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Nonlinear Model Predictive Control (NMPC)

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
     variables

ysp : set points
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NMPC Estimation and Control

min
u

J(x(k)) = ψ(zl,ul )+Ψ(zN )
l=0

N

∑

s.t.
zl+1 = f (zl,ul ))
z0 = x(k)

Bounds

NMPC Subproblem

Why NMPC?
 Track a profile – evolve from 

linear dynamic models (MPC)
 Severe nonlinear dynamics (e.g, 

sign changes in gains)
 Operate process over wide range 

(e.g., startup and shutdown)

Model Updater
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Bounds and Constraints
2



11/24/25

2

MPC - Background
• Motivation: embed dynamic model in moving horizon framework to drive 

process to desired state
• Generic MIMO controller 
• Direct handling of input and output constraints
• Relatively slow time-scales in chemical processes 

• Different Model types
• Linear Models: Step Response (DMC) and State-space
• Data-Driven Models: Neural Nets, Volterra Series
• Hybrid Models: linear with binary variables, multi-models
• Nonlinear First Principle Models – direct link to off-line planning 

and optimization

• Nonlinear MPC Pros and Cons
+ Operate process over wide range (e.g., startup and shutdown)
+ Vehicle for Dynamic Real-time Optimization
- Need Fast NLP Solver for Time-critical, on-line optimization
- Computational Delay from On-line Optimization degrades performance

3

MPC and NMPC
Optimization and Optimal Control 
• Pontryagin (1959), Bryson and Ho (1969), Ray (1981), Sargent 

and coworkers (1970s),…

Model Predictive Control 
• Evolution from LQ, Initial MPC (Kleinman, 1975; Kwon and 

Pearson, 1977). 
• DMC (Cutler and Ramaker, 1979), QDMC (Garcia and 

Morshedi,1984) using step response models
• Concepts and Analysis: Allgöwer and coworkers (1989 - ), 

Bordons and Camacho (2001), Rawlings and Mayne (2009), 
Grüne and Pannek (2011)

• LQ models è solve quadratic programs on-line

Nonlinear NMPC – need to consider on-line solution of NLP.

4
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NMPC for High Purity Distillation

Air Separation Unit in IGCC-based Power Plants
•Need for high purity O2
•Respond quickly to changes in process 
demand
•Large, highly nonlinear dynamic separation 
(MESH) models

Methanol distillation (Diehl, Bock et al.,    2005)
•40 trays, 210 DAEs, 19746  discretized equations

Argon Recovery Column
•50 trays, 260 DAEs, 21306 discretized equations

Double Column ASU Case Study 
•80 trays, 1520 DAEs, 116,900 discretized equations
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Nonlinear Model Predictive Control – Air Separation Unit
(Huang, B., 2011)

Objective: minimize operating 
cost subject to demand 
specifications

4 manipulated variables.
4 output variables.
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Horizon: 100 minutes in 20 
                finite elements.
Sampling time: 5 minutes.

DAEs: 1520

After Discretization: 
Variables: 117,140
Constraints: 116,900
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•Mesh Equations for Distillation Column

Mass balance: 

Component balance: 

Energy balance: 

Phase equilibrium: 

Hydrodynamics : 

Assumption: 
    Vapor holdups are negligible.
    Ideal vapor phases.
    Well mixed entering streams.
    Constant pressure drop.
    Equilibrium stage model.

Summation: 

Mi

LiVi+1

Vi
Li-1Index 2 system.

!" !
!# ! ! $ ! ! " "$" ! ! ! $ ! "$ " # $

Reformulated index 1 system 
contains 320 ODEs, 1200 AEs.

Fi

Case Study: Air Separation Unit

7

ASU Nonlinear MPC - Case 1 

Output Variables                                     Manipulated Variables  
The green dot-dashed lines are the set-points, the blue dashed lines are the linear 
controller profiles and red solid lines are NMPC profile.

t = 30-60 min, product rates are ramped down by 30%. t =1000-1030 min, 
they are ramped back.  NMPC is compared to MPC with linear input-
output empirical model.

All the tuning parameters are favored to the linear controller.
Horizon Solution Time: 200 CPUs, 6 IPOPT iters.

8
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Finite Horizon Formulation for NMPC

z0 – initial value
x(k) – measurement of state at tk 
y, F -  (quadratic) stage and terminal costs 
vl - predicted manipulated variable
zl  - predicted state variable in finite horizon
zN  - terminal state, how defined? 

How long is N to meet terminal conditions?

J (x(k)) := min
vl ,zl

Ψ(zN )+ ψ(zl ,vl )
l=0

N−1

∑

s.t. zl+1 = f (zl ,vl ),l = 0,...,N −1

z0 = x(k)

g(zl ) ≤ 0,l = 0,...,N

vl ∈U ,l = 0,...,N −1
zN ∈ Xf

F(zN )

9
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Initial State

Setpoint
Infeasible

(Drone Crashes)

Drone hovering problem:

Effect of N on closed-loop feasibility
Ground

Po
si

tio
n

Setpoint

𝑥!"# =
1 1
0 1 𝑥! +

0
1 𝑢!

where	𝑥! =
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛!
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!

;

          𝑢! = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛!

Constraints:
𝑥! $ ≤ 5; 𝑢! $ ≤ 0.5	∀𝑘 ≥ 0

Tracking MPC Objective: Bring drone 
to new height (setpoint) without 
crashing to the floor.

Without terminal conditions in the formulation of the MPC (no 
terminal constraints or terminal cost, etc.), the closed-loop MPC is 
infeasible (the drone is descending too quickly and will crash) if the 

MPC’s horizon is less than 5. 

Determine horizon length and specify 
terminal conditions? 

10
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Lyapunov stability of NMPC
• Nominal stability

– Basic idea
• Perfect model, no uncertainty:   x+ = f(x, u)
• Remain bounded and eventually achieve desired state 

• Definition: Lyapunov Property

• Can the objective function Jk serve as V(xk)?

11

MPC Stability – Infinite Horizon
(Keerthi and Gilbert (1988)

Nominal stability – perfect model
•  m (input) = p (output)
• Based on discrete Lyapunov arguments   
  with J(x) as Lyapunov function
• Infinite time horizon, ideal case
• Finite time horizon - need endpoint  
  constraint è z(k+p)=0 
   Suffers End Effects
• Choice of terminal cost/constraints gives 
additional stability properties

Jk = || y(l)− ysp ||
Qy

2 + ||u( l)−u( l - 1) ||
Qu

2

l=k

∞

∑
l=k

∞

∑

Jk − Jk+1 =|| y(k)− y
sp ||

Qy

2 + ||u( k)−u( k - 1) ||
Qu

2

J1 ≥ (Jk − Jk+1)
k=1

∞

∑

= (|| y(k)− ysp ||
Qy

2 + ||u( k)−u( k - 1) ||
Qu

2 )
k=1

∞

∑

⇒ y(k)→ ysp,u(k)→ u(k −1)

12
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Current Challenges of Nonlinear MPC Stability: 
Appropriate Terminal Conditions

Main Objective: Avoid all this! 
Develop an infinite horizon model predictive control using time transformation to 

enhance closed-loop stability and simplify implementation.

Approaches Advantages Remaining Challenges References

Sufficiently Long 
Horizon

• Straightforward to 
implement

• Ad-hoc approach
• Computationally 

expensive

Common Practice

Adaptive Horizon
• Computationally 

efficient
• A sufficiently long 

horizon is needed to 
initialize

Griffith et al. (2018), JPC

Terminal Cost

• Approximate an 
increasing horizon

• Nonlinear or 
constrained systems 
require long horizon 
and (overly?) large 
terminal cost

Mayne et al. (2000), 
Pannocchia, Rawlings 
(2003)
Faulwasser et al. (2018)

Terminal Constraint
• Simplified 

implementation
• Reachability?
• Requires offline 

computation

Limon et al. (2006), IEEE 
TAC
Griffith et al. (2018), JPC

J (x(k)) := min
vl ,zl

Ψ(zN )+ ψ(zl ,vl )
l=0

N−1

∑

s.t. zl+1 = f (zl ,vl ),l = 0,...,N −1

z0 = x(k)

g(zl ) ≤ 0,l = 0,...,N

vl ∈U ,l = 0,...,N −1
zN ∈ Xf

F(zN )V(xk)  (= Jk) =:

13

14

Infinite Horizon NMPC: Previous Work

• S. S. Keerthi and E.G. Gilbert (1988) - Classic NMPC paper with 
asymptotic stability properties for infinite horizon problems. 

• P. Kunkel and O. Hagen (2000) –  TPBVP with exp time transformation to 
determine optimal trajectories. 

• L. Würth and W. Marquardt (2014, 2016) – tanh time transformation with 
sampling times determined by wavelet adaptations over entire horizon, 
open loop stable cases only 

• M. Muehlebach and R. D’Andrea (2016, 2017)  - applied to LTI MPC with 
Galerkin approximations, applied to UAV with 100 Hz performance

• W. Greer and C. Sultan (2020) - divides LTI MPC problem into finite 
horizon part and infinite horizon part (with LQR control). Applied to very 
fast helicopter control.

14



11/24/25

8

15

Time Transformation: Infinite to Finite Horizon
What’s New?

Given continuous-time dynamic system:

𝑑𝑥
𝑑𝑡 = 𝑓(𝑥(𝑡), 𝑢(𝑡))

Time transformation - only applied to final 
sampling time in MPC horizon.

Converts infinite interval 𝑡 ∈ [0,∞) to finite 
interval 𝜏 ∈ [0,1]*

𝜏 = tanh(𝛾𝑡)

𝛾 is the tuning parameter

Transformed continuous-time dynamic system:

𝑑𝑥
𝑑𝜏 =

𝑓 𝑥 𝜏 , 𝑢 𝜏
𝛾(1 − 𝜏!) ; 	 𝑥 𝑡 = 0 = 𝑥 𝜏 = 0

*any transformation with bijective mapping in intervals can be applied

Dt t e [0, 1]
t e [𝑡, ∞)

15

16

Infinite Horizon MPC with Time Transformation
Infinite horizon NMPC at 𝑡" = kΔ𝑡:

𝑉 𝑥! = 𝐽𝑘 =min	∑#$%&'(𝜓 𝑧# , 𝑣# Δ𝑡 +Φ 𝑧&  Δ𝑡  
       s.t.  𝑧%"# = 𝐹 𝑧%, 𝑣% , 	𝑙 = 0,…𝑁 − 1	

𝑧& = 𝐹 𝑧', 𝑣
          𝑧( = 𝑥! 
          𝑧% ∈ 𝒳, 𝑣% ∈ 𝒰, 	𝑙 = 0,…𝑁

Discretization for index-1 DAEs:

𝐹 𝑧%, 𝑣% = 𝑧% + Q
))"*)	%

))"*)	(%"#)

𝑓 𝑧(𝑡), 𝑣(𝑡) 𝑑𝑡

Last element, 𝑡 ∈ 𝑡,∞ ,  𝑡 = 𝑡! + 𝑁 − 1 Δt:

𝐹 𝑧', 𝑣 = 𝑧' + ∫)
$𝑓 𝑧 𝑡 , 𝑣 𝑡 	𝑑𝑡

Apply time transform 𝜏 = tanh 𝛾 𝑡 − 𝑡	 :

𝐹 𝑧', 𝑣 	= 𝑧' +Q
(

#𝑓 𝑧 𝜏 , 𝑣 𝜏
𝛾 1 − 𝜏. 𝑑𝜏

Terminal Cost Φ 𝑧# : designed to 
overestimate Riemann sum of last element 
(infinite length):

Φ 𝑧# Δ𝑡 =
          𝛽∫$

%𝜓 𝑧 𝑡 , 𝑣 𝑡 𝑑t > ∑𝒍'𝟎% 𝝍 𝒛𝒍, 𝒗𝒍 𝜟𝒕

where	𝛽 > G𝛽 ≥ 1 for some threshold G𝛽. 

è Leads to recursive feasibility for NMPC

Terminal constraints use (𝑧), 𝑢)) as boundary 
conditions which “pin down unstable modes” 

à Allows unstable open-loop dynamics!

Additional assumptions: Weak controllability

0 ≤ 𝜓(𝑥, 𝑢) ≤ 𝛼*( 𝑥 )
0 ≤ Φ(𝑥) ≤ 𝛼!( 𝑥 )

𝛼*( 𝑥 ), 𝛼!( 𝑥 ) are 𝒦% functions of 𝑥

16
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Recursive Feasibility of Time-
Transformed Infinite Horizon MPC

Optimal Solution at 𝒕𝒌

Feasible Solution 
at 𝒕𝒌"𝟏

• Final Element Discretization: Orthogonal collocation on finite elements
• Zero-order hold: not applied for MVs in last (infinite) element
• To ensure recursive feasibility:

o First collocation point of the last element fixed at previous time step solution
o First collocation point must be larger than Dt, i.e., tanh-1(g Dt) > t1,1

• Leads to Asymptotic Stability of NMPC 

Infinite Horizon

Collocation Points

Extend terminal solution

Shifting solution at 𝑡!

17

Case Study: Distillation Column
(Diehl, 2001; Lin, 2023)

Model description
1. High-purity distillation column
2. Separate methanol and n-propanol
3. Controls: Reboiler heat duty 𝑄1, Reflux 

ratio 𝑅
4. States: Mole fraction 𝑥, Liquid molar 

holdup 𝑀
5. Differential-algebraic model with 84 

differential and 503 algebraic equations. 

Control Task
Stage cost: maintain product mole fractions 
at 0.98.

18

Bottom product

Distillate

Condenser

Reflux ratio

Reboiler heat duty

Inlet

18
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Distillation Column Case Study: Short Finite 
Prediction Horizon (N=2)

Tracking MPC -  unable to achieve new setpoint if prediction horizon is too short
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Distillation Column Case Study: Long Finite 
Prediction Horizon (N=20)

Extending horizon improves closed-loop stability - at much higher computational cost

Pr
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Distillation Column Case Study: Short Finite 
Prediction Horizon with Augmented Infinite Horizon 

(N = 1+ ∞)

Infinite horizon MPC achieves closed-loop stability w/ two-element prediction horizon. 
First element is finite; second element is the time-transformed infinite horizon.
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CV: x_D, N = 1 + ∞

x_top x_top_sp
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Lyapunov stability of NMPC
• Robust stability

– Basic idea
• Uncertainty in model: x+ = f(x, u, w), where w could be 

additive disturbance or uncertain parameters;
• Remain stable in the presence of disturbances.

x(k+1) = f(x(k), u(k)) + q(x(k), w(k)) 

22
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Proof of robust stability for NMPC
• Additional Assumptions:

– |q(x,w)| ≤ |q(x,0)| + Lg|w| 
– |q(x,0)| ≤ 𝜌αp(|x|)/ ζ, and |q(x,0)|≤ qmax, where 𝜌 ϵ (0,1).

J (x(k +1))− J (x(k))
= J ( f (x(k),u(k)))− J (x(k))+ J (x(k +1))− J ( f (x(k),u(k)))
≤ −ψ(x(k),u(k))+ LJ | q(x(k),w(k)) |

≤ −α p (| x(k) |)+ LJ
ρ
ς
α p (| x(k) |)+ LJ Lg |w(k) |

≤ (ρ −1)α p (| x(k) |)+σ |w(k) |

23

Nonlinear programming (NLP) formulation for NMPC

z0 – initial value
x(k) – measurement of state at tk 
y, Y -  (quadratic) stage and terminal costs 
vl - predicted controlled variable
zl  - predicted manipulated variable

How will NLP formulation satisfy assumptions 
of NMPC stability properties? 

JN (x(k)) := min
vl ,zl

Ψ(zN )+ ψ(zl ,vl )
l=0

N−1

∑

s.t. zl+1 = f (zl ,vl ),l = 0,...,N −1

z0 = x(k)

g(zl ) ≤ 0,l = 0,...,N

vl ∈U ,l = 0,...,N −1

Φ

Φ

24



11/24/25

13

Problem: Minx f(x)
s.t. g(x) £ 0

    h(x) = 0
where:
  f(x)  -  scalar objective function
    x   -  n vector of variables
  g(x)  -  inequality constraints, m vector
  h(x)  -  meq equality constraints.

Sufficient Condition for Global Optimum
- f(x) must be convex, and
- feasible region must be convex,
 i.e.  g(x) are all convex
     h(x) are all linear
Except in special cases, there is no guarantee that a local optimum is global 
if sufficient conditions are violated.

Nonlinear Programming 
(note notation change)

25

Necessary First Order Karush Kuhn - Tucker Conditions

 Ñ L (x*, u, v) = Ñf(x*) + Ñg(x*) u + Ñh(x*) v = 0    
 (Balance of Forces)
 u ≥ 0 (Inequalities act in only one direction)
 g (x*) ≤ 0,  h (x*) = 0 (Feasibility)
 uj gj(x*) = 0 (Complementarity: either gj(x*) = 0 or  uj = 0)
     u, v are "weights" for "forces," known as KKT multipliers, shadow 
 prices, dual variables

“To guarantee that a local NLP solution satisfies KKT conditions, a constraint 
qualification is required. E.g., the Linear Independence Constraint Qualification 
(LICQ) requires active constraint gradients, [ÑgA(x*) Ñh(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) Second Order Conditions
- Positive curvature in "constraint" directions.
- pTÑ 2L (x*) p ³ 0  (pTÑ 2L (x*) p > 0) 
 where p are the constrained directions: Ñh(x*)Tp = 0 
      for gi(x*)=0, Ñgi(x*)Tp = 0, for ui > 0, Ñgi(x*)Tp ≤ 0, for ui = 0 

Optimality conditions for local optimum

26
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Constraint Qualifications
• Linear Independence Constraint Qualification (LICQ):     
       [Ñh(x*), Ñgj(x*)] is linearly independent, where 
             j e J={j|gj(x*)=0}
èKKT multipliers (u,v) are bounded and unique.

• Mangasarian-Fromovitz Constraint Qualification 
(MFCQ): Ñh(x*) is linearly independent and exists y  
such that 

 Ñh(x*)Ty =  0, Ñgj(x*)Ty <  0, j e J
èKKT multipliers (u,v) are bounded.

• Constant Rank Constraint Qualification (CRCQ): all 
subsets of  [Ñh(x), Ñgj(x)] , j e J  have constant rank in 
neighborhood of x*

27

Second Order Conditions
(easy to satisfy for NMPC)

• Strong Second Order Sufficient Conditions (SSOSC):  At 
KKT point with LICQ, 

                             pT ÑxxL (x*, u*, v*) p  > 0 , 
    where Ñh(x*)Tp = 0, Ñgj(x*)Tp = 0, j e J+={j|gj(x*)=0, uj* >0}

• Generalized Strong Second Order Sufficient Conditions 
(GSSOSC):  At KKT point with MFCQ, 

                             pT ÑxxL (x*, u*, v*) p  > 0 , 
for all u*, v* satisfying KKT conditions where Ñh(x*)Tp =  0, 
Ñgj(x*)Tp = 0, j e J+

• Strict Complementarity (SC):    uj* -gj(x*) > 0, for all j.

28
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NLP Sensitivity Properties

• Theorem (Kojima, 1985):
– If f(•, •), ψ(•, •), Ψ(•) are twice continuously differentiable 

and MFCQ and GSSOSC satisfied
– Then exists LJ >0  with  |J(p)-J(p0) ≤ LJ|p-p0|, where p is an 

input parameter
• MFCQ, GSSOSC – Lipschitz continuity of objective 

functions and primal variables wrt p. (Kojima, 1985)
• MFCQ, GSSOSC, CRCQ à (DDpx*) directional 

derivatives calculated with additional LP and QP steps 
(Ralph and Dempe, 1995)

• LICQ, SOSC, SC à (dx*/dp), derivatives can be 
calculated (Fiacco, 1983)

29

Reformulating NLP with Soft State Constraints 
– Disturbances may lead to infeasibility of the NLP
– Dependent active sets can make system unstable under perturbations

• Formulation
– If s* = 0, stability of the mixed constraint problem is same as original NLP

de Oliveira, N. M. C. and Biegler, L. T. [1998], ‘Constraint handling and stability properties of 
model-predictive control’, Process Systems Engineering 40, 1138–1155.

J (x(k)) := min
vl ,zl

Ψ(zN )+ ψ(zl ,vl )
l=0

N−1

∑

s.t. zl+1 = f (zl ,vl ),l = 0,...,N −1

z0 = x(k)

g(zl ) ≤ 0,l = 0,...,N

vl ∈U ,l = 0,...,N −1

J (x(k)) := min
vl ,zl

Ψ(zN )+ ρεN
T e+ ψ(zl ,vl )+ ρ

l=0

N−1

∑ εl
Te

l=0

N−1

∑

s.t. zl+1 = f (zl ,vl ),l = 0,...,N −1

z0 = x(k)

g(zl ) ≤ εl ,εl ≥ 0,l = 0,...,N

vl ∈U ,l = 0,...,N −1

e = [1,1,1,1...1]T

If g(z) is linear, MFCQ and CRCQ are always satisfied at KKT point.

s s

s sΦ

30
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A Nonrobust NMPC Example 
(Grimm et al., 2004)
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Grimm, G., Messina, M. J., Tuna, S. and Teel, A. [2004], ‘Examples when nonlinear model 
predictive control is nonrobust’, Automatica 40, 523–533.

min
x,u

g(x10)+ ρgsN + l(x,u)+ ρlsl
l=0

10−1

∑

s.t. x1(k +1) = f1(x,u) =
−(x1

2(k)+ x2
2(k))1/2u(k)+ x1(k)

1+ (x1
2(k)+ x2

2(k))u2(k)− 2x1(k)u(k)

x2(k +1) = f2(x,u) =
x2(k)

1+ (x1
2(k)+ x2

2(k))u2(k)− 2x1(k)u(k)

x1,i ≤ c+ si ,i = 0,...,N −1,| xN |≤ ε + sN
u ∈ [−1,1],κ f (x) = −1

g(x) =| x | cos−1
(x2− | x |)(− | x |)

| x | x1
2 + (x2− | x |)

2

l(x,u) =| x | cos−1
x1 f1(x,−1)+ (x2− | x |)( f2(x,−1)− | x |)

x1
2 + (x2− | x |)

2 f1(x,−1)
2 + ( f2(x,−1)− | x |)

2
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Nonrobust NMPC Example 

} The constraint x1 ≤ c prevents the trajectory from going beyond x1=c
} Soft constraint allows the trajectory to go beyond x1=c and then 

converge
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Infinite Horizon: Distillation Column
(Diehl, 2001; Lin, 2023)

Model description
1. High-purity distillation column
2. Separate methanol and n-propanol
3. Controls: Reboiler heat duty 𝑄1, Reflux 

ratio 𝑅
4. States: Mole fraction 𝑥, Liquid molar 

holdup 𝑀
5. Differential-algebraic model with 84 

differential and 503 algebraic equations. 

Control Task
Stage cost: maintain product mole fractions 
at 0.98.

33

Bottom product

Distillate

Condenser

Reflux ratio

Reboiler heat duty

Inlet

33

34

Distillation Case w/ Disturbance : Short Prediction 
Horizon + Infinite Horizon (N = 2+ ∞)

• Disturbances: The feed concentration fluctuates 10% around its nominal values. At the 100th time step, 
a large unscheduled disturbance drops feed concentration to 30% its nominal values for 10 time steps.

• Infinite horizon MPC keeps the CVs in bounded regions around the setpoints and is able to bring the 
system back from the unplanned large disturbance.
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What about Fast NMPC?
• Fast NMPC is not just NMPC with a fast solver (Engell, 2007)
• Computational delay – between receipt of process measurement 

and injection of control, determined by cost of dynamic optimization 

• Leads to loss of performance and stability (see Rawlings and 
Mayne, 2009; Findeisen and Allgöwer, 2004; Santos et al., 2001) 

Can computational delay be overcome?
- Fast Newton-based NMPC
- Cheap NLP Sensitivity

35

NMPC – Can we avoid on-line optimization?
• Divide Dynamic Optimization Problem (Diehl, Bock et al., 2002):

–  preparation, feedback response and transition stages 
– solve complete NLP in background (‘between’ sampling times)
       as part of preparation and transition stages
– solve perturbed problem on-line
–  > two orders of magnitude reduction in on-line computation

• Based on NLP sensitivity of z0 for dynamic systems
– Extended to Collocation approach – Zavala et al. (2008, 2009)
– Similar approach for MH State and Parameter Estimation – Zavala et 

al. (2008)
• Stability Properties (Zavala et al., 2009)

– Nominal stability – no disturbances nor model mismatch 
• Lyapunov-based analysis for NMPC

– Robust stability – some degree of mismatch 
• Input to State Stability (ISS) from Magni et al. (2005)

– Extension to economic objective functions

36
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NLP Sensitivity
Parametric Program 

NLP Sensitivity  à Rely upon Existence and Differentiability of Path
 
  à Main Idea: Obtain         and  find               by Taylor Series Expansion            

Optimality Conditions 

Solution Triplet

37

NLP Sensitivity with IPOPT 
(Pirnay, Lopez Negrete, B., 2011)

Optimality Conditions of 

Obtaining  

à Already Factored at Solution

à Sensitivity Calculation from Single Backsolve

à Approximate Solution Retains Active Set

KKT Matrix IPOPT  

Apply Implicit Function Theorem to                                  around 
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Solve NLP(k) in background (between tk and tk+1)

Advanced Step Nonlinear MPC (Zavala, B., 2009)

€ 

min     J(x(k),  u(k)) =  F(xk+N |k ) + ψ(xl |k,vl |k )
l= k+1

k+N−1

∑

s.t.    xk+1|k = f (x(k),u(k))

        xl+1|k = f (xl |k,vl |k ),   l =  k +1,...k +N -1

        xl |k ∈ X,     vl |k ∈U,     xk+N |k ∈ X f

Solve NLP in background (between steps, not on-line) 
Update using sensitivity on-line

tk           tk+1       tk+2  

u(k)

x(k)

tk+N

xk+1|k

Φ

39

Solve  NLP(k) in background (between tk and tk+1)
Sensitivity to update problem on-line to get (u(k+1))

  

€ 

W
k

A
k

−I

A
k

T
0 0

Z
k

0 X
k

 

 

 
 
 

 

 

 
 
 

  

Δx

Δλ

Δz

 

 

 
 
 

 

 

 
 
 

=  

0



x
k+1|k − x(k +1)

0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Advanced Step Nonlinear MPC (Zavala, B., 2009)
Solve NLP in background (between steps, not on-line) 

Update using sensitivity on-line

x(k) x(k+1)
u(k+1)

u(k)

tk           tk+1       tk+2  tk+N

xk+1|k
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Solve  NLP(k) in background (between tk and tk+1)
Sensitivity to update problem on-line to get (u(k+1))
Solve  NLP(k+1) in background (between tk+1 and tk+2)

Advanced Step Nonlinear MPC (Zavala, B., 2009)

€ 

min     J(x(k +1), u(k +1)) =  F(xk+N +1|k+1) + ψ(xl |k+1,vl |k+1)
l= k+2

k+N

∑

s.t.    xk+2|k+1 = f (x(k +1),u(k +1))

        xl+1|k+1 = f (xl |k,vl |k ),   l =  k +2,...k +N

        xl |k+1 ∈ X,     vl |k+1 ∈U,     xk+N +1|k+1 ∈ X f

Solve NLP in background (between steps, not on-line) 
Update using sensitivity on-line

tk           tk+1       tk+2  tk+N

x(k) x(k+1)

u(k+1)
u(k)

xk+2|k+1

Φ
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Nonlinear Model Predictive Control – Air Separation Unit
(Huang, B., 2011)

Objective: minimize operating 
cost subject to demand 
specifications

4 manipulated variables.
4 output variables.

!"#A%C'EF
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-I
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.
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=H#>!X?

GR@Y#R6AB@FURP#
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c@b#X9YP%URF

AP'4R#c@b#X9YP%URF

d9P#eRR4
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mRn%9CRP#
A%F4RFbRP

=N#>cX?

Horizon: 100 minutes in 20 
                finite elements.
Sampling time: 5 minutes.

DAEs: 1520
Variables: 117,140
Constraints: 116,900
Background: 200 CPUs, 6 IPOPT iters.
Online:  1 CPUs
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ASU Nonlinear MPC - Case 1 

Output Variables                                     Manipulated Variables  
The green dot-dashed lines are the set-points, the blue dashed lines are the linear 
controller profiles and red solid lines are NMPC profile.

t = 30-60 min, product rates are ramped down by 30%. t =1000-1030 min, 
they are ramped back.  asNMPC is compared to MPC with linear input-
output empirical model.

All the tuning parameters are favored to the linear controller.

43

Blue dashed lines are ideal NMPC profile 
Red lines are AS-NMPC profile.
In contrast, linearized controller is unstable

At t = 30-60 min, product rates are ramped down by 40%. 
At t =1000-1030 min, they are ramped back. 5% disturbance is added to Mi. 

N = 20, K = 3
320 ODEs, 1200 AEs.
Variables: 117,140
Constraints: 116,900

400 NLPs solved
Background: 200 CPUs, 6 iters.
Online:  1 CPUs

Computational Feedback Delay 
Reduced from 200 à 1 second.

NMPC of Air Separation Unit – Case 2 
(Huang, B., 2009)
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asNMPC: Concepts and Properties

• Interpretation: Fast linear MPC controller using 
linearization of nonlinear model at previous step. 

• NLP solved between samples, “instantaneous” sensitivity 
update at sampling time

• On-line computation 2-3 orders of magnitude faster; 
 è Computational delay virtually eliminated
• Second order errors compared to ideal NMPC
            è Nominal and ISS stability (Zavala, B., 2009)
• ISpS stability when coupled with embedded state 

estimators (Huang, Patwardhan, B., 2009a,b, 2010a-c, 2012)

45

D-RTO through NMPC
• Detailed dynamic model 
• Economic NMPC (tf)
• Key Issues

– Uncertainty-tolerant 
optimization formulations

– Time critical optimization
     (large-scale NLP)
– Accelerate with advanced 

step (sensitivity-based) 
strategies

Incorporation of Uncertainty
• From states, parameters, 

measurement noise 
• State estimation with expanding 

batch horizon, …
• NMPC with shrinking batch 

horizon...
• Off-line multi-model approach 

(Bonvin et al., 2003)
• Stochastic, Multi-stage Programs 

within NMPC for disturbances with 
delayed realization (Lucia, Engell, 
2014; Puschke, Mitsos, 2018)

On-Line Optimization with Uncertainty
Jung, Nie, Lee, LTB (2015);  Jang, Lee, LTB (2016), 

Holtorf, Mitsos, LTB (2018) 
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Scenario branching: effect of uncertainty  while optimizing control input 

• Worst Case: single control for multiple uncertainty cases
• Large-scale, highly constrained NLP
• Feasible, but conservative performance

xk

xk+1

xk+2

xk+3

(dk)

(dk+1)
(dk+2)

…
...

…
...

…

...

Handling of Uncertain Dynamic Systems?
Multi-model Approach – Worst Case Control

(Bonvin et al., 2003)

47

Handling of Uncertain Dynamic Systems?
==> Non-conservative multi-stage NMPC

Lucia, Engell et al., J. Process Control, 2013

Scenario branching: effect of uncertainty  while optimizing control 
input 

Non-anticipativity: control inputs from same node set equal 
until uncertainty is realized 

xk

xk+1

xk+2

xk+3

(dk, uk)

(dk+1, uk+1)
(dk+2, uk+2)
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Multi-stage NMPC: Polyol Case Study
(Holtorf, Mitsos, LTB, 2018)

min
+234
5 ,-2

5 ,"'.,…,#60*,1'*,…,#7 "
	

∑"'.
#60* ∑1'*

#7(") ℒ +234
5 ,-2

5

#7(")
 

ℒ 𝑥"6*
1 , 𝑢"

1 = Δ𝑡7	 (+𝜇𝑃) 

𝑥"6*
1 = 𝑓 𝑥"

8 1 , 𝑢"
1 , 𝑑"

1  

𝑥"
1 ∈ 𝕏, 𝑢"

1 ∈ 𝕌 
𝑢"
1 = 𝑢"9 	if	𝑥"

8 1 = 𝑥"
8 9  

Economic cost function (processing time)

Nonlinear dynamic model

Feasible domain

Non-anticipativity constraints

k : time index
j : scenario index

maxj

• Assume uncertainties have monotonic effect on inequality 
    constraints
• Identify worst case scenarios a priori
• Eliminate remaining scenarios

==>  Problem scales linearly with constraints, not exponentially 
        with disturbances

ℎ 𝑥`
a, 𝑢`

a , 𝑑`
a ≤ 0
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msNMPC- Adaptive Scenario Generation

• Non-anticipativity constraints: pk unknown at k, resolved at k+1
• Much smaller (msNMPC): 𝒏𝒑𝒄 +𝒏𝒆 +𝟏)(𝒏𝒑𝒄 +𝟏

𝑵𝑹	scenarios
• Scales with path (𝒏𝒑𝒄) and endpoint (𝒏𝒆) constraints, not 𝒏𝒑
• Scenarios updated with every NMPC shrinking horizon
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Figure 1: Scenario tree S with NS = 9 scenarios and robust horizon NR = 2

Based on the scenario-tree model, we formulate the multistage optimal control problem

(msOCP) to be solved at every time step k of a shrinking horizon multistage NMPC scheme in

the following way:

min
uj

l 2U , xj
l , ✏j

l 8(j,l)2S
max

j=1,...,NS

�(xj
N ) + ⇢

X

(i,j)2S

1
T ✏j

i (msOCP)

s.t. xj
l+1 = f(x (j,l+1)

l , uj
l , p

j
l ), 8(j, l + 1) 2 S \ (1, k) (5)

x1
k = x(k) (6)

gi(x
j
l ) 

⇥
✏j
l

⇤
i
,

⇥
✏j
l

⇤
i
� 0, 8(j, l) 2 S, 8i 2 Il (7)

uj
l = ui

l if (j, l) = (i, l), 8(j, l + 1), (i, l + 1) 2 S \ (1, k) (8)

Here, S represents the scenario tree defined in terms of all index combinations (j, l) corresponding

to the nodes covered by the tree (cf. Figure 1). xj
l denotes the system state at node (j, l) whereas

7
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Dynamic Real-time Optimization
Semi-Batch Polymer Process 

Introduction
Semi-batch polyether polyol process description

Key ingredients
� Epoxides (ethylene oxide (EO), propylene

oxide (PO))

OO OO
� Molecules containing active hydrogen atoms

(alcohols, amines)

OH N

H

H
� A basic catalyst (KOH)

N2

Monomer

Reactor

Basic procedures
� Starters are first mixed with catalyst in the liquid phase
� Alkylene oxides in the liquid phase are fed in controlled rates
� The reactor temperature is controlled by the heat exchanger
� Allowed maximum reactor pressure guarded by the vent system control valve

Yisu Nie (Carnegie Mellon University) 2012 AICHE Annual Meeting October 31, 2012 2 / 17
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Nominal Trajectory: High Potential for 
Constraint Violations

Improved by Worst Case Multi-model Approach, but with 
High Conservatism
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Infeasibilities Resolved with msNMPC & State Estimation

53

NMPC Strategies with (MHE) State Estimation

Computational Performance
• Nominal NMPC: 99% of problems solved < 1 s
• msNMPC:          99% of problems solved < 10s
• msNMPC-SG:    99% of problems solved < 6s
• Implementable On-line
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On-line Nonlinear State Estimation and Control
Pyomo Optimization Framework

(D. Thierry, B. Nicholson, B.) 
• Pyomo.DAE - dynamic 

system with DAE model

• State Estimator: Moving 
Horizon Estimation (MHE)

• Controller: Nonlinear Model 
Predictive Control (NMPC)

𝑑𝑥
𝑑𝑡 = 𝐹 𝑥, 𝑦, 𝑢, 𝑤

0 = 𝐺 𝑥, 𝑦, 𝑢, 𝑤
↓

𝑥 𝑘 + 1 = 𝑓 𝑥 𝑘 , 𝑢 𝑘 , 𝑤 𝑘
𝑦(𝑘) = ℎ 𝑥 𝑘
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Model-based Estimation (MHE) 
and Control (NMPC)

56
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Model-based Estimation and Control:
IDAES Dynamic Optimization and NMPC

57

NMPC for CO2 Capture (BFB) 
(Thierry, B.)

• Set-point on CO2 removal 
fraction

• Controls: valve opening inlet 
and outlet gas

• Discretized with 5 spatial finite 
elements and 3 point Radau 
collocation in time

• 315 states for the current 
discretization

• Full-state feedback control, 
stage cost tracked in objective

• 46510 var. / 46500 eqns.
58
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BFB Results: Ideal vs. asMHE

Average CPUs
Ideal 
MHE asMHE

IPOPT 9.23 9.23
k_aug (rH) 13.02 13.02
k_aug (sens) 0 12.99

dot_(online) 0 2.4

Online Cost 22.25 2.4

• asMHE: similar performance  at ~10% online cost

• Use predicted measurement to solve NLP offline (IPOPT)
• Update optimum estimated state on-line using NLP 

sensitivity correction (sIPOPT/k_aug)

59

Input 2

Set-
point

asNMPC vs  Ideal NMPC (noise: 𝜎 = 1%)
BFB Results: asNMPC: similar performance

Input 1

Average CPUs
Ideal NMPC asNMPC

IPOPT 6.37 6.37
k_aug (rH) 0 0
k_aug (sens) 0 5.6
dot_sens (online) 0 0.3
Online 6.37 0.3

• Use predicted state to solve NLP offline (IPOPT)
• Update optimum control on-line using NLP sensitivity 

correction (sIPOPT/k_aug)
• Similar Performance with < 5% of on-line 

computation
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NMPC has well-known stability/robustness guarantees 
• Asymptotic / Robust stability based on NLP properties
• Can Avoid Unreachable Finite Horizons
• Infinite Horizon NMPC has asymptotic / robust stability 

NMPC Computational Strategies
• Full-Discretization +  Fast Sensitivity Calculations
• Large-scale nonlinear DAE models – case studies
• Sensitivity-based Nonlinear Estimation & Control 

Bigger NLPs are not harder to solve
• Embrace and exploit size, sparsity and structure
• Exact first and second derivatives are essential
• Newton-based optimization is fast
• Optimal sensitivity is (nearly) free

Conclusions

61
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