online: 1 CPUs

Computational Feedback Delay
Reduced from 200 - 1 second.
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asNMPC: Concepts and Properties

* Interpretation: Fast linear MPC controller using
linearization of nonlinear model at previous step.

* NLP solved between samples, “instantaneous” sensitivity
update at sampling time

* On-line computation 2-3 orders of magnitude faster;
= Computational delay virtually eliminated

» Second order errors compared to ideal NMPC
=>» Nominal and ISS stability (zavala, B., 2009)

» |SpS stability when coupled with embedded state
estimators (Huang, Patwardhan, B., 2009a,b, 2010a-c, 2012)

45

CABD. On-Line Optimization with Uncertainty

CENTER Jung, Nie, Lee, LTB (2015); Jang, Lee, LTB (2016),
Holtorf, Mitsos, LTB (2018)

D-RTO through NMPC Incorporation of Uncertainty

* Detailed dynamic model * From states, parameters,

» Economic NMPC (£) measurement noise

+ Key Issues + State estimation with expanding

— Uncertainty-tolerant batch horizon, ...
optimization formulations * NMPC with shrinking batch
horizon...

» Off-line multi-model approach
(Bonvin et al., 2003)
Stochastic, Multi-stage Programs
within NMPC for disturbances with
delayed realization (Lucia, Engell,
2014; Puschke, Mitsos, 2018)

— Time critical optimization
(large-scale NLP)

— Accelerate with advanced
step (sensitivity-based)
strategies

46
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ﬁm Handling of Uncertain Dynamic Systems?
Multi-model Approach — Worst Case Control
(Bonvin et al., 2003)

Scenario branching: effect of uncertainty while optimizing control input

Xk+3
(es1) Xis2 (div2) g R
Xe+1 @ - @ >
(d) @ @ T >

e -

Xk . @ IS
@ »@-<=z1iiii—- - @eszziiiiio R >
I B R >
i @ @ .
’."”” @ >
* Worst Case: single control for multiple uncertainty cases " ®-——— >

e Large-scale, highly constrained NLP
* Feasible, but conservative performance

47

%’5’“‘ Handling of Uncertain Dynamic Systems?
==> Non-conservative multi-stage NMPC

Scenario branching: effect of uncertainty while optimizing control
input Xic+3

(dk+1, Uk+1) Xi+2 r__‘(dk+2’ L,l,k,'f?) @
1

Xk+1 :—__‘| P ','f,'rir’:':—r—'r ——————————————— = )
-] 1 1
@ s 5 1 ! Q@
(dk, ux) L e —-d
i H @
i) i
Xk B ! H }r” Ir H B )
T I S O DU R
@ S Tommees @t 'L: ””””” ’.“'*’:}:jjj:' """ @
] P e 1 e
1 1 b -
1 1 ———
oA B ——
L S B L I —
SR Lo
1 -
1 H @ :'figiffj:’ """""" @
-== [ .
P! e

Non-anticipativity: control inputs from same node set equal
until uncertainty is realized

Lucia, Engell et al., J. Process Control, 2013
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i Multi-stage NMPC: Polyol Case Study
(Holtorf, Mitsos, LTB, 2018)
S | Ctime i
. min iyt {may bl e
xi_'_l,u{(,k:K ..... Np—1,j=1,.,Ns(k) ;= Ng(k) J - scenario Index
L(x,{,lﬂ,u,’{') = At), (+uP) Economic cost function (processing time)
xo=f (x;f(j),u_f;. di) Nonlinear dynamic model
h(x,{, ui, d,{{) <0 Feasible domain

ul =l if 2P = 5O Non-anticipativity constraints

» Assume uncertainties have monotonic effect on inequality
constraints

* Identify worst case scenarios a priori

+ Eliminate remaining scenarios

==> Problem scales linearly with constraints, not exponentially
with disturbances

49
ical H L] =
msNMPC- Adaptive Scenario Generation
UP 2, PR uN 1L, PN
wheaphes | whenph
wliaplys  whonphoa
T
ki Phie Ul PR "
ulia Pl Pk
UL 2 PRy w1, PR 5
s
Uhi2s Pl UN_1, PN 1
» Non-anticipativity constraints: px unknown at k, resolved at k+1
* Much smaller (msNMPC): (n,,. + n, + 1)(n, + I)NR scenarios
+ Scales with path (n,:) and endpoint (n.) constraints, not n,,
» Scenarios updated with every NMPC shrinking horizon
50

11/24/25

25



Dynamic Real-time Optimization
Semi-Batch Polymer Process

o Key ingredients

Epoxides (ethylene oxide (EO), propylene
oxide (PO))

\/

(@) O
Molecules containing active hydrogen atoms
(alcohols, amines)

N3

OH N

A basic catalyst (KOH)

Reactor
@ Basic procedures

Starters are first mixed with catalyst in the liquid phase

Alkylene oxides in the liquid phase are fed in controlled rates
The reactor temperature is controlled by the heat exchanger
Allowed maximum reactor pressure guarded by the vent system control valve

51

Nominal Trajectory: High Potential for
Constraint Violations

0 50 100 150 200 250 300 0 50 100 150 200 250 300
t [min] t[min]

(a) open-loop nominal

420 w0l EE————
£ 400 R
= 3
400
380

0 100 200 300 400 500 600 0 100 200 300 400 500 60
t [min] t[min]

(b) open-loop multi-model

Improved by Worst Case Multi-model Approach, but with
High Conservatism
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o 100 200 300 400 500 o 100 200 300 400 500
¢t [min] t[min]

460

o 100 200 300 400 500 600 o 100 200 300 400 500 600

(b) msNMPC

(c) msNMPC-SG

53

NMPC Strategies with (MHE) State Estimation

25
4700

§20r WV L e 1600
= N 7 N 7 e
8
2 {500
215+ _
©
s H400 £
g E
S =
er "M~ M #mmm 1300
E - -
= 41200
g st —.- e

—— 7 1100

—.- tl’mn

0 : L= = o . o
open-loop  nominal NMPC msNMPC msNMPC-SG open-loop
nominal multi-model

[ unreac[102-ppm]  EEW NAMW[Z] @22 T2 (K]
[ unsat[1073 - %2] Z3 T™[K] = T (K]

Computational Performance

* Nominal NMPC: 99% of problems solved <1's
+ msNMPC: 99% of problems solved < 10s
+ msNMPC-SG: 99% of problems solved < 6s

* Implementable On-line
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On-line Nonlinear State Estimation and Control

Pyomo Optimization Framework
(D. Thierry, B. Nicholson, B.)

« Pyomo.DAE - dynamic k)
system with DAE model
p i T g
5 _ ) 20 Process ] 11 (s
0=G(x,y,uw)
1 Controller Tk State-estimator
[Compute controller input] estimated states [Compute the current state]
x(k+1)= f(x(k),u(k),w(k)) A
y(k) = h(x(k)) g
* Stat.e Estlmgtor:' Moving -
Horizon Estimation (MHE) computation
+ Controller: Nonlinear Model
Predictive Control (NMPC) set-points
55
Model-based Estimation (MHE)
and Control (NMPC)
M Iy, - nik-1,Y (k) , -y (k= N)) = P (z (k) : No1
L 2o (@ Eone-1s o) + min gy (one) + Z [z}{qui‘k +uf Ruqi
+ Z oI R g+ Z T, Q7 Vg Current st i = 1 (200 v)
zoj = z (k)
st Ty = f(qu)er”k le{ N -N+1,..,-1} Tlme < ® z”‘kex, te{o0,1,..,N}
y(k+1)=h(zgp) +ogr, L€{-N,-N+1,..,0} ® wy €U, 1e€{0,1,..,N—1}
o €X, L€{-N,~N+1,..,0} \
wye €W, le{-N,-N+1,.., —1) ﬁ/ \
<> ° é G o
P NMPC RN
as Future
N k N
56
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ﬁ Model-based Estimation and Control:

IDAES Dynamic Optimization and NMPC

Controller Tp Wi State estimatmj

[Compute controller input] g%ﬁ‘ﬁ?;fgrg;‘::ssq [Compute the current state]

Ll W

estimated states
and disturbances

:L'f., 'uf Reference-
steady states computation

DynGen

PlantSample
PlantPredict
cycleSamPlant()
update_u()
noisy_plant_()
plant_uinject()
update_state()

NMPCGen

create_olnmpc()
initialize_olnmpc()
load_init_state_()
sens_dot_nmpc()
find_target_ss()
change_setpoint()
print_r_nmpc()

MHEGen

create_lsmhe()
init_Ismhe_prep()
patch_meas_mhe()
set_covariance_()
check_bnd_noisy()
load_cov_prior()
sens_dot_mhe()

57

[E= NMPC for CO, Capture (BFB)

(Thierry, B.)
Output
CO2 capture
+ Set-point on CO, removal v/
fraction A O control
» Controls: valve opening inlet [Solids-in]
and outlet gas
» Discretized with 5 spatial finite
elements and 3 point Radau [Cooling Pipes]
collocation in time
» 315 states for the current
discretization
 Full-state feedback control,
stage cost tracked in objectiveontrol
* 46510 var. / 46500 eqgns.
58
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BFB Results: Ideal vs. asMHE

%102 Estimation error

N Average CPUs
35 Ideal
. MHE | asMHE
IPOPT 9.23 9.23

k_aug (rH) 13.02 | 13.02

|error|

k_aug (sens) 0 12.99

dot_(online) 0 2.4

Online Cost | 22.25 2.4

) L j n L L L ! h L s
¢} 100 200 300 400 500 600 700 800 900 1000
sampling time (120s)

* Use predicted measurement to solve NLP offline (IPOPT)
* Update optimum estimated state on-line using NLP
sensitivity correction (sIPOPT/k_aug)

» asMHE: similar performance at ~10% online cost

59

asNMPC vs Ideal NMPC (noise: 0 = 1%)

BFB Results: asNMPC: similar performance

05- ’W l ® Input 1 —

» Use predicted state to solve NLP offline (IPOPT)

* Update optimum control on-line using NLP sensitivity
correction (sIPOPT/k_aug)

 Similar Performance with < 5% of on-line

100

computation
Average CPUs
" Input 2
Ideal NMPC| asNMPC .
IPOPT 6.37 6.37
k_aug (rH) 0 0 °~
k_aug (sens) 0 5.6 o
dot_sens (online) 0 0.3 JE S—
Online 6.37 03 Spingame
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Conclusions

NMPC has well-known stability/robustness guarantees
» Asymptotic / Robust stability based on NLP properties
» Can Avoid Unreachable Finite Horizons

+ Infinite Horizon NMPC has asymptotic / robust stability

NMPC Computational Strategies

» Full-Discretization + Fast Sensitivity Calculations
* Large-scale nonlinear DAE models — case studies
» Sensitivity-based Nonlinear Estimation & Control

Bigger NLPs are not harder to solve

+ Embrace and exploit size, sparsity and structure
» Exact first and second derivatives are essential
» Newton-based optimization is fast

» Optimal sensitivity is (nearly) free

61

ical

Some Recent Advances in NMPC

L. T. Biegler, X. Yang, G. G. Fischer, “Advances in Sensitivity-based Nonlinear Model Predictive
Control and Dynamic Real-time Optimization,” Journal of Process Control, 30, pp. 104—116 (2015)
Griffith, D. W., V. M. Zavala, L. T. Biegler, “Robustly Stable Economic NMPC for Non-Dissipative
Stage Costs,” Journal of Process Control, 57, pp. 116 — 126 (2017)

D. W. Griffith, S. C. Patwardhan and L. T. Biegler, “Robustly Stable Adaptive Horizon Nonlinear
Model Predictive Control,” Journal of Process Control, 70, pp. 109-122 (2018)

M.Z. Yu, L. T. Biegler, “A reduced regularization strategy for economic NMPC,” Journal of Process
Control, 73 (2019) 46-57

C. Rajhans, D. W. Griffith, S. C. Patwardhan, L. T. Biegler, H. K. Pillai "Terminal Region
Characterization and Stability Analysis of Discrete Time Quasi-Infinite Horizon Nonlinear Model
Predictive Control,” Journal of Process Control, 83, pp. 30-52 (2019)

F. Holtorf, A. Mitsos, L. T. Biegler, “Multistage NMPC with on-line generated scenario trees:
Application to a semi-batch polymerization process,” J. Process Control, 80, pp. 167-179 (2019)
Zhou Yu, L. T. Biegler, “Advanced-step Multistage Nonlinear Model Predictive Control: Robustness
and Stability,” Journal of Process Control, 84, pp. 192-206 (2019)

Tianyu Yu, Jun Zhao, Zhuhua Xu, Xi Chen, L. T. Biegler “Sensitivity-based Hierarchical Distributed
Model Predictive Control of Nonlinear Processes,” Journal of Process Control, 84, pp. 146-167 (2019)
D. Krishnamoorthy, L. T. Biegler, J. Jaeschke, “ Adaptive Horizon Economic Nonlinear Model
Predictive Control,” Journal of Process Control, 92, pp. 108-118 (2020)

M. Thombre, Z. Yu, J. Jaeschke, L. T. Biegler, "*Sensitivity-assisted Multistage Nonlinear Model
Predictive Control with Online Scenario Adaptation," Comp. Chem. Eng., 107269 (2020)

San Dinh, Yao Tong, Zhenyu Wei, Owen Gerdes and L. T. Biegler, “Nonlinear Model Predictive
Control with an Infinite Horizon Approximation,” Journal of Process Control, 155 (2025) 103565

78

11/24/25

31



