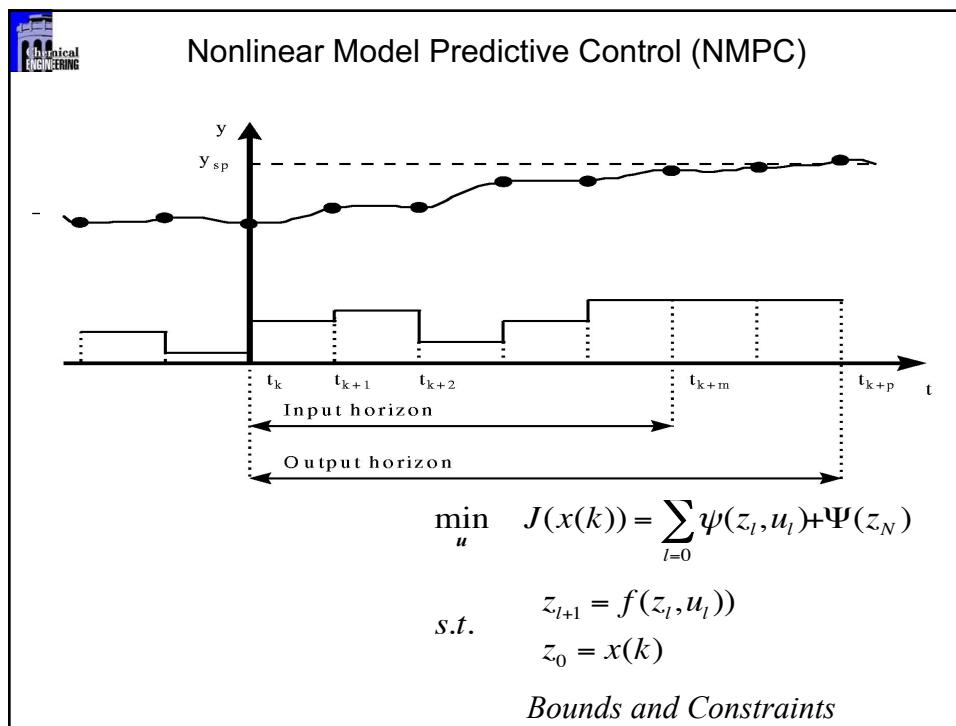


Optimization Strategies for NMPC: Properties and Algorithms

L. T. Biegler
 Department of Chemical Engineering
 Carnegie Mellon University

1



2

MPC - Background

- Motivation: embed dynamic model in moving horizon framework to drive process to desired state
 - **Generic MIMO controller**
 - **Direct handling of input and output constraints**
 - Relatively slow time-scales in chemical processes
- Different Model types
 - Linear Models: Step Response (DMC) and State-space
 - Data-Driven Models: Neural Nets, Volterra Series
 - Hybrid Models: linear with binary variables, multi-models
 - **Nonlinear First Principle Models – direct link to off-line planning and optimization**
- Nonlinear MPC Pros and Cons
 - + Operate process over wide range (e.g., startup and shutdown)
 - + **Vehicle for Dynamic Real-time Optimization**
 - Need Fast NLP Solver for Time-critical, on-line optimization
 - Computational Delay from On-line Optimization degrades performance

3

MPC and NMPC

Optimization and Optimal Control

- Pontryagin (1959), Bryson and Ho (1969), Ray (1981), Sargent and coworkers (1970s),...

Model Predictive Control

- Evolution from LQ, Initial MPC (Kleinman, 1975; Kwon and Pearson, 1977).
- DMC (Cutler and Ramaker, 1979), QDMC (Garcia and Morshedi, 1984) using step response models
- Concepts and Analysis: Allgöwer and coworkers (1989 -), Bordons and Camacho (2001), Rawlings and Mayne (2009), Grüne and Pannek (2011)
- LQ models → solve quadratic programs on-line

Nonlinear NMPC – need to consider on-line solution of NLP.

4

NMPC for High Purity Distillation

Air Separation Unit in IGCC-based Power Plants

- Need for high purity O₂
- Respond quickly to changes in process demand
- Large, highly nonlinear dynamic separation (MESH) models

Methanol distillation (Diehl, Bock et al., 2005)

- 40 trays, 210 DAEs, 19746 discretized equations

Argon Recovery Column

- 50 trays, 260 DAEs, 21306 discretized equations

Double Column ASU Case Study

- 80 trays, 1520 DAEs, 116,900 discretized equations

5

Nonlinear Model Predictive Control – Air Separation Unit
(Huang, B., 2011)

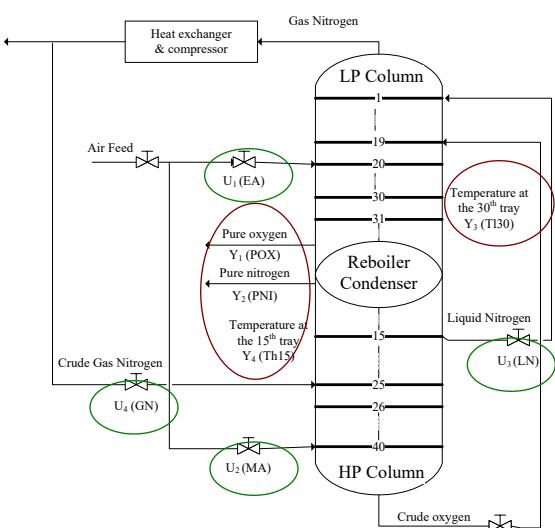
Objective: minimize operating cost subject to demand specifications

4 manipulated variables.
4 output variables.

Horizon: 100 minutes in 20 finite elements.
Sampling time: 5 minutes.

DAEs: 1520

After Discretization:
Variables: 117,140
Constraints: 116,900



6

Case Study: Air Separation Unit

Mesh Equations for Distillation Column

Assumption:

Vapor holdups are negligible. Index 2 system.

Ideal vapor phases.

Well mixed entering streams.

Constant pressure drop.

Equilibrium stage model.

$$\text{Mass balance: } \frac{dM_i}{dt} = L_{i-1} + V_{i+1} - L_i - V_i + F_i$$

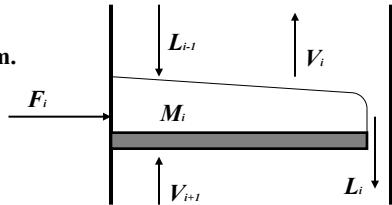
$$\text{Component balance: } \frac{d(M_i x_{i,j})}{dt} = L_{i-1} x_{i-1,j} + V_{i+1} y_{i+1,j} - L_i x_{i,j} - V_i y_{i,j} + F_i x_{i,j}^f$$

$$\text{Energy balance: } \frac{d(M_i h_i^L)}{dt} = L_{i-1} h_{i-1}^L + V_{i+1} h_{i+1}^V - L_i h_i^L - V_i h_i^V + F_i h_i^f$$

$$\text{Phase equilibrium: } y_{i,j} p_i = \gamma_{i,j} x_{i,j} p_i^{sat}$$

$$\text{Summation: } 1 = \sum_{j \in \text{COMP}} y_{i,j}$$

$$\text{Hydrodynamics: } L_i = k_d M_i$$

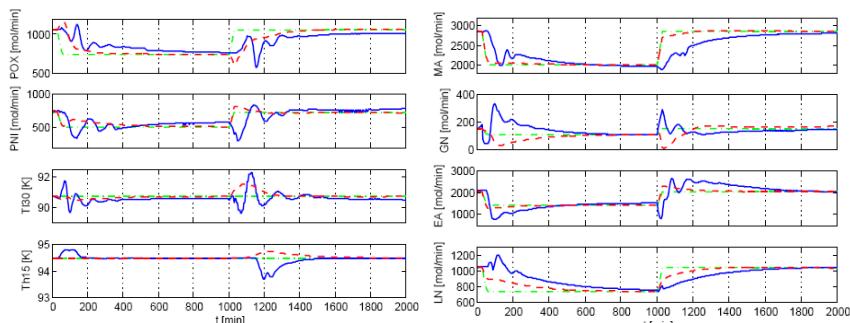


Reformulated index 1 system
contains 320 ODEs, 1200 AEs.

7

ASU Nonlinear MPC - Case 1

$t = 30-60$ min, product rates are ramped down by 30%. $t = 1000-1030$ min, they are ramped back. NMPC is compared to MPC with linear input-output empirical model.



Output Variables

Manipulated Variables

The green dot-dashed lines are the set-points, the blue dashed lines are the linear controller profiles and red solid lines are NMPC profile.

All the tuning parameters are favored to the linear controller.

Horizon Solution Time: 200 CPUs, 6 IPOPT iters.

8

Finite Horizon Formulation for NMPC

$$\begin{aligned}
 J(x(k)) := & \min_{v_l, z_l} \Phi(z_N) + \sum_{l=0}^{N-1} \psi(z_l, v_l) \\
 \text{s.t.} \quad & z_{l+1} = f(z_l, v_l), l = 0, \dots, N-1 \\
 & z_0 = x(k) \\
 & g(z_l) \leq 0, l = 0, \dots, N \\
 & v_l \in U, l = 0, \dots, N-1 \\
 & z_N \in X_f
 \end{aligned}$$

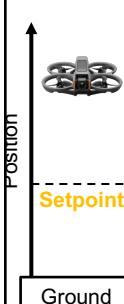
z_0 – initial value
 $x(k)$ – measurement of state at t_k
 ψ, Φ – (quadratic) stage and terminal costs
 v_l – predicted manipulated variable
 z_l – predicted state variable in finite horizon
 z_N – terminal state, how defined?

How long is N to meet terminal conditions?

9

Determine horizon length and specify terminal conditions?

Drone hovering problem:

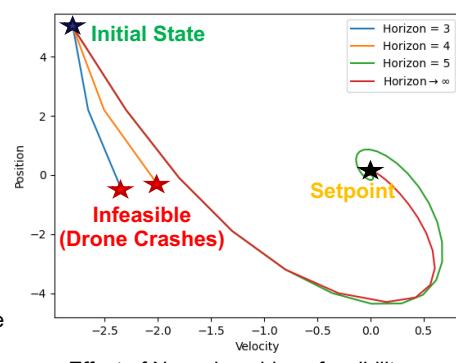


$$x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k$$

$$\text{where } x_k = \begin{bmatrix} \text{Position}_k \\ \text{Velocity}_k \end{bmatrix}; \quad u_k = \begin{bmatrix} \text{acceleration}_k \end{bmatrix}$$

Constraints:
 $\|x_k\|_\infty \leq 5; \|u_k\|_\infty \leq 0.5 \forall k \geq 0$

Tracking MPC Objective: Bring drone to new height (setpoint) without crashing to the floor.



Without terminal conditions in the formulation of the MPC (no terminal constraints or terminal cost, etc.), the closed-loop MPC is **infeasible** (the drone is descending too quickly and will crash) **if** the MPC's **horizon is less than 5**.

10

10

Lyapunov stability of NMPC

- Nominal stability
 - Basic idea
 - Perfect model, no uncertainty: $x^+ = f(x, u)$
 - Remain bounded and eventually achieve desired state
- Definition: Lyapunov Property

A function $V: R^n \rightarrow R_{\geq 0}$ is a Lyapunov function for a system

$$x(k+1) = f(x(k), u(k))$$

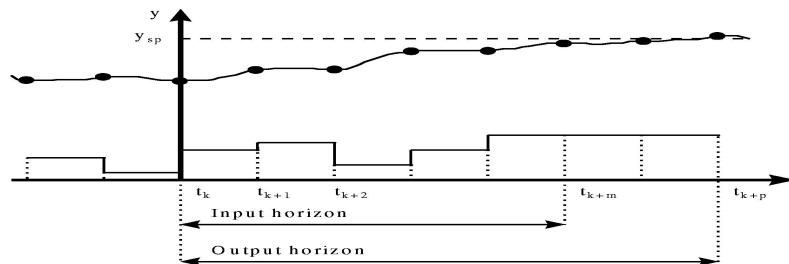
if there exist a set X , three \mathcal{K}_∞ functions $\alpha_1, \alpha_2, \alpha_3$ such that

$$\begin{aligned} \alpha_1(|x|) &\leq V(x) \leq \alpha_2(|x|) \\ V(f(x, u)) - V(x) &\leq -\alpha_3(|x|) \\ \forall x \in X \end{aligned}$$

- Can the objective function J_k serve as $V(x_k)$?

11

MPC Stability – Infinite Horizon (Keerthi and Gilbert (1988))



$$J_k = \sum_{l=k}^{\infty} \|y(l) - y^{sp}\|_{\varrho^y}^2 + \sum_{l=k}^{\infty} \|\mathbf{u}(l) - \mathbf{u}(l-1)\|_{\varrho^u}^2$$

$$J_k - J_{k+1} = \|y(k) - y^{sp}\|_{\varrho^y}^2 + \|\mathbf{u}(k) - \mathbf{u}(k-1)\|_{\varrho^u}^2$$

$$\begin{aligned} J_1 &\geq \sum_{k=1}^{\infty} (J_k - J_{k+1}) \\ &= \sum_{k=1}^{\infty} (\|y(k) - y^{sp}\|_{\varrho^y}^2 + \|\mathbf{u}(k) - \mathbf{u}(k-1)\|_{\varrho^u}^2) \\ &\Rightarrow y(k) \rightarrow y_{sp}, \mathbf{u}(k) \rightarrow \mathbf{u}(k-1) \end{aligned}$$

Nominal stability – perfect model

- m (input) = p (output)
- Based on discrete Lyapunov arguments with $J(x)$ as Lyapunov function
- Infinite time horizon, ideal case
- Finite time horizon - need endpoint constraint $\rightarrow z(k+p)=0$
Suffers End Effects
- Choice of terminal cost/constraints gives additional stability properties

12

Approaches	Advantages	Remaining Challenges	References
Sufficiently Long Horizon	<ul style="list-style-type: none"> $V(x_k) (= J_k) =: \min_{v_l, z_l} \Phi(z_N) + \sum_{l=0}^{N-1} \Psi(z_l, v_l)$ 	Approach is computationally expensive	Common Practice
Adaptive Horizon	<ul style="list-style-type: none"> Computationally efficient 	$z_{l+1} = f(z_l, v_l)$ A sufficiently long horizon is needed to initialize	Griffith et al. (2018), JPC
Terminal Cost	<ul style="list-style-type: none"> Approximate an increasing horizon 	$g(z_l)$ nonlinear or... $v_l \in U_l$ for $l=0, \dots, N-1$ $z_N \in X_f$ (overly?) large terminal cost	Mayne et al. (2000), Pannocchia, Rawlings (2003) Faulwasser et al. (2018)
Terminal Constraint	<ul style="list-style-type: none"> Simplified implementation 	<ul style="list-style-type: none"> Reachability? Requires offline computation 	Limon et al. (2006), IEEE TAC Griffith et al. (2018), JPC

Main Objective: Avoid all this!

Develop an infinite horizon model predictive control using time transformation to enhance closed-loop stability and simplify implementation.

13

Chemical ENGINEERING	Infinite Horizon NMPC: Previous Work
<ul style="list-style-type: none"> S. S. Keerthi and E.G. Gilbert (1988) - Classic NMPC paper with asymptotic stability properties for infinite horizon problems. P. Kunkel and O. Hagen (2000) – TPBVP with <i>exp</i> time transformation to determine optimal trajectories. L. Würth and W. Marquardt (2014, 2016) – <i>tanh</i> time transformation with sampling times determined by wavelet adaptations <u>over entire horizon, open loop stable cases only</u> M. Muehlebach and R. D'Andrea (2016, 2017) - applied to LTI MPC with Galerkin approximations, applied to UAV with 100 Hz performance W. Greer and C. Sultan (2020) - divides LTI MPC problem into finite horizon part and infinite horizon part (with LQR control). Applied to very fast helicopter control. 	

14

14

**Time Transformation: Infinite to Finite Horizon
What's New?**

Given continuous-time dynamic system:

$$\frac{dx}{dt} = f(x(t), u(t))$$

Time transformation - only applied to final sampling time in MPC horizon.

Converts infinite interval $t \in [0, \infty)$ to finite interval $\tau \in [0, 1]^*$

$$\tau = \tanh(\gamma t)$$

γ is the tuning parameter

Transformed continuous-time dynamic system:

$$\frac{dx}{d\tau} = \frac{f(x(\tau), u(\tau))}{\gamma(1 - \tau^2)}; \quad x(t=0) = x(\tau=0)$$

*any transformation with bijective mapping in intervals can be applied

15

Infinite Horizon MPC with Time Transformation

Infinite horizon NMPC at $t_k = k\Delta t$:

$$V(x_k)(=J_k) = \min \sum_{l=0}^{N-1} \psi(z_l, v_l) \Delta t + \Phi(z_N) \Delta t$$

s.t. $z_{l+1} = F(z_l, v_l), l = 0, \dots, N-1$
 $z_s = F(z_N, v)$
 $z_0 = x_k$
 $z_l \in \mathcal{X}, v_l \in \mathcal{U}, l = 0, \dots, N$

Terminal Cost $\Phi(z_N)$: designed to overestimate Riemann sum of last element (infinite length):

$$\Phi(z_N) \Delta t = \beta \int_t^\infty \psi(z(t), v(t)) dt > \sum_{l=0}^\infty \psi(z_l, v_l) \Delta t$$

where $\beta > \hat{\beta} \geq 1$ for some threshold $\hat{\beta}$.

Discretization for index-1 DAEs:

$$F(z_l, v_l) = z_l + \int_{t_k + \Delta t l}^{t_k + \Delta t (l+1)} f(z(t), v(t)) dt$$

Last element, $t \in [t, \infty)$, $t = t_k + (N-1)\Delta t$:

$$F(z_N, v) = z_N + \int_t^\infty f(z(t), v(t)) dt$$

Apply time transform $\tau = \tanh(\gamma(t - t_k))$:

$$F(z_N, v) = z_N + \int_0^1 \frac{f(z(\tau), v(\tau))}{\gamma(1 - \tau^2)} d\tau$$

Additional assumptions: Weak controllability

$$0 \leq \psi(x, u) \leq \alpha_1(\|x\|)$$

$$0 \leq \Phi(x) \leq \alpha_2(\|x\|)$$

$\alpha_1(\|x\|), \alpha_2(\|x\|)$ are \mathcal{K}_∞ functions of $\|x\|$

16

Recursive Feasibility of Time-Transformed Infinite Horizon MPC

- Final Element Discretization: Orthogonal collocation on finite elements
- Zero-order hold: not applied for MVs in last (infinite) element
- To ensure recursive feasibility:
 - First collocation point of the last element fixed at previous time step solution
 - First collocation point must be larger than Δt , i.e., $\tanh^{-1}(\gamma \Delta t) > \tau_{I,I}$
- Leads to Asymptotic Stability of NMPC

17

17

Case Study: Distillation Column
(Diehl, 2001; Lin, 2023)

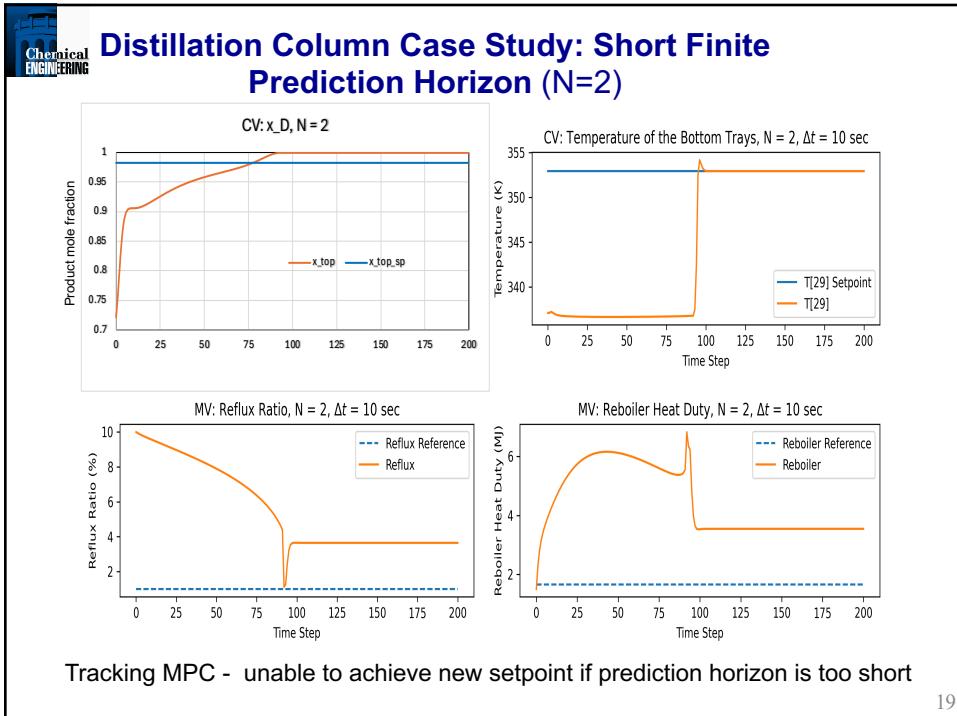
Model description

- High-purity distillation column
- Separate methanol and n-propanol
- Controls: Reboiler heat duty Q_r , Reflux ratio R
- States: Mole fraction x , Liquid molar holdup M
- Differential-algebraic model with 84 differential and 503 algebraic equations.*

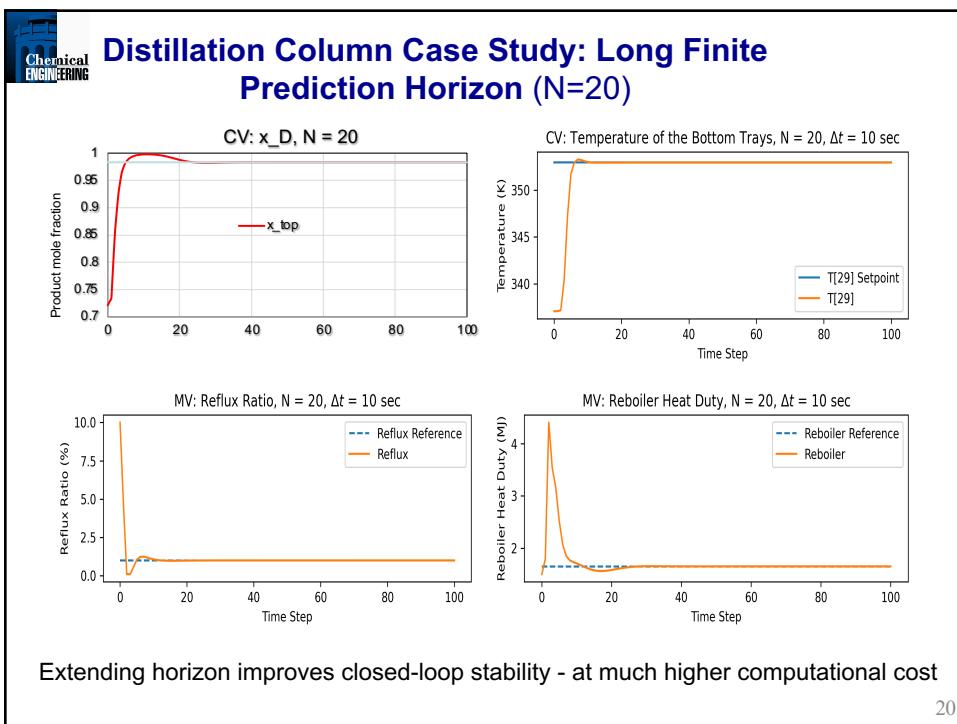
Control Task
Stage cost: maintain product mole fractions at 0.98.

18

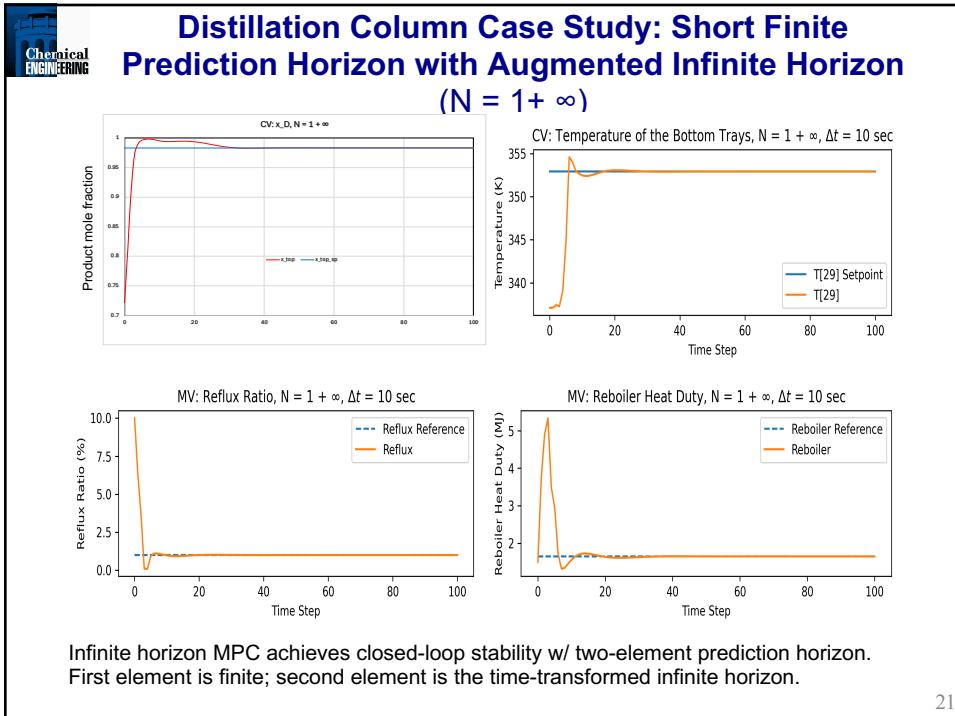
18



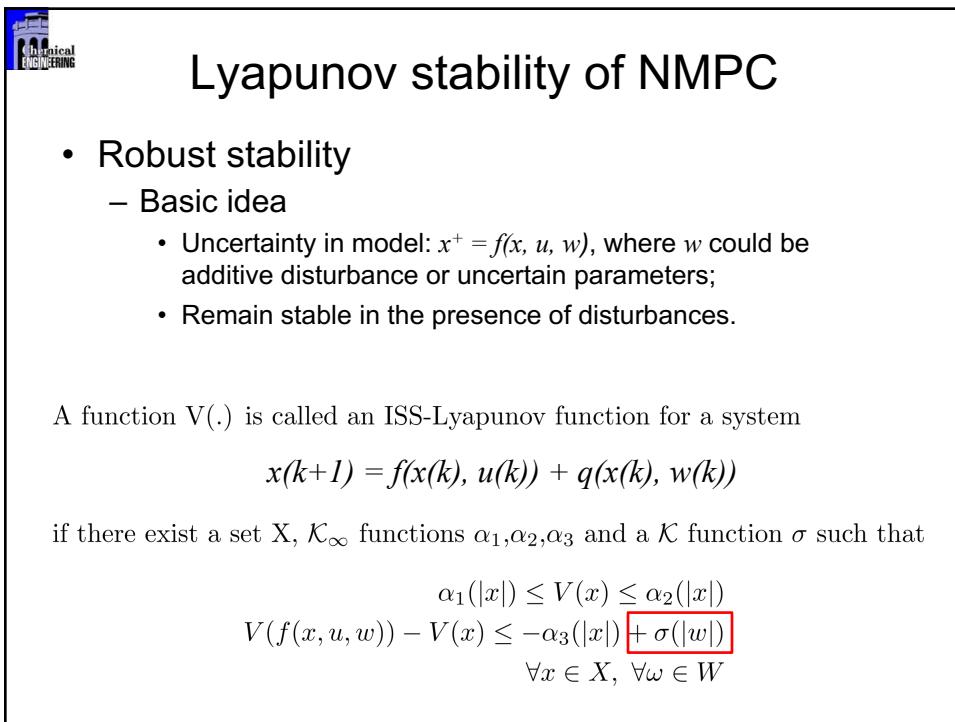
19



20



21



22

Proof of robust stability for NMPC

- Additional Assumptions:
 - $|q(x, w)| \leq |q(x, 0)| + L_g |w|$
 - $|q(x, 0)| \leq \rho \alpha_p(|x|) / \zeta$, and $|q(x, 0)| \leq q_{max}$, where $\rho \in (0, 1)$.

$$\begin{aligned}
 & J(x(k+1)) - J(x(k)) \\
 = & J(f(x(k), u(k))) - J(x(k)) + J(x(k+1)) - J(f(x(k), u(k))) \\
 \leq & -\psi(x(k), u(k)) + L_J |q(x(k), w(k))| \\
 \leq & -\alpha_p(|x(k)|) + L_J \frac{\rho}{\zeta} \alpha_p(|x(k)|) + L_J L_g |w(k)| \\
 \leq & (\rho - 1) \alpha_p(|x(k)|) + \sigma |w(k)|
 \end{aligned}$$

23

Nonlinear programming (NLP) formulation for NMPC

$$\begin{aligned}
 J_N(x(k)) := & \min_{v_l, z_l} \Phi(z_N) + \sum_{l=0}^{N-1} \psi(z_l, v_l) \\
 \text{s.t.} & z_{l+1} = f(z_l, v_l), l = 0, \dots, N-1 \\
 & z_0 = x(k) \\
 & g(z_l) \leq 0, l = 0, \dots, N \\
 & v_l \in U, l = 0, \dots, N-1
 \end{aligned}$$

z_0 – initial value

$x(k)$ – measurement of state at t_k

ψ, Φ - (quadratic) stage and terminal costs

v_l - predicted controlled variable

z_l - predicted manipulated variable

How will NLP formulation satisfy assumptions
of NMPC stability properties?

24

Nonlinear Programming (note notation change)

Problem: $\text{Min}_x f(x)$

s.t. $g(x) \leq 0$

$h(x) = 0$

where:

$f(x)$ - scalar objective function

x - n vector of variables

$g(x)$ - inequality constraints, m vector

$h(x)$ - meq equality constraints.

Sufficient Condition for Global Optimum

- $f(x)$ must be convex, and

- feasible region must be convex,

i.e. $g(x)$ are all convex

$h(x)$ are all linear

Except in special cases, there is no guarantee that a local optimum is global if sufficient conditions are violated.

25

Optimality conditions for local optimum

Necessary First Order Karush Kuhn - Tucker Conditions

$$\nabla L(x^*, u, v) = \nabla f(x^*) + \nabla g(x^*) u + \nabla h(x^*) v = 0$$

(Balance of Forces)

$u \geq 0$ (Inequalities act in only one direction)

$g(x^*) \leq 0, h(x^*) = 0$ (Feasibility)

$u_i g_i(x^*) = 0$ (Complementarity: either $g_i(x^*) = 0$ or $u_i = 0$)

u, v are "weights" for "forces," known as KKT multipliers, shadow

prices, dual variables

"To guarantee that a local NLP solution satisfies KKT conditions, a constraint qualification is required. E.g., the Linear Independence Constraint Qualification (LICQ) requires active constraint gradients, $[\nabla g_A(x^*) \quad \nabla h(x^*)]$, to be linearly independent. Also, under LICQ, KKT multipliers are uniquely determined."

Necessary (Sufficient) Second Order Conditions

- Positive curvature in "constraint" directions.

- $p^T \nabla^2 L(x^*) p \geq 0$ ($p^T \nabla^2 L(x^*) p > 0$)

where p are the constrained directions: $\nabla h(x^*)^T p = 0$

for $g_i(x^*) = 0, \nabla g_i(x^*)^T p = 0$, for $u_i > 0, \nabla g_i(x^*)^T p \leq 0$, for $u_i = 0$

26

Constraint Qualifications

- Linear Independence Constraint Qualification (LICQ): $[\nabla h(x^*), \nabla g_j(x^*)]$ is linearly independent, where $j \in J = \{j | g_j(x^*) = 0\}$
 \rightarrow KKT multipliers (u, v) are bounded and unique.
- Mangasarian-Fromovitz Constraint Qualification (MFCQ): $\nabla h(x^*)$ is linearly independent and exists y such that

$$\nabla h(x^*)^T y = 0, \nabla g_j(x^*)^T y < 0, j \in J$$

 \rightarrow KKT multipliers (u, v) are bounded.
- Constant Rank Constraint Qualification (CRCQ): all subsets of $[\nabla h(x), \nabla g_j(x)]$, $j \in J$ have constant rank in neighborhood of x^*

27

Second Order Conditions

(easy to satisfy for NMPC)

- Strong Second Order Sufficient Conditions (SSOSC): At KKT point with LICQ,

$$p^T \nabla_{xx} L(x^*, u^*, v^*) p > 0,$$

$$\text{where } \nabla h(x^*)^T p = 0, \nabla g_j(x^*)^T p = 0, j \in J_+ = \{j | g_j(x^*) = 0, u_j^* > 0\}$$
- Generalized Strong Second Order Sufficient Conditions (GSSOSC): At KKT point with MFCQ,

$$p^T \nabla_{xx} L(x^*, u^*, v^*) p > 0,$$

$$\text{for all } u^*, v^* \text{ satisfying KKT conditions where } \nabla h(x^*)^T p = 0,$$

$$\nabla g_j(x^*)^T p = 0, j \in J_+$$
- Strict Complementarity (SC): $u_j^* - g_j(x^*) > 0$, for all j .

28

NLP Sensitivity Properties

- Theorem (Kojima, 1985):
 - If $f(\cdot, \cdot)$, $\psi(\cdot, \cdot)$, $\Psi(\cdot)$ are twice continuously differentiable and MFCQ and GSSOSC satisfied
 - Then exists $L_J > 0$ with $|J(p) - J(p_0)| \leq L_J |p - p_0|$, where p is an input parameter
- **MFCQ, GSSOSC** – Lipschitz continuity of objective functions and primal variables wrt p . (Kojima, 1985)
- MFCQ, GSSOSC, CRCQ \rightarrow $(D_{\Delta p} x^*)$ directional derivatives calculated with additional LP and QP steps (Ralph and Dempe, 1995)
- LICQ, SOSC, SC \rightarrow (dx^* / dp) , derivatives can be calculated (Fiacco, 1983)

29

Reformulating NLP with Soft State Constraints

- Disturbances may lead to infeasibility of the NLP
- Dependent active sets can make system unstable under perturbations
- Formulation

- If $s^* = 0$, stability of the mixed constraint problem is same as original NLP

$$\begin{aligned}
 J(x(k)) := & \min_{v_l, z_l} \Phi(z_N) + \rho s_N^T e + \sum_{l=0}^{N-1} \psi(z_l, v_l) + \sum_{l=0}^{N-1} \rho s_l^T e \\
 \text{s.t.} \quad & z_{l+1} = f(z_l, v_l), l = 0, \dots, N-1 \\
 & z_0 = x(k) \\
 & g(z_l) \leq s_l, s_l \geq 0, l = 0, \dots, N \\
 & v_l \in U, l = 0, \dots, N-1 \\
 & e = [1, 1, 1, \dots, 1]^T
 \end{aligned}$$

If $g(z)$ is linear, MFCQ and CRCQ are always satisfied at KKT point.

de Oliveira, N. M. C. and Biegler, L. T. [1998], 'Constraint handling and stability properties of model-predictive control', *Process Systems Engineering* 40, 1138–1155.

30

A Nonrobust NMPC Example
(Grimm et al., 2004)

$$\min_{x,u} \quad g(\mathbf{x}_{10}) + \rho_g s_N + \sum_{l=0}^{10-1} l(\mathbf{x}, u) + \rho_l s_l$$

$$s.t. \quad x_1(k+1) = f_1(\mathbf{x}, u) = \frac{-(x_1^2(k) + x_2^2(k))^{1/2} u(k) + x_1(k)}{1 + (x_1^2(k) + x_2^2(k)) u^2(k) - 2x_1(k) u(k)}$$

$$x_2(k+1) = f_2(\mathbf{x}, u) = \frac{x_2(k)}{1 + (x_1^2(k) + x_2^2(k)) u^2(k) - 2x_1(k) u(k)}$$

$$x_{1,i} \leq c + s_i, i = 0, \dots, N-1, |\mathbf{x}_N| \leq \varepsilon + s_N$$

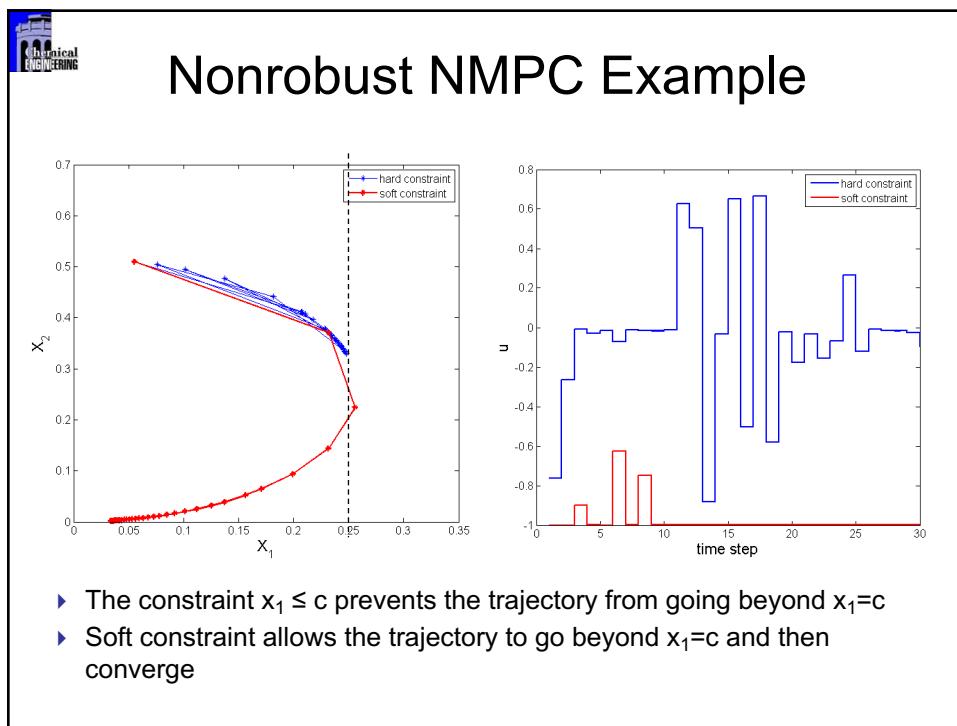
$$u \in [-1, 1], \kappa_f(\mathbf{x}) = -1$$

$$g(x) = |\mathbf{x}| \cos^{-1} \frac{(x_2 - |\mathbf{x}|)(-|\mathbf{x}|)}{|\mathbf{x}| \sqrt{x_1^2 + (x_2 - |\mathbf{x}|)^2}}$$

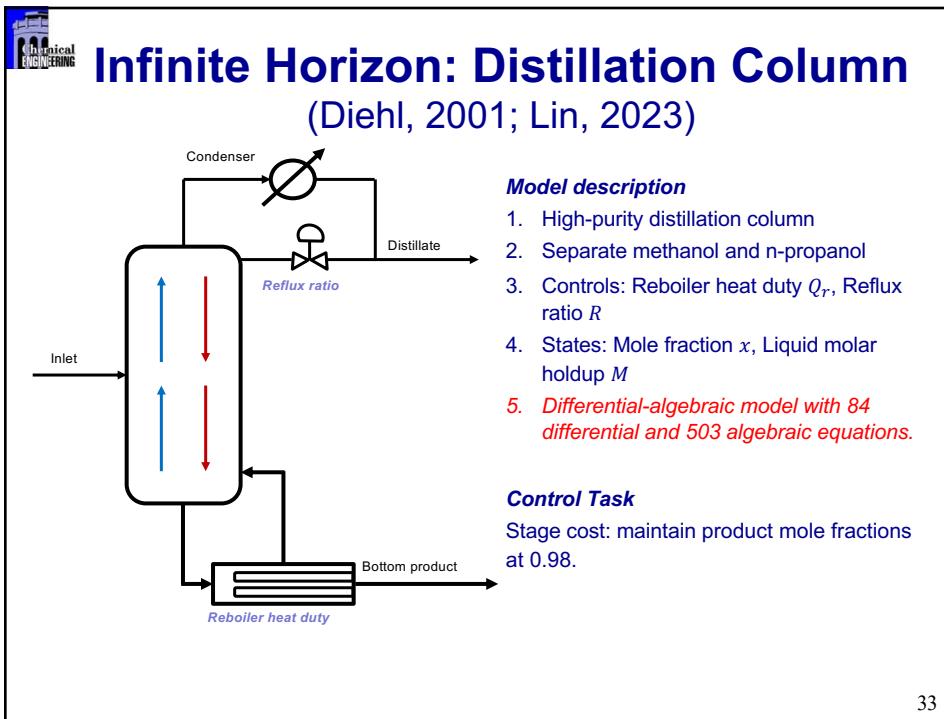
$$l(x, u) = |\mathbf{x}| \cos^{-1} \frac{x_1 f_1(\mathbf{x}, -1) + (x_2 - |\mathbf{x}|)(f_2(\mathbf{x}, -1) - |\mathbf{x}|)}{\sqrt{x_1^2 + (x_2 - |\mathbf{x}|)^2} \sqrt{f_1(\mathbf{x}, -1)^2 + (f_2(\mathbf{x}, -1) - |\mathbf{x}|)^2}}$$

Grimm, G., Messina, M. J., Tuna, S. and Teel, A. [2004], 'Examples when nonlinear model predictive control is nonrobust', *Automatica* **40**, 523–533.

31

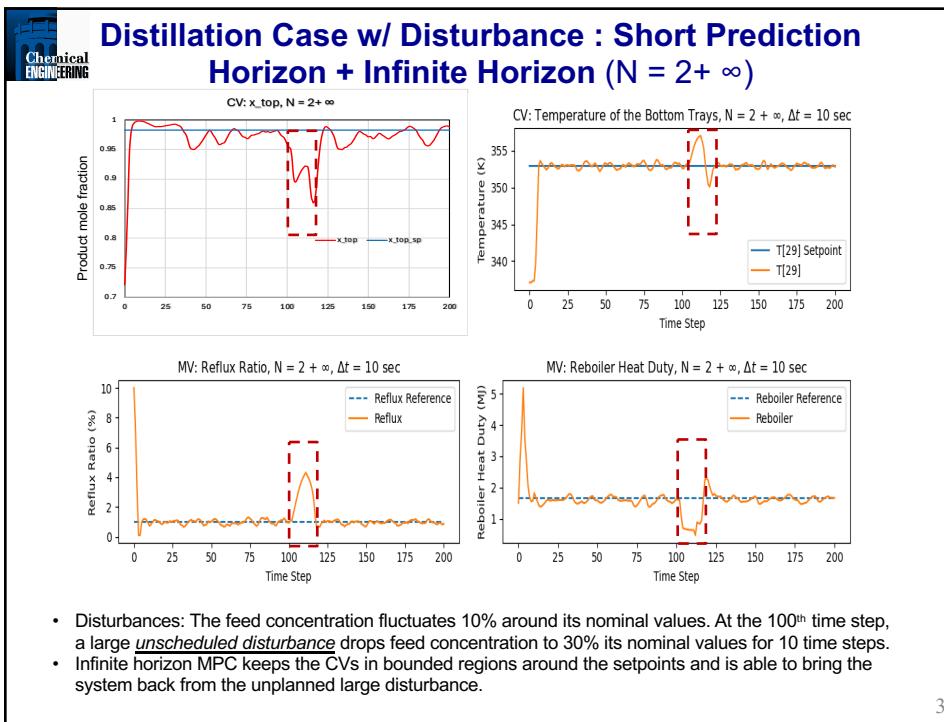


32



33

33

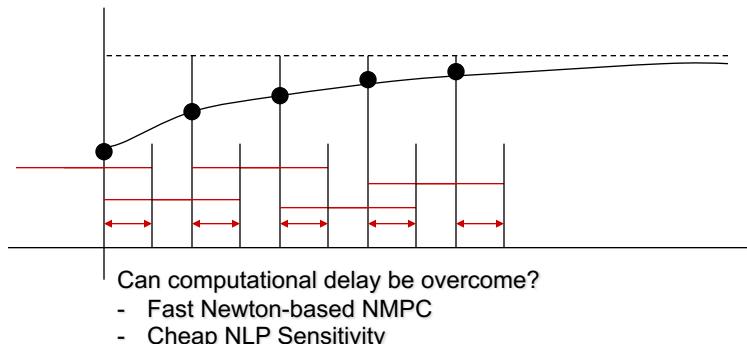


34

34

What about Fast NMPC?

- Fast NMPC is not just NMPC with a fast solver (Engell, 2007)
- **Computational delay** – between receipt of process measurement and injection of control, determined by cost of dynamic optimization
- Leads to loss of **performance** and **stability** (see Rawlings and Mayne, 2009; Findeisen and Allgöwer, 2004; Santos et al., 2001)



35

NMPC – Can we avoid on-line optimization?

- **Divide Dynamic Optimization Problem** (Diehl, Bock et al., 2002):
 - preparation, feedback response and transition stages
 - solve complete NLP in background ('between' sampling times) as part of preparation and transition stages
 - solve perturbed problem on-line
 - > two orders of magnitude reduction in on-line computation
- **Based on NLP sensitivity of z_0 for dynamic systems**
 - Extended to Collocation approach – Zavala et al. (2008, 2009)
 - Similar approach for MH State and Parameter Estimation – Zavala et al. (2008)
- **Stability Properties** (Zavala et al., 2009)
 - Nominal stability – no disturbances nor model mismatch
 - Lyapunov-based analysis for NMPC
 - Robust stability – some degree of mismatch
 - Input to State Stability (ISS) from Magni et al. (2005)
 - Extension to economic objective functions

36

**Chemical
ENGINEERING**

NLP Sensitivity

Parametric Program

$$\begin{aligned} \min \quad & f(x, p) \\ \text{s.t.} \quad & c(x, p) = 0 \\ & x \geq 0 \end{aligned} \quad \left. \right\} P(p)$$

Solution Triplet

$$s^*(p)^T = [x^{*T} \ \lambda^{*T} \ \nu^{*T}]$$

Optimality Conditions $P(p)$

$$\begin{aligned} \nabla_x f(x, p) + \nabla_x c(x, p) \lambda - \nu &= 0 \\ c(x, p) &= 0 \\ XVe &= 0 \end{aligned}$$

NLP Sensitivity → Rely upon Existence and Differentiability of $s^*(p)$

→ Main Idea: Obtain $\frac{\partial s}{\partial p} \Big|_{p_0}$ and find $\hat{s}^*(p_1)$ by Taylor Series Expansion $\hat{s}^*(p_1)$

$$\hat{s}^*(p_1) \approx s^*(p_0) + \frac{\partial s}{\partial p} \Big|_{p_0} (p_1 - p_0)$$

37

**Chemical
ENGINEERING**

NLP Sensitivity with IPOPT (Pirnay, Lopez Negrete, B., 2011)

Obtaining $\frac{\partial s}{\partial p} \Big|_{p_0}$

Optimality Conditions of $P(p)$

$$\begin{aligned} \nabla_x \mathcal{L} = \nabla_x f(x, p) + \nabla_x c(x, p) \lambda - \nu &= 0 \\ c(x, p) &= 0 \\ XVe &= 0 \end{aligned} \quad \left. \right\} Q(s, p) = 0$$

Apply Implicit Function Theorem to $Q(s, p) = 0$ around $(p_0, s^*(p_0))$

$$\frac{\partial Q(s^*(p_0), p_0)}{\partial s} \frac{\partial s}{\partial p} \Big|_{p_0} + \frac{\partial Q(s^*(p_0), p_0)}{\partial p} = 0$$

$$\underbrace{\begin{bmatrix} W(s^*(p_0)) & A(x^*(p_0)) & -I \\ A(x^*(p_0))^T & 0 & 0 \\ V^*(p_0) & 0 & X^*(p_0) \end{bmatrix} \begin{bmatrix} \frac{\partial x}{\partial p} \\ \frac{\partial \lambda}{\partial p} \\ \frac{\partial \nu}{\partial p} \end{bmatrix} + \begin{bmatrix} \nabla_{x,p} \mathcal{L}(s^*(p_0)) \\ \nabla_p c(x^*(p_0)) \\ 0 \end{bmatrix}}_{\text{KKT Matrix IPOPT}} = 0$$

KKT Matrix IPOPT

$$\begin{bmatrix} W(x_k, \lambda_k) & A(x_k) & -I \\ A(x_k)^T & 0 & 0 \\ V_k & 0 & X_k \end{bmatrix}$$

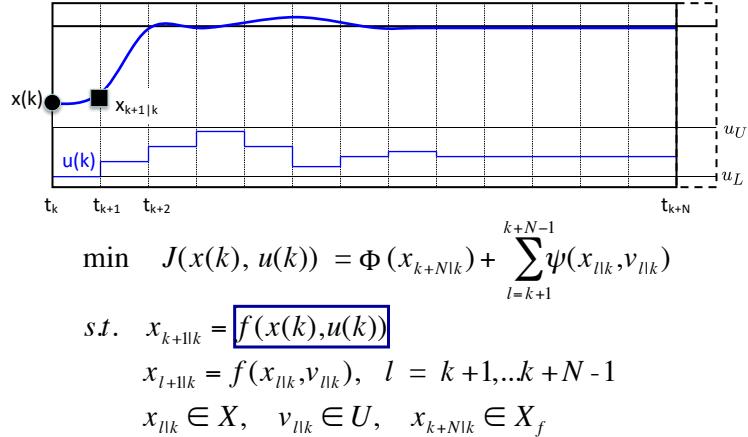
- Already Factored at Solution
- Sensitivity Calculation from Single Backsolve
- Approximate Solution Retains Active Set

38

Advanced Step Nonlinear MPC (Zavala, B., 2009)

Solve NLP in background (between steps, not on-line)

Update using sensitivity on-line



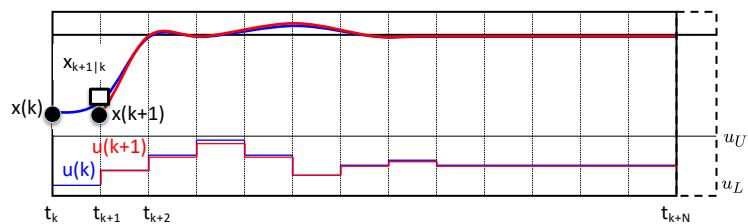
Solve NLP(k) in background (between t_k and t_{k+1})

39

Advanced Step Nonlinear MPC (Zavala, B., 2009)

Solve NLP in background (between steps, not on-line)

Update using sensitivity on-line



$$\begin{bmatrix} W_k & A_k & -I \\ A_k^T & O & O \\ Z_k & O & X_k \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta z \end{bmatrix} = \begin{bmatrix} O \\ \vdots \\ x_{k+1|k} - x(k+1) \\ O \end{bmatrix}$$

Solve NLP(k) in background (between t_k and t_{k+1})

Sensitivity to update problem on-line to get (u(k+1))

40

Advanced Step Nonlinear MPC (Zavala, B., 2009)

Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

$$\min J(x(k+1), u(k+1)) = \Phi(x_{k+N+1|k+1}) + \sum_{l=k+2}^{k+N} \psi(x_{l|k+1}, v_{l|k+1})$$

$$s.t. \quad x_{k+2|k+1} = f(x(k+1), u(k+1))$$

$$x_{l|k+1} = f(x_{l|k}, v_{l|k}), \quad l = k+2, \dots, k+N$$

$$x_{l|k+1} \in X, \quad v_{l|k+1} \in U, \quad x_{k+N+1|k+1} \in X_f$$

Solve NLP(k) in background (between t_k and t_{k+1})
 Sensitivity to update problem on-line to get $(u(k+1))$
 Solve NLP(k+1) in background (between t_{k+1} and t_{k+2})

41

Nonlinear Model Predictive Control – Air Separation Unit (Huang, B., 2011)

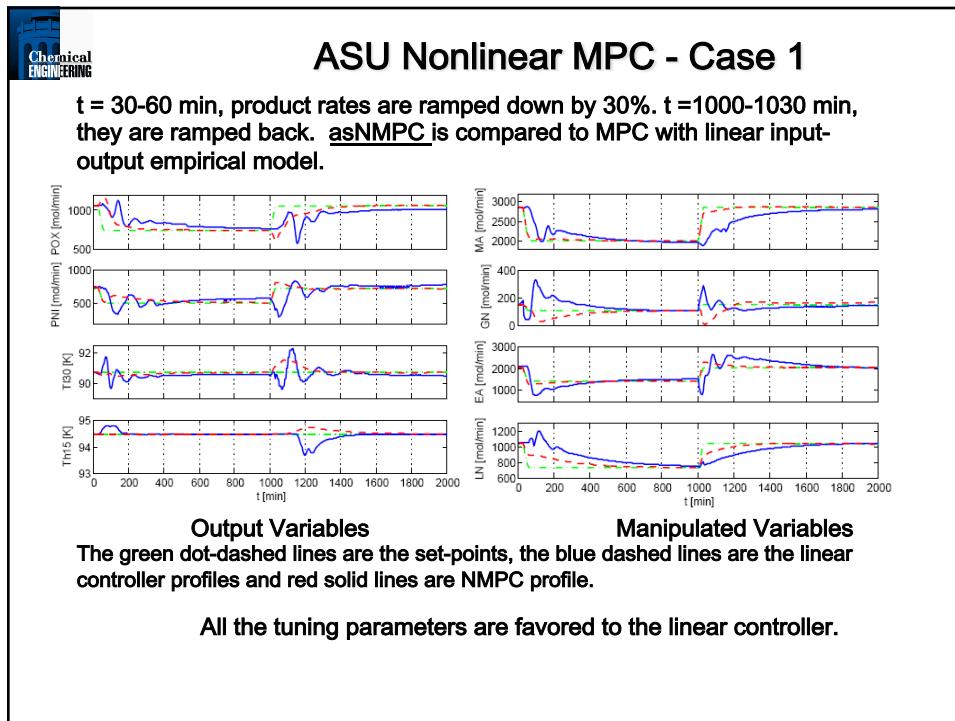
Objective: minimize operating cost subject to demand specifications

4 manipulated variables.
4 output variables.

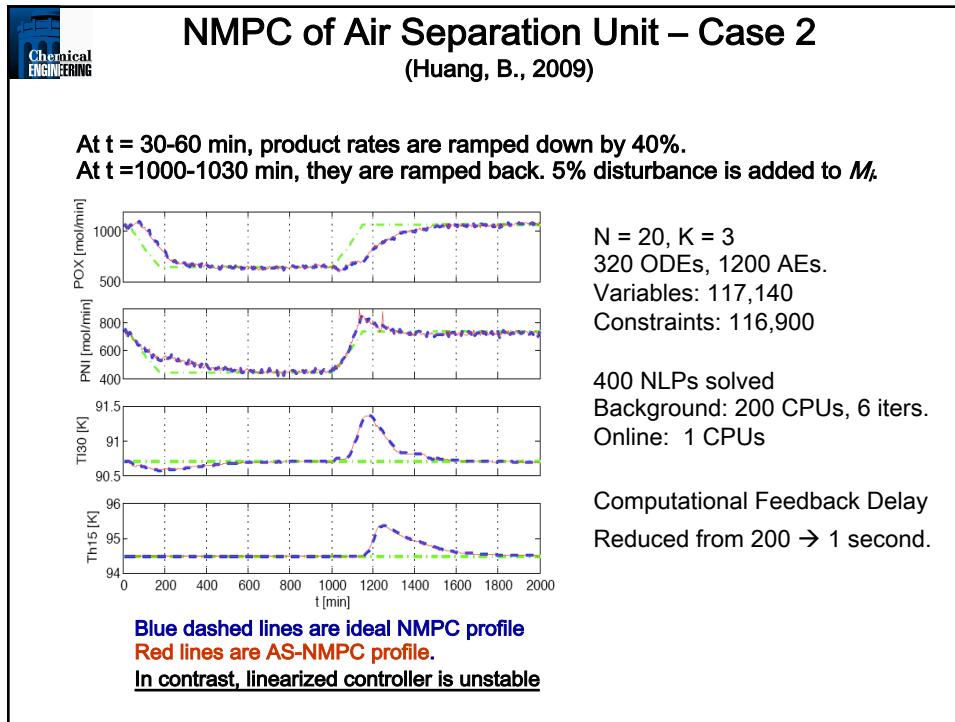
Horizon: 100 minutes in 20 finite elements.
Sampling time: 5 minutes.

DAEs: 1520
Variables: 117,140
Constraints: 116,900
Background: 200 CPUs, 6 IPOPT iters.
Online: 1 CPUs

42



43



44

asNMPC: Concepts and Properties

- Interpretation: Fast linear MPC controller using *linearization of nonlinear model at previous step*.
- NLP solved between samples, “instantaneous” sensitivity update at sampling time
- On-line computation 2-3 orders of magnitude faster;
 - ➔ Computational delay virtually eliminated
- Second order errors compared to ideal NMPC
 - ➔ Nominal and ISS stability (Zavala, B., 2009)
- ISpS stability when coupled with embedded state estimators (Huang, Patwardhan, B., 2009a,b, 2010a-c, 2012)

45

On-Line Optimization with Uncertainty

Jung, Nie, Lee, LTB (2015); Jang, Lee, LTB (2016),
Holtorf, Mitsos, LTB (2018)

D-RTO through NMPC

- Detailed dynamic model
- Economic NMPC (t_f)
- Key Issues
 - Uncertainty-tolerant optimization formulations
 - Time critical optimization (large-scale NLP)
 - Accelerate with advanced step (sensitivity-based) strategies

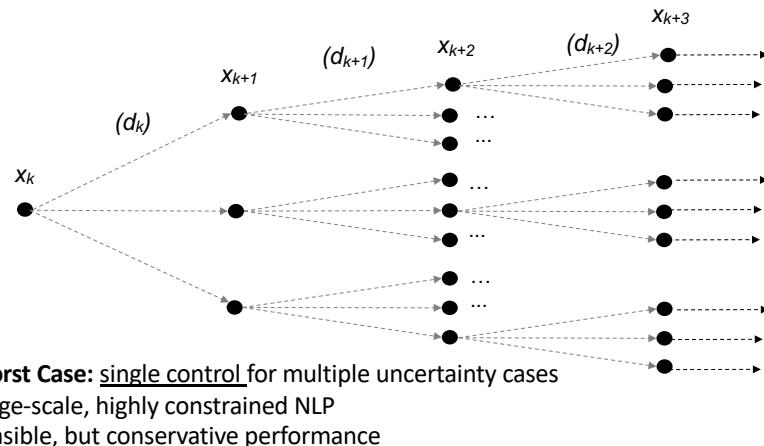
Incorporation of Uncertainty

- From states, parameters, measurement noise
- State estimation with expanding batch horizon, ...
- NMPC with shrinking batch horizon...
- Off-line multi-model approach (Bonvin et al., 2003)
- Stochastic, Multi-stage Programs within NMPC for disturbances with delayed realization (Lucia, Engell, 2014; Puschke, Mitsos, 2018)

46

Handling of Uncertain Dynamic Systems? Multi-model Approach – Worst Case Control (Bonvin et al., 2003)

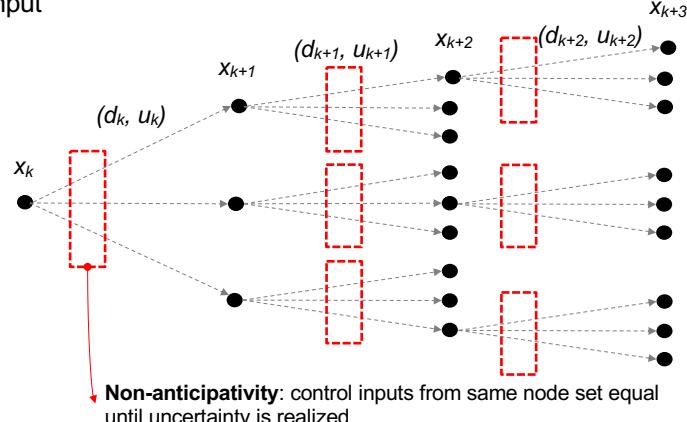
Scenario branching: effect of uncertainty while optimizing control input



47

Handling of Uncertain Dynamic Systems? ==> Non-conservative multi-stage NMPC

Scenario branching: effect of uncertainty while optimizing control input



Lucia, Engell et al., J. Process Control, 2013

48

Multi-stage NMPC: Polyol Case Study
(Holtorf, Mitsos, LTB, 2018)

$$\min_{x_{k+1}^j, u_k^j, k=K, \dots, N_T-1, j=1, \dots, N_S(k)} \sum_{k=K}^{N_T-1} \left\{ \max_j \frac{\mathcal{L}(x_{k+1}^j, u_k^j)}{N_S(k)} \right\} \quad \begin{array}{l} k : \text{time index} \\ j : \text{scenario index} \end{array}$$

$\mathcal{L}(x_{k+1}^j, u_k^j) = \Delta t_b (+\mu P)$ **Economic cost function (processing time)**
 $x_{k+1}^j = f(x_k^{p(j)}, u_k^j, d_k^j)$ Nonlinear dynamic model
 $h(x_k^j, u_k^j, d_k^j) \leq 0$ Feasible domain
 $u_k^j = u_k^l \text{ if } x_k^{p(j)} = x_k^{p(l)}$ Non-anticipativity constraints

- Assume uncertainties have monotonic effect on inequality constraints
- Identify worst case scenarios *a priori*
- Eliminate remaining scenarios

==> Problem scales linearly with constraints, not exponentially with disturbances

49

msNMPC- Adaptive Scenario Generation

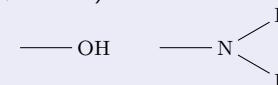
- Non-anticipativity constraints: p_k unknown at k , resolved at $k+1$
- Much smaller (msNMPC):** $(n_{pc} + n_e + 1)(n_{pc} + 1)^{N_R}$ scenarios
 - Scales with path (n_{pc}) and endpoint (n_e) constraints, not n_p
 - Scenarios updated with every NMPC shrinking horizon

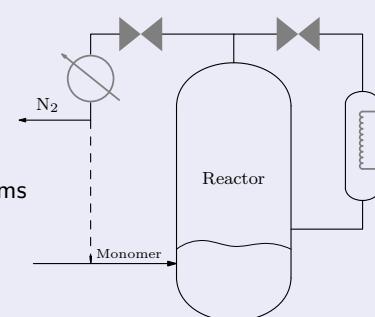
50

**Dynamic Real-time Optimization
Semi-Batch Polymer Process**

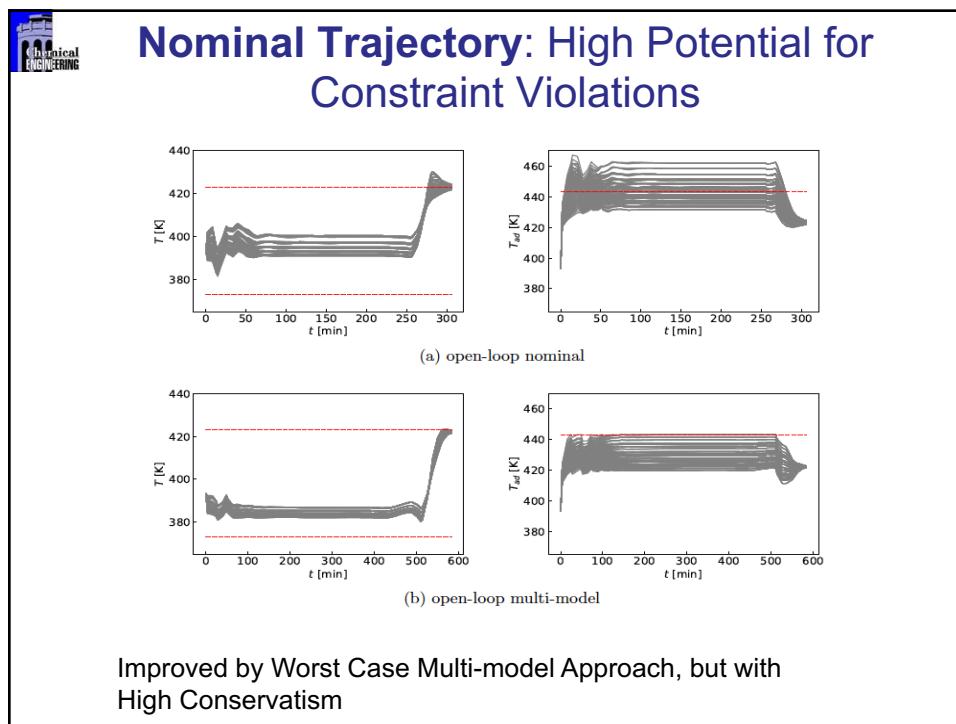
Chemical Engineering

- Key ingredients
 - Epoxides (ethylene oxide (EO), propylene oxide (PO))

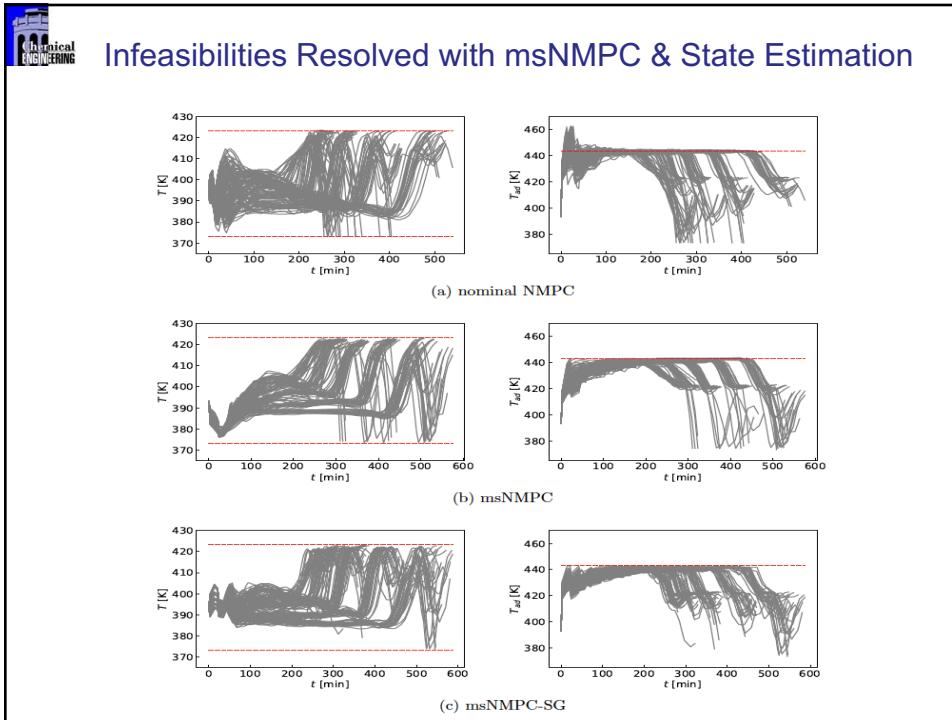
 - Molecules containing active hydrogen atoms (alcohols, amines)
 
 - A basic catalyst (KOH)
- Basic procedures
 - Starters are first mixed with catalyst in the liquid phase
 - Alkylene oxides in the liquid phase are fed in controlled rates
 - The reactor temperature is controlled by the heat exchanger
 - Allowed maximum reactor pressure guarded by the vent system control valve



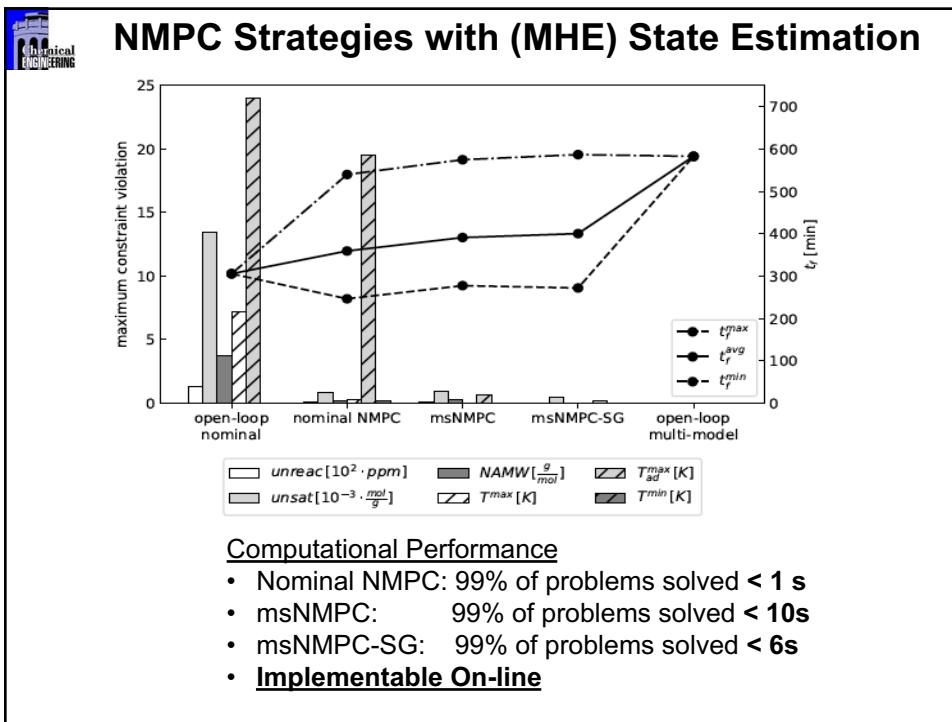
51



52



53



54

On-line Nonlinear State Estimation and Control Pyomo Optimization Framework
(D. Thierry, B. Nicholson, B.)

- Pyomo.DAE - dynamic system with DAE model

$$\begin{aligned} \frac{dx}{dt} &= F(x, y, u, w) \\ 0 &= G(x, y, u, w) \end{aligned}$$

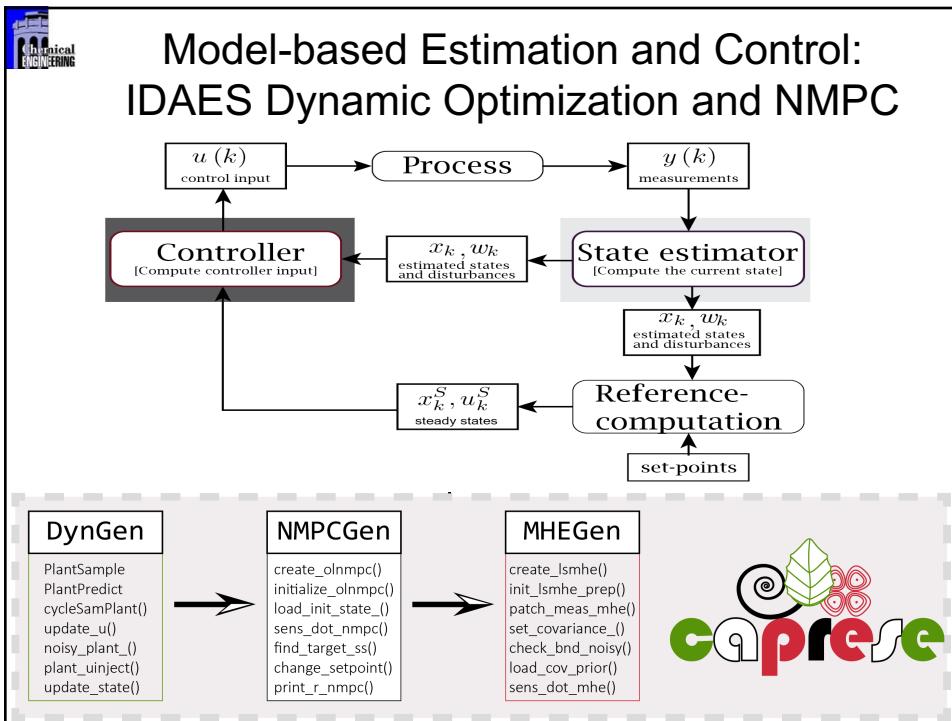
$$\begin{aligned} x(k+1) &= f(x(k), u(k), w(k)) \\ y(k) &= h(x(k)) \end{aligned}$$
- State Estimator: Moving Horizon Estimation (MHE)
- Controller: Nonlinear Model Predictive Control (NMPC)

55

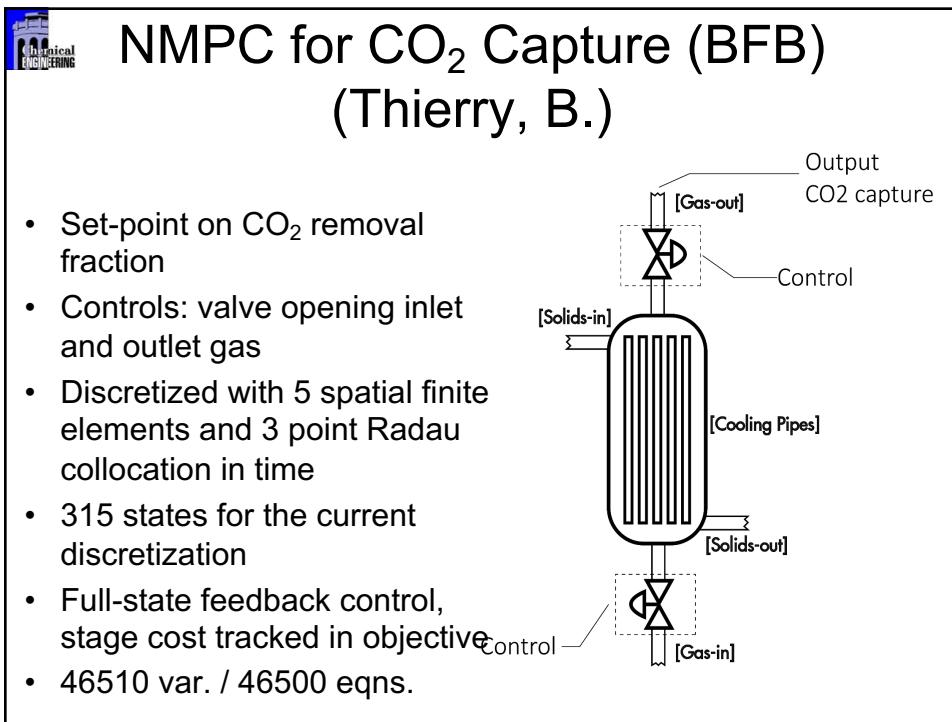
Model-based Estimation (MHE) and Control (NMPC)

$$\begin{aligned} \mathcal{M}(\Pi_{-N|k-1}, \hat{x}_{-N|k-1}, y(k), \dots, y(k-N)) : \\ \min_{x_{-N} w_k} \quad & \Phi_{-N}(x_{-\mathcal{N}|k}, \hat{x}_{-\mathcal{N}|k-1}, \Pi_{-\mathcal{N}|k-1}) + \dots \\ & \dots + \sum_{i=-\mathcal{N}}^0 v_{i|k}^T \mathcal{R}_i^{-1} v_{i|k} + \sum_{i=-\mathcal{N}}^{-1} w_{i|k}^T \mathcal{Q}_i^{-1} w_{i|k} \\ \text{s.t.} \quad & x_{l+1|k} = f(x_{l|k}, u_{l|k}), \quad l \in \{-\mathcal{N}, -\mathcal{N}+1, \dots, -1\} \\ & y(k+l) = h(x_{l|k}) + v_{l|k}, \quad l \in \{-\mathcal{N}, -\mathcal{N}+1, \dots, 0\} \\ & x_{l|k} \in \mathbb{X}, \quad l \in \{-\mathcal{N}, -\mathcal{N}+1, \dots, 0\} \\ & w_{l|k} \in \mathbb{W}, \quad l \in \{-\mathcal{N}, -\mathcal{N}+1, \dots, -1\} \end{aligned}$$

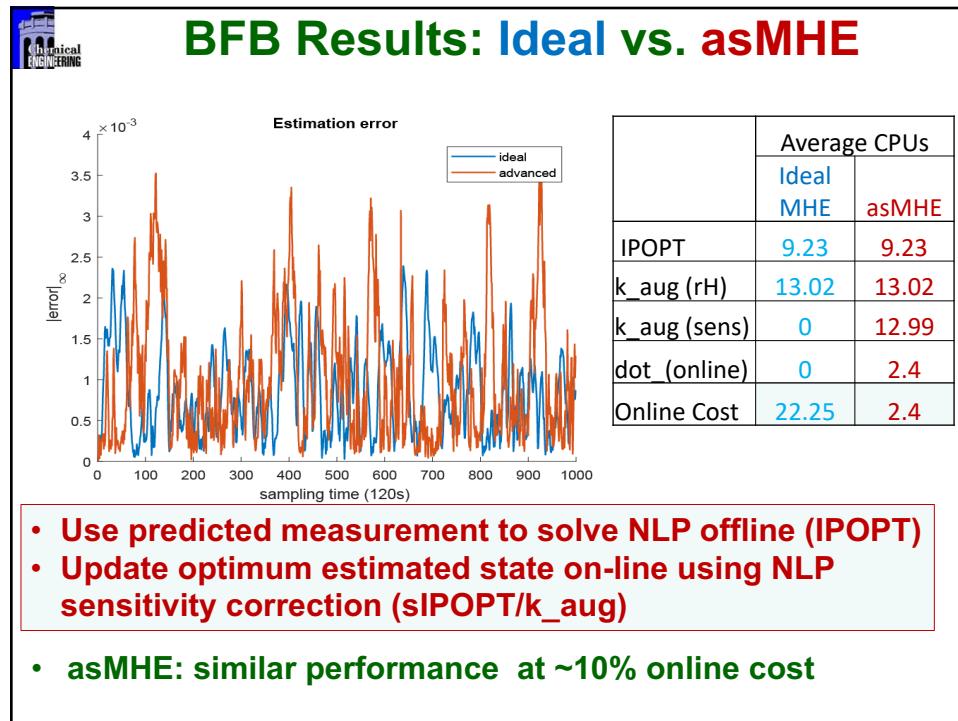
56



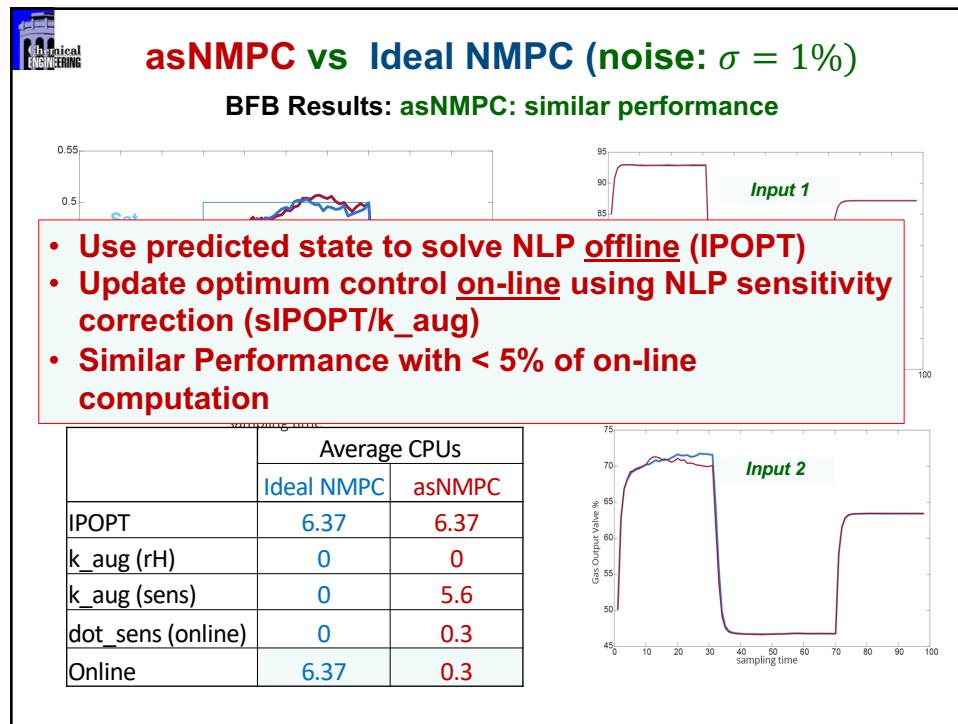
57



58



59



60

Conclusions

NMPC has well-known stability/robustness guarantees

- Asymptotic / Robust stability based on NLP properties
- Can Avoid Unreachable Finite Horizons
- Infinite Horizon NMPC has asymptotic / robust stability

NMPC Computational Strategies

- Full-Discretization + Fast Sensitivity Calculations
- Large-scale nonlinear DAE models – case studies
- Sensitivity-based Nonlinear Estimation & Control

Bigger NLPs are not harder to solve

- Embrace and exploit size, sparsity and structure
- Exact first and second derivatives are essential
- Newton-based optimization is fast
- Optimal sensitivity is (nearly) free

61

Some Recent Advances in NMPC

- L. T. Biegler, X. Yang, G. G. Fischer, "Advances in Sensitivity-based Nonlinear Model Predictive Control and Dynamic Real-time Optimization," *Journal of Process Control*, 30, pp. 104–116 (2015)
- Griffith, D. W., V. M. Zavala, L. T. Biegler, "Robustly Stable Economic NMPC for Non-Dissipative Stage Costs," *Journal of Process Control*, 57, pp. 116 – 126 (2017)
- D. W. Griffith, S. C. Patwardhan and L. T. Biegler, "Robustly Stable Adaptive Horizon Nonlinear Model Predictive Control," *Journal of Process Control*, 70, pp. 109–122 (2018)
- M.Z. Yu, L. T. Biegler, "A reduced regularization strategy for economic NMPC," *Journal of Process Control*, 73 (2019) 46–57
- C. Rajhans, D. W. Griffith, S. C. Patwardhan, L. T. Biegler, H. K. Pillai "Terminal Region Characterization and Stability Analysis of Discrete Time Quasi-Infinite Horizon Nonlinear Model Predictive Control," *Journal of Process Control*, 83, pp. 30-52 (2019)
- F. Holtoft, A. Mitsos, L. T. Biegler, "Multistage NMPC with on-line generated scenario trees: Application to a semi-batch polymerization process," *J. Process Control*, 80, pp. 167-179 (2019)
- Zhou Yu, L. T. Biegler, "Advanced-step Multistage Nonlinear Model Predictive Control: Robustness and Stability," *Journal of Process Control*, 84, pp. 192-206 (2019)
- Tianyu Yu, Jun Zhao, Zhuhua Xu, Xi Chen, L. T. Biegler "Sensitivity-based Hierarchical Distributed Model Predictive Control of Nonlinear Processes," *Journal of Process Control*, 84, pp. 146-167 (2019)
- D. Krishnamoorthy, L. T. Biegler, J. Jaeschke, " Adaptive Horizon Economic Nonlinear Model Predictive Control," *Journal of Process Control*, 92, pp. 108-118 (2020)
- M. Thombre, Z. Yu, J. Jaeschke, L. T. Biegler, "Sensitivity-assisted Multistage Nonlinear Model Predictive Control with Online Scenario Adaptation," *Comp. Chem. Eng.*, 107269 (2020)
- San Dinh, Yao Tong, Zhenyu Wei, Owen Gerdes and L. T. Biegler, "Nonlinear Model Predictive Control with an Infinite Horizon Approximation," *Journal of Process Control*, 155 (2025) 103565

78